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Abstract. This paper hast two aims. Firstly, to introduce a type of spatial
model whereby joint cumulants of order greater than two (i.e. covariances)
can be handled without prohibitively increasing the number of model parame-
ters; joint cumulants were seen in Rodríguez and Bárdossy (2013) as convenient
means, both conceptually and practically, for tackling interactions among more
than two variables simultaneously. The type of model introduced forms a �exi-
ble subclass of the elliptical family and can be seen as an extension to the Nor-
mal model; it capitalizes on current covariance function estimation techniques,
and it is seen how this model can be ensured to be spatially consistent. It is
suggested that the cumulant generating function of the model can be seen as a
natural extension to the covariance function. Secondly, we illustrate the need
to consider spatial dependence structures beyond correlation. For this end, we
present a simulation study in which relevant characteristics of a big �eld are to
be inferred from realizations of a 30-dimensional vector ("gauging network").
Three random �elds are presented having the same covariance function, and
practically indistinguishable 1 and 2-dimensional marginal distributions and
copulas. Yet the �elds present very di�erent dependence characteristics: In the
context of daily rainfall modeling this may lead to substantial underestimation
of aggregating statistics that are important for risk quanti�cation and �ood
return period estimation; in mining geostatistics to substantial underestima-
tion of the ore concentration at unwelled locations. The topics of interpolation
to ungauged sites, simulation and estimation are dealt with.

1. Introduction

A generic Spatial model can be de�ned as follows (see Cressie (1991)): Let
s ∈ Rg be a generic location in the G-dimensional Euclidean space and suppose the
potential datum Z (s) at spatial location s is a random quantity. Let s vary over
an index set D ⊂ Rg, then a multivariate random �eld is generated

(1.1) {Z (s) : s ∈ D}
For example, if D = {s1, s2, s3, . . . , sJ} is a �xed �nite set, we obtain the random

�eld

(1.2) (Z (s1) , . . . ,Z (sJ))

in case set D ⊂ Rg is countably in�nite and �xed, the generated �eld can be
written as

(1.3) (Z (s1) ,Z (s2), . . .)

The above two instances are usually called �lattice data models�. If set D ⊂ Rg
is �xed and non-countable, then the model is a �Geostatistical model�, the name
coming from the original context in which this type of model was �rst developed.

If the index set D ⊂ Rg is not provided in advance, and the model for the process
of interest can be decomposed into two steps: 1. a location s is generated on Rg; 2.
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given location s, a random quantity is generated Z (s). Then the model is a �Point
pattern� model; important instances of this model are the �Poisson point process�
and the �Cox Process� (see Cressie and Wikle (2011)), in which only the location
generation mechanisms are random, and Z (s) = 1,∀s.

The above models do not exhaust the Spatial Statistics types of models. The
reader is referred to Cressie and Wikle (2011) for more details. For the sake of
simplicity, we focus in this work on simple versions of the Lattice models and
g = 2, but the concepts and ideas presented in this paper can be also applied to
the other types of Spatial Statistics models.

Association between every two components of (Z (s1) , . . . ,Z (sJ)) in Spatial Sta-
tistics can be modeled in terms of a covariance function, C,

(1.4) cov (Z (si) ,Z (sj)) = C (‖si − sj‖)

where ‖si − sj‖ is the euclidean distance between si and sj. This covariance function
must ensure positive-de�niteness of the resulting covariance matrix. By way of
illustration, two popular covariance functions are:

Powered-exponential:: given by equation

(1.5) C (d) = σ2
0 .I (d = 0) + σ2

1 exp
(
− (d/θ1)

θ2
)

where I (∗) stands for the indicator function.
Mátern's:: given by equation

(1.6) C (d) = σ2
0 .I (d = 0) + σ2

1

[
2θ2−1Γ (θ2)

]−1
[d/θ1]

θ2 Kθ2 (d/θ1)

where Γ (∗) stands for the Gamma function and Kθ2 (d/θ1) for the modi�ed
Bessel function of the second kind of order θ2 (see, for example Abramowitz
(1972)).

Parameters
(
θ1, θ2, σ

2
0 , σ

2
1

)
are the covariance function parameters. Hence, only a

reduced number of parameters must be estimated in order to �nd the covariance
between every two components Z (si) and Z (sj), given locations si and sj.

The Normal model is a common model in Spatial Statistics for components
corresponding to every �nite set of locations,

(Z (s1) , . . . ,Z (sJ)) ∼ NJ (µ,Σ)

where the covariance matrix is given by Σij = C (‖si − sj‖). Under the gaussian
model, the whole distribution is de�ned in terms of a vector of means µ ∈ RJ and
parameters

(
θ1, θ2, σ

2
0 , σ

2
1

)
. It is often the case that the mean vector is represented

as a function ξ of geographic coordinates of sj or of an additional variable ("external
drift") related to such location ,

(1.7) µj = µ (ξ (sj))

For a new location sk /∈ {s1, s2, s3, . . . , sJ}, the joint distribution of

(Z (s1) , . . . ,Z (sJ),Z (sk))

can be readily found under the Normal model: one adds component µk = µ (ξ (sk))
to the means vector, and extends the covariance matrix by Σik = C (‖si − sk‖), for
each si ∈ {s1, s2, s3, . . . , sJ}. The model is thus completely speci�ed. This is one
of the reasons why the Normal model is very convenient conceptually, and is often
used in practice, if necessary after applying a suitable transformation to data.
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The family of elliptical distributions can be seen as the wider family to which
both the multivariate Normal and the multivariate Student distributions belong.
The classical de�nition, according to Cambanis et al. (1981), is as follows:

De�nition. Let X be a J-dimensional random vector, µ ∈ RJ and Σ a J ×J , non-
negative de�nite matrix. Let φX−µ (t) : RJ → [0,+∞) be the characteristic func-

tion of X−µ. If φX−µ (t) = Ψ
(
tΣt

′
)
for some function Ψ (s) : [0,+∞)→ [0,+∞),

then we say that X has an elliptically contoured distribution with parameters µ
and Σ.

In case X−µ is Normally distributed with means vector 0 and covariance matrix
Σ, one has of course Ψ (s) := exp

(
− 1

2s
)
.

An elliptically distributed vector X− µ can always be represented as

(1.8) X− µ = R×U× Σ
1
2

where Σ
1
2 is a J × J matrix such that Σ

1
2 ×

(
Σ

1
2

)T
= Γ, for example its Cholesky

decomposition factor; R ≥ 0 is a non-negative random variable; and U ∈ RJ is a
random vector uniformly distributed on the boundary of the unit hypersphere (see
Cambanis et al. (1981)). Variable R receives the name of �generating variable�, and
together with Σ determines the speci�c characteristics of X, most remarkably, its
tail behavior. The generating variable is what really marks the di�erence among
the several elliptical distributions one might construct.

Example 1. In case X − µ is Normally distributed with means vector 0, then
generating variable R is distributed as a χ distribution with J degrees of freedom.
That is, R2 ∼ χ2

J , a chi-squared distribution with J degrees of freedom.

Another well-known case is that of the multivariate student distribution with
ν degrees of freedom, for which R2 ∼ J × FJ,ν , and FJ,ν represents the Fisher
distribution with J and ν degrees of freedom.

Despite being a generalization to the Normal model, which pervades the Spatial
Statistics literature, elliptical models are not part of current practice in the area.
For example, among other excellent books on the subject, no mention is made
about elliptical distributions at Le and Zidek (2006); Cressie and Wikle (2011);
Cressie (1991); Diggle and Ribeiro (2007); Banerjee et al. (2003). This may have
to do with the inconvenient the model presents for interpolation or �kriging�: For
the multivariate Normal and student models, it has already been seen that the
distribution of the generating variable depends on the dimension of the vector
X ∈ RJ , which means that function Ψ must also change. Since our model is
de�ned in terms either of Ψ, as in de�nition 1, or in terms of generating variable
R, as in representation (1.8), it is not clear into what these parameters will turn
when extending the model to k �ungauged� sites, whereby X ∈ RJ+k. This issue is
addressed in this paper.

Our intention in dealing with elliptical distributions is to consider interdepen-
dence among variables that cannot be quanti�ed in terms of correlations or co-
variances alone, which concepts form the core of dependence modeling in current
spatial statistical practice. The topic of "beyond correlation interdependence" has
been addressed in itself by Rodríguez and Bárdossy (2013). We intend here to give
an implementation to the ideas presented at Rodríguez and Bárdossy (2013) in the
context of Spatial Statistics.
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At Rodríguez and Bárdossy (2013), a distinction is drawn between interaction
�parameters�, and interaction �manifestations�. The latter are subject-matter spe-
ci�c statistics connected with sub-vectors of the analyzed random vector, X, and
dependent on the type of association among the components of such sub-vectors;
they have a relevant interpretation for the researcher. Interaction �parameters� can
be seen as convenient building blocks of a (low dimensional) model or dependence
structure that can somehow reproduce the target interaction manifestations. It is
argued that the joint cumulants of X are legitimate extensions to correlation coef-
�cients to more than two variables, and as the building blocks referred to above.
The cumulant generating function is then accordingly referred to as a �dependence
structure�.

In the present paper, we show how we can build a low dimensional (regarding
the number of parameters to �t) spatial model on the basis of joint cumulants, i.e.
on the basis of a cumulant generating function. This model can be considered a
natural extension to the Normal model. A Normal model is built on the order one
and two joint cumulants only, namely a means vector µ containing the order one
cumulants, and an array of covariances cov (Xj , Xi) containing the order two joint
cumulants. In the extension here presented, higher order joint cumulants can be
considered without increasing prohibitively the number of parameters to �t.

2. The proposed model

We shall be assuming the existence of su�ciently many product moments of
X; su�cient so as to provide a practically useful approximation to the processes
modeled. Then it is more convenient, for our purposes, to conceptualize elliptical
distributions in terms of their moment generating function.

We say that random vector X ∈ RJ is �elliptically distributed� if and only if its
moment generating function can be written as

(2.1) MX−µ (t) = E
(
e〈t,X−µ〉

)
= Υ

(
tTΣt

)
for some function Υ : R → R, and some µ ∈ RJ . For the sake of simplicity, we
assume that µ = 0.

Consider a moment generating function of the form

(2.2) MX (t) = exp

(
δ

(
1

2
tTΣt

))
for some function δ : R→ R. Then the cumulant generating function (c.g.f.) of X
is given by

(2.3) KX (t) := log (MX (t)) = δ

(
1

2
tTΣt

)
This function δ (y) can be formally expanded in its Taylor Series around zero,

(2.4) δ (y) = c0 +
c1
1!
y +

c2
2!
y2 +

c3
3!
y3 +

c4
4!
y4 + . . .

= c0 +
c1
1!

(
1

2
tTΣt

)
+
c2
2!

(
1

2
tTΣt

)2

+
c3
3!

(
1

2
tTΣt

)3

+ . . .

= δ

((
1

2
tTΣt

))
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where cr = dr

dyr δ (y) |y=0.

A little thought shows that the assumption µ = 0 implies that c0 = 0. Thus, by
virtue of (2.3) and (2.4) combined, we have that the c.g.f can be written as

(2.5) KX (t) = c1
1

2
tTΣt +

1

2!
c2

[
1

2
tTΣt

]2
+

1

3!
c3

[
1

2
tTΣt

]3
+ . . .

This c.g.f. was studied by Steyn (1993), in his attempt to introduce more �exibil-
ity into the elliptical distributions family. Our proposed model for spatial statistics
is given by expansion (2.5), up to an (application speci�c) order K ∈ {1, 2, 3, 4, . . .}.
That is, our proposed model is given by a covariance/correlation matrix, ΓJ×J , to-
gether with a set of coe�cients c1, c2, . . . , cK . Coe�cients corresponding to a higher
order, cr>K , are left undetermined but will be automatically �tted in the presence
of data, by means of the implementation of the model given at section (3). Such
an implementation circumvents the inconvenience of a model introduced in terms
of a c.g.f., by dealing with the density function instead.

From the de�nition of our model (2.5), some remarks are immediately in place
and are given below.

The introduced model as extension to the Normal model. Firstly, the c.g.f. (2.5)
boils down to that of the Normal distribution by setting cr := 0, for r > 1. Hence
the proposed model can be seen as a natural extension to the Normal model which,
under µ = 0, is entirely determined by its covariance coe�cients

(2.6)
∂2KX (t)

∂t2∂t1
|t=0= c1Σij = cov (Xi, Xj)

From (2.6), the need to assume either c1 �xed, or Σ a correlation matrix, becomes
evident: otherwise it will be impossible to identify them separately. In this research,
we de�ne Σ to be a covariance matrix, whereas c1 = 1, unless otherwise stated.

Joint cumulants and product moments. Secondly, the joint cumulants of a random
vector having a c.g.f as in (2.5) are readily found by di�erentiating KX (t) with
respect to the indexes of the joint cumulant, and evaluating the result at t = 0.
Rodríguez and Bárdossy (2013) show why it is reasonable to call joint cumulants
multivariate "interaction parameters".

All joint cumulants of odd order, κj1,...,jk (k odd), are zero for our dependence
model. For k an even integer, joint cumulants are given by:

κj1,j2 =
c1
2
{Σj1j2 + Σj2j1}

κj1,j2,j3,j4 =
c2
2!

1

22
{Σj1j2Σj3j4 + Σj1j3Σj2j4 + Σj1j4Σj2j3}

...

κj1,...,j2r =
c r

2

r
2 !

1

2
r
2


J∑

j1,...,jr=1

Γj1j2 . . .Γjr−1jr

(2.7)

and so on, as shown in appendix A. In this manner, interaction among sets of four,
six or more variables can be conveniently summarized.



BEYOND CORRELATION IN SPATIAL STATISTICS MODELING 6

It will be convenient to de�ne �covariance interdependence factor� % (j1, . . . , jk)
as the sum of the products of the covariance coe�cients at (2.7). Speci�cally,

% (j1, j2) = Σj1j2

% (j1, . . . , j4) = Σj1j2Σj3j4 + Σj1j3Σj2j4 + Σj1j4Σj2j3

% (j1, . . . , j6) = Σj1j2Σj3j4Σj5j6 + Σj1j3Σj2j4Σj5j6 + . . .+ Σj1j6Σj2j4Σj5j3

and so on. This is a �potential� interdependence factor, since its e�ect on higher
order interdependence parameters (i.e. joint cumulants of order greater than 2),
is only present if its corresponding coe�cient ck/2 is non-zero. So, every joint
cumulant at (2.7) can be written as

(2.8) κj1,...,jk = c k
2
× % (j1, . . . , jk)

Our interdependence parameter (i.e. joint cumulant) of order k > 2 can then be
conceptually split into two components: On the one hand, a �covariance interde-
pendence component�, % (j1, . . . , jk), that can be estimated low-dimensionally via
covariance function �tting, as usual in Geostatistics. On the other hand, an inter-
dependence �enhancing� parameter ck/2, whose departure from zero determines the
departure from zero of the k-th order joint cumulant. As illustrated in Rodríguez
and Bárdossy (2013), these joint cumulants can be connected with relevant interac-
tion manifestations. As a consequence, one can can try �tting the problem-speci�c
interaction manifestation, which are not explainable in terms of correlations, by
�tting parameters c2, c3, . . .

An expansion for the moment generating function (m.g.f.) for X will be now
introduced. By setting shorthand notation

y :=
1

2
tTΣt

the dependence structure (2.5) can be written

(2.9) KX (t) =
c1
1!
y +

c2
2!
y2 +

c3
3!
y3 + . . .

On the other hand, the de�nition of our dependence structure, given originally
by (2.2) implies that we can write, using the same shorthand notation as above,

(2.10) exp (KX (t)) := MX (t) =

exp (δ (y)) = 1 +
m1

1!
y +

m2

2!
y2 +

m3

3!
y3 + . . .

for certain coe�cients m1,m2,m3, . . ., at least for y in a neighborhood of zero (that
is, for t in a su�ciently small neighborhood of 0). Summarizing, we have that

(2.11) log
(

1 +
m1

1!
y +

m2

2!
y2 +

m3

3!
y3 + . . .

)
=
c1
1!
y +

c2
2!
y2 +

c3
3!
y3 + . . .

and then we can obtain, as in the case of the one-dimensional cumulants in terms
of the one-dimensional moments (see, e.g. Kendall and Stuart (1969); Smith (1995)
), coe�cients m1,m2,m3, . . . in terms of c1, c2, c3, . . ., by
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c1 = m1

c2 = m2 −m2
1

c3 = m3 − 3m2m1 + 2m3
1

c4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1(2.12)

which after some algebraic manipulation, returns,

m1 = c1

m2 = c2 + c21

m3 = c3 + 3c2c1 + c31

m4 = c4 + 4c3c1 + 3c22 + 6c2c
2
1 + c41(2.13)

So, we have shown that the moment generating function at (2.2) can be written
as

(2.14) MX (t) = 1 +
m1

1!

(
1

2
tTΣt

)
+
m2

2!

(
1

2
tTΣt

)2

+ . . .

which is similar to the expansion of KX (t), except for the leading term 1 and
coe�cients mr, r = 1, 2, . . .. We express product moments analogously as joint
cumulants by

(2.15) µj1,...,jk := E (Xj1 . . . Xjk)

where jr ∈ {1, . . . J}, r = 1, . . . k, allowing repetition of indexes. Then it follows,
analogously to (2.7), that

µj1,j2 =
m1

2
{Σj1j2 + Σj2j1}(2.16)

µj1,j2,j3,j4 =
m2

2!

1

22
{Σj1j2Σj3j4 + Σj1j3Σj2j4 + Σj1j4Σj2j3}(2.17)

...(2.18)

µj1,...,j2r =
m r

2

r
2 !

1

2
r
2


J∑

j1,...,jr=1

Γj1j2 . . .Γjr−1jr

(2.19)

where mr is as in (2.13).
We see then, for example by setting c1 = 1 and cr>1 = 0, that we can have non-

zero joint moments of orders greater than two, even though no dependence of order
greater than two is present in the distribution of X, according to our de�nition of
high order dependence.

The proposed c.g.f. as an extension to the covariance function. Covariance func-
tions, such as (1.5) or (1.6) have proved valuable tools for spatial statistics analysis.
They de�ne the order-two joint cumulant of every pair of components, e.g.,

(2.20) C
(
dij |

(
θ1, θ2, σ

2
0 , σ

2
1

))
= σ2

0 .I (d = 0) + σ2
1 exp

(
− (d/θ1)

θ2
)

= cov (Xi, Xj) =
∂2KX (t)

∂t2∂t1
|t=0

where dij ∈ [0,+∞) denotes the distance between the sites, si and sj, to which Xi

and Xj correspond.
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Let D = {dij} be the matrix of distances between the sites corresponding
to the di�erent components of X. Then one has the matrix equality {Σij} ={
C
(
dij |

(
θ1, θ2, σ

2
0 , σ

2
1

))}
. With slight abuse of notation, denote

C
(
D |

(
θ1, θ2, σ

2
0 , σ

2
1

))
:= Σ

The c.g.f. (2.5) can be written as a �higher order� spatial covariance function as

KX (t) = c1
1

2
tC (D) t +

1

2!
c2

[
1

2
tC (D) t

]2
+

1

3!
c3

[
1

2
tC (D) t

]3
+ . . .

where the dependence on parameters
(
θ1, θ2, σ

2
0 , σ

2
1

)
have been obviated to avoid

cumbersome notation. This higher order covariance function allows us to represent
covariances in terms of the distance separating the two sites in question, and higher
order (>2) joint cumulants in terms of distances among the sites involved and the
coe�cients cr>2.

�Orthogonality� in joint cumulants. Joint cumulants of higher order do not a�ect
lower ordered ones, as follows from inspecting (2.7). After �xing Σ, each r -ordered
joint cumulant depends on a separate coe�cient, c r

2
. Hence, one can have simi-

lar joint cumulants up to a given order K, but then di�erent coe�cients cr>K
2
will

lead to di�erent joint cumulants of higher order. This results in di�erent association
types that may go unnoticed in the analysis of low dimensional marginal distribu-
tions, such as 1 and 2-dimensional ones. This topic is explored in section (5), where
two random �elds are equal in terms of their one and second order joint cumulants
(i.e. mean and covaraince structure), and in terms of their one and two dimensional
marginal distributions, but still exhibit very di�erent clustering behaviors.

3. Model Implementation in the context of Spatial Statistics

3.1. Spatial Consistency. An important issue when dealing with a probability
distribution for Spatial Data is that this distribution should be �consistent�. If
we denote by X ∈ RJ our modeling vector, consistency means that any subvector
(Xj1 , . . . , XjK ) ∈ RK , of X, with K ≤ J , will have the same type of distribution
distribution as X.

In order to be more speci�c, consider elliptically distributed vector (X1, . . . , XJ) ∈
RJ having a density function. This density function can be written as

(3.1) {f ((X1, . . . , XJ) | J) | J ∈ N}

where dependence on dimension J has been made explicit. Kano (1994) has given a
de�nition that can be stated as follows: The family at (3.1) possesses the consistency
property if and only if

(3.2)

+∞ˆ

−∞

f ((x1, . . . , xJ+1) | J + 1) dxJ+1 = f ((x1, . . . , xJ) | J)

for any J ∈ N and almost all (x1, . . . , xJ) ∈ RJ . We also say that such a family is
consistent.

As Kano (1994) notes, not all members of the elliptical family are consistent. He
gives a necessary and su�cient condition for a family such as (3.1) to be consistent.



BEYOND CORRELATION IN SPATIAL STATISTICS MODELING 9

The family is consistent if and only if, for each J ∈ N, random vector X ∈ J can
be stochastically written as

(3.3) X =
√
V × Z

where Z ∼ NJ (0,Σ) stands for a normally distributed vector with the same covari-
ance matrix as X, and V > 0 is a univariate random variable independent of Z and
unrelated to J .

As Kano (1994) reminds us, the construction at (3.3) produces distributions with
tails at least as heavy as the Normal distribution, whereby Normal tail dependence
(i.e. �zero� tail dependence) can only be achieved for the case where V is a positive
constant.

3.2. Relation between R2 and coe�cients c1, c2, c3, . . .. In appendix B, it is
shown that if X ∈ RJ has a c.g.f. as in (2.5), and consequently a m.g.f. as in
(2.2), then the following relation between the k-th order moments of its squared
generating variable, R2, and coe�cients m1,m2,m3, . . . exists:

(3.4) E
((
R2
)k)

=
mk

ck1

2kΓ
(
k + J

2

)
Γ
(
J
2

)
The expression is conveniently expressed in terms of m1,m2,m3, . . ., but it can

be written in terms of the cr coe�cients by virtue of (2.13),

E
((
R2
)1)

=
c1
c1

21Γ
(
1 + J

2

)
Γ
(
J
2

)(3.5)

E
((
R2
)2)

=

(
c2 + c21

)
c21

22Γ
(
2 + J

2

)
Γ
(
J
2

)(3.6)

E
((
R2
)3)

=

(
c3 + 3c2c1 + c31

)
c31

23Γ
(
3 + J

2

)
Γ
(
J
2

)(3.7)

...
...

...(3.8)

and still further simpli�ed by substituting 1 for c1.
If we consider (1.8) and example 1, then construction (3.3) indicates that the

generating variable of X can be represented as follows :

(3.9) R =
d

√
V × χ2

J

and hence

(3.10) R2 =
d
V × χ2

J

where V and χ2
J are independent (see item iii at theorem 1 of Kano (1994)). Due

to this independence,

(3.11) E
((
R2
)k)

= E (V )× E
(
χ2
J

)
Note that the moments of χ2

J are given by

E
((
χ2
J

)k)
=

2kΓ
(
k + J

2

)
Γ
(
J
2

)
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Equation (3.4) then means that the moments of V are given bym1 = 1,m2,m3, . . .,
whereas its cumulants are given by c1 = 1, c2, c3, . . .. We have then identi�ed a suf-
�cient condition under which both the expression at (2.5) is a legitimate cumulant
generating function and it produces a consistent model, useful for spatial statistics:
the coe�cients c1 = 1, c2, c3, . . . must be the cumulants of some random variable,
V > 0, whereas m1 = 1,m2,m3, . . . must be its moments.

Remark. Note that a scaling variable V > 0 having a very small variance, c2, will
produce a random �eld very similar to a Gaussian random �eld in its one and
two dimensional marginal distributions (which is all that current Geostatistical
techniques �t and check for goodness of �t). This is because the (common) kurtosis
of each marginal distribution, given by

κ4 (Xj)

V ar (Xj)
2 =

κj,j,j,j

V ar (Xj)
2 =

3c2
8V ar (Xj)

will be very close to zero, as in the Normal model. But if coe�cients cr>2 are rel-
atively big, then (2.7) indicates that the joint cumulants of higher order, involving
the interaction of 4, 6 and more components of X, will be considerably altered.
As the dimension of the �eld increases, important characteristics of the �eld con-
structed via (3.3) will be totally di�erent from those of the Gaussian �eld (see
example below), though these di�erences cannot be noticed from the one and two
dimensional marginals. Additionally, conditional distributions (i.e. at "ungauged
sites") will also be di�erent, as the number of conditioning values increases. This
has important consequences for interpolation.

3.3. Parameter Estimation. Apart from the estimation of covariance matrix
Σ, estimation of the model de�ned by (2.5) amounts to estimating coe�cients
c2, c3, . . ., or equivalently, coe�cients m2,m3, . . ..

If we assign a �exible model to (squared) scaling variable V , such as a mixture
of gamma distributions,

(3.12) fV (V ) =

S∑
s=1

πs
β−αss

Γ (αs)
V αs−1e−

V
βs

then parameter estimation for our model can be e�ected as follows:

(1) First, we estimate covariance matrix Σ, for which we may use standard
covariance function models, such as (1.5) or (1.6). We can do this in a
�rst, independent step, because of the "orthogonality" property of the joint
cumulants of X referred to in section (2) remarks.

(2) Second, we �t the density of V conditioned on E (V ) = c1 = m1 = 1,
thus �tting the parameters present at density function (3.12). One must
impose some restrictions on these latter parameters, in order to avoid lack
of identi�ability; we impose at the example below that weights π1, . . . , πS−1
must be in decreasing order, whereas πS := 1−

∑S−1
s=1 πs.

The parameters estimation at step 2 is e�ected by estimating computing estimators

m̂2, m̂3, . . . and then �nding π̂1, . . . , π̂S−1, β̂1, . . . , α̂S , such that

(3.13) m̂k ≈
S∑
s=1

π̂s
β̂ksΓ (α̂s + k)

Γ (α̂s)
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for k = 2, 3, . . ., where the �hat� symbol can be read as �estimator of� the parameter
it covers. This is an instance of the method of moments.

Note also that estimation at step 2 above does not alter in any manner the already
estimated covariance matrix, containing the joint cumulants of order two. Step 2
is concerned with estimating coe�cients, c2, c3, c4, . . ., a�ecting joint cumulants of
higher orders, only.

The estimation technique will be now explained in more detail.
Assume one has a sample x1, . . . ,xI of X ∈ RJ . This sample might represent,

for example, I observations of the (spatially associated) residual process obtained
by applying a daily time series model to each of J precipitation gauging stations
spread over sites with coordinates s1, . . . , sJ, sj ∈ R2. The fact that precipitation
demands a truncated model will be ignored for now, since this issue will be brie�y
considered in section (6). Begin by standardizing data, so that each component has
mean zero.

Perform the following estimating steps:

(1) Apply any transformation to data that might be necessary (cf. Sanso and
Guenni (1999)), in order to make data approximately Gaussian in its one-
dimensional marginals.

(2) Fit a multivariate Normal model to X, on the basis of x1, . . . ,xI. A stan-
dard covariance model, such as (1.5), can be used to estimate covariance
structure of X. The covariance between every two components of X referred
to locations sj1 and sj2 , are then estimated as a function of the distance

between the locations by Σ̂j1j2 = C
(
‖sj1 − sj2‖ | θ̂1, θ̂2, σ̂2

0 , σ̂
2
1

)
.

(3) Compute r2i = xiΣ̂
−1xi

T , for i = 1, . . . , I. These are approximate samples
of R2, the squared generating variable of X, as can be seen by an argument
similar to that presented in appendix B.

(4) Compute ϑ̂k = 1
I

∑I
i=1

(
r2i
)k
, the estimates of the moments of squared

generating variable R2, up to a prudent order, say K = 5.
(5) By virtue of (3.4) and remembering that c1 = m1 = 1, one has estimates

for mk, for k = 2, . . . ,K, given by

(3.14) m̂k =
Γ
(
J
2

)
2kΓ

(
k + J

2

) ϑ̂k
(6) Apply the method of moments to estimate the parameters of the density of

scaling variable V . That is, solve the following minimization problem:

(3.15) min
~α,~β,~π−S .

K∑
k=2

(
m̂k −

S∑
s=1

πs
βksΓ (αs + k)

Γ (αs)

)2

subject to

S∑
s=1

πs
βsΓ (αs + 1)

Γ (αs)
= m1 = 1

πs ≥ πs+1 ≥ 0
S−1∑
s=1

πs ≤ 1
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where ~π−S = (π1, . . . , πS−1), πS = 1−
∑S
s=1 πs, and the inequalities at the

second constraint are valid for 1 ≤ s ≤ S − 2.

For step 6 above, the Lagrange multipliers approach can be employed.
As output to the procedure outlined by steps 1 through 6, one has an estimation

of the covariance model, and of the distribution of the squared scaling variable,
V . With these, simulation and interpolation can be performed, as explained sub-
sequently.

Remark. The representation of the density of scaling variable V as a mixture of
gamma distributions, indicates that the model here presented can approximate a
wide spectrum of tail dependence association, which includes that of the Normal
and the Student-t distribution.

4. Simulation, interpolation and inference of field characteristics

4.1. Random Simulation. The decomposition (3.3) can be conveniently used
both for simulation and for interpolation.

In order to simulate a realization of vector X ∈ RJ :
(1) Sample a realization zi from a multivariate Normal distribution with means

vector 0 ∈ RJ and covariance matrix Σ̂.
(2) Sample a realization vi of V . To this end sample an index, s ∈ N, from

a multinomial distribution with class probabilities (π̂1, . . . , π̂S) and then

sample vi ∼ Gamma
(
α̂s, β̂s

)
.

(3) The realization of X is given by xi :=
√
vi × zi. Add a means vector,

µ ∈ RJ , to xi, if necessary.

Note that a �eld of dimension J∗ 6= J can be simulated in the same manner, since
the distribution of V does not depend on J . Hence, one can simulate a big random
�eld by obtaining (approximately) a realization of a Gaussian random �eld using
some fast generation mechanism, such as turning bands (see, for example, Ripley

(1981)), and then multiplying it by a realization of
√
V . This is done for section

(5), and the consequences on some manifestations of interaction, as compared to
the original Gaussian �eld, are there illustrated.

4.2. Interpolation via the saddlepoint approximation. The distribution of
the environmental variable of interest at a new location can be described with
little inconvenience. This is because we are building on the idea of the covariance
function, and so we can extend the covariance matrix Σ to include the covariance
between the variable of interest at any gauged site and any new location. Denote by
j1 any generic component of X. The correlation matrix components corresponding
to site sj∗ are given by

(4.1) Σj∗j1 = C
(
‖sj1 − sj∗‖ | θ̂1, θ̂2, σ̂2

0 , σ̂
2
1

)
For the subsequent discussion, we shall denote the extended covariance matrix

by Σ∗ ∈ RJ+1×J+1.
Suppose that the distribution of the variable is desired for a new location with

coordinates sj∗ ∈ R2, given that one has observed a realization x of X at sites
s1, . . . , sJ . We present now a method for obtaining the approximate distribution of
Xj∗ = X (sj∗) given x.
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Since the distribution of X is consistent, the cumulant generating function of
Y := (Xj∗ ,X) is of the same form as that of X (cf. Kano (1994)). This new c.g.f.
can then be written as,

(4.2) KY (w) = 1
1

2
wTΣ∗w +

1

2!
ĉ2

[
1

2
wTΣ∗w

]2
+

1

3!
ĉ3

[
1

2
wTΣ∗w

]3
+ . . .

where w ∈ RJ+1. As shown by Skovgaard (1987) (see also: Kolassa (2006);
Barndor�-Nielsen and Cox (1990)), we have that:

(4.3) Pr (Xj∗ ≤ a | X = x) ≈ Φ (r) + φ (r)

(
1

r
− q
)

where

r = sign (ŵ1)
√

2
{
ŵT (a,x)− ŵT

−1x−KY (ŵ) +KX (ŵ−1)
}

(4.4)

q =
1

ŵ1
det
(
K
′′

X (ŵ−1)
)

det
(
K
′′

Y (ŵ)
)− 1

2

(4.5)

and ŵ ∈ RJ+1, ŵ−1 ∈ RJ are the solutions to equations

∇KY (ŵ) = (a,x)

∇KX (ŵ−1) = x

Additionally, ŵ1 is the �rst component of ŵ, and K
′′

X (ŵ) stands for the matrix
of second derivatives on the c.g.f. evaluated at ŵ.

We can apply this approximation to Pr (Xj∗ ≤ a | X = x) directly, using the
extended c.g.f. given by (4.2). This is done in section (5.8) below.

In case one wishes the distribution of the environmental variable at several new
locations sj∗1 , . . . , sj∗K simultaneously,

Pr
(
Xj∗1
≤ a1, . . . , Xj∗K

≤ aK | X = x
)

one can apply the the extension to this approach presented by Kolassa and Li (2010).
A conceptually easier approach would be to run the Gibbs sampler repeatedly, using
(4.3) to sample from each (approximate) full conditional distribution (see Kolassa
and Tanner (1994)). After su�ciently many iterations, the samples obtained can
be considered approximate realizations of the conditional distribution desired.

5. A simulation-based illustration

In this section, we present a simulation study of the type of interdependence
that can be generated using a model having c.f.g. as (2.5). The study is built so
as to mimic the model building process in Spatial Statistics: from data obtained at
a limited number of locations ("gauging stations"), we intend to infer a model for
the interesting variable over the whole region to which these locations belong.

It will be noted, that the additional characteristics the �eld possesses can be
unnoticeable from the one and two dimensional marginal distributions. In this
example, they are indistinguishable from those of a Gaussian �eld. However, speci�c
characteristics of the underlying �eld, which are relevant for applications such as
rainfall modeling and mining geostatistics, will be considerably di�erent.
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5.1. Scaling variable used and simulated �elds employed. We generated
3650 realizations of a J∗ = 300× 300 Gaussian �eld, using the circular embedding
method as implemented in package RandomFields of the statistical software R.
The speci�cation of the �eld is: µ = 0, θ1 = 20, σ2

0 = 0 and σ2
1 = 1, where µ, θ1,

σ2
0 and σ2

1 denote the �eld mean, the range parameter, the nugget e�ect and the
�eld variance, respectively. Additionally, the covariance function model was the
exponential model, given by setting θ2 = 0 and using equation (1.5).

In order to apply (3.3) we simulated 3650 realizations of a mixture of 5 Gamma
distributions, as in (3.12), with the following parameters, rounded up to the fourth
decimal place:

Mixture Weights: ~π = (0.7137, 0.1697, 0.1094, < 0.0000, < 0.0000)
Shape Parameters: (α1, . . . , α5) = (32.5168, 25.0004, 27.4404, 0.3582, 11.3288)
Scale Parameters: (β1, . . . , β5) = (0.0302, 0.0393, 0.0357, 0.6012, 0.2975)

This amounts to V having moments (m1, . . . ,m5) = (0.9986, 1.0766, 1.3856, 2.6163, 8.0863),
and cumulants (c1, . . . , c5) = (0.9986, 0.0795, 0.1519, 0.5210, 1.9712). A plot of the
density of V , together with a boxplot based on 10000 realizations, is presented at
�gure (5.1). Note that the �eld then constructed according to (3.3) may be a mul-

tiplication of a Gaussian �eld by a value of
√
V =

√
7 ≈ 2.65. This is the kind of

event that makes the so constructed �eld di�erent dependence properties from a
Gaussian �eld. One has a non-neglectable probability of V > 4, which implies that
many �elds will be multiplied by values

√
V > 2.

The behavior of scaling variable V in�uences the tail behavior of the resulting
vector X. A typical representation of the multivariate Student distribution with
correlation matrix Σ and ν degrees of freedom is (see Kotz and Nadarajah (2004)):

X =
√
SZ

where Z is a normally distributed vector with vector of means 0 and correlation
matrix Σ, and

S ∼ ν

χ2
ν

Hence we can compare the distribution of squared scaling variable V , pre-
sented at �gure (5.1) with the distribution of a multivariate Student distribution,
for various degrees of freedom. The distributions of the squared scaling vari-
ables are presented at �gure (5.2), for a multivariate Student distribution with
ν ∈ {10, 15, 20, 35} degrees of freedom.

It is noteworthy that scaling variable V seems to have the lightest tail, if you
focus on the left hand panel of �gure (5.2). However, the uppermost part of the
distribution of V is similar to that of ν

χ2
ν
with ν = 15. That is, the tail dependence

of our model is actually similar to that of the multivariate Student distribution
with ν = 15 degrees of freedom. This fact goes unnoticed in the 1 and 2-dimensinal
marginal distributions, as we shall see.

The non-Gaussian �elds were generated by taking each realization of the Gauss-
ian �eld, and multiplying it by a realization of

√
V .

5.2. Partial observation of the �elds: A network of 30 stations. Let us
denote by Z∗ ∈ RJ∗ and X∗ ∈ RJ∗ the random �elds generated as a gaussian �eld,
and by multiplication of the latter by

√
V , respectively. In this case, J∗ = 300 ×

300 = 90000. We selected 30 components of the �eld, corresponding in a Spatial
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Figure 5.1. Density and simulation-based boxplot (n=10000) of
the squared scaling variable, V > 0, used for the example in this
section.

context to 30 locations on the plane, and stored the data of these components. The
setting is illustrated in �gure (5.3).

The n=3650, 30-dimensional observations thus available from �eld Z∗ are in the
following considered realizations from sub-vector Z ∈ R30 of Z∗, whereas those from
�eld X∗ are considered as realizations of sub-vector X ∈ R30.

Data from these vectors, Z and X, represent the data available at a limited
number of gauging stations. As usual in Spatial Statistics, we intend to identify
characteristics of the whole �elds, Z∗ and X∗.

A third vector dealt with in this section is W ∈ R30, of which each component
is given by

(5.1) Wj = F−1Zj

(
FXj (Xj)

)
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Figure 5.2. Comparison of the distribution of squared scaling
variable V (black) with distributions of the scaling variable of the
multivariate Student distribution for degrees of freedom: 10 (light
blue), 15 (dark blue), 20 (green), 35 (red). The uppermost part of
the distribution of V produces a tail behaviour similar to that of
a multivariate Student distribution with 15 degrees of freedom.

that is, W is the vector resulting from applying the quantile-quantile transformation
to each component of X, mapping these into the quantiles of the components of Z.
Hence, each marginal distribution of W is standard normal, like those of Z, but
the joint distribution of its ranks (the copula), is like that of X.

5.3. Analysis of one dimensional marginal distributions. Comparison of the
1-dimensional marginal distributions of Z and X is performed in this sub-section. At
�gure (5.4) we present four quantile-quantile plots. Each of these plots corresponds
to data from (Zj , Xj), where j has been randomly selected from {1, . . . , 30}. The
Anderson-Darling test for equality in distributions was applied to data involved in
each plot, and the resulting p-value (n=3650) has been written on each plot title.
Both visually and from the testing viewpoint, the marginal distributions considered
at each plot seem to be the same.

Additionally, the Anderson-Darling test was applied to data from every pair
(Zj , Xj), for j = 1, . . . , 30, n=3650. The minimum p-value obtained from all 30
tests was 0.642. Hence X and Z can be considered to have the same 1-dimensional
marginals, namely, standard normal marginal distributions.

5.4. Analysis of two dimensional marginal distributions. Data correspond-
ing to two components of both X and Z, namely 3 and 28, are shown at �gure
(5.5) for illustration. The multivariate version of Shapiro-Wilks test for normality
introduced by Villasenor Alva and Estrada (2009), as implemented in the R package
mvShapiro.Test, was applied to a randomly selected sample (n=500) of (X3, X28).
This test resulted in a p-value of 0.191, whereby (X3, X28) can be considered a
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Figure 5.3. Typical (non-Gaussian) �eld of the n=3650 gener-
ated, and the 30 locations at which data was recorded to form X
and Z.

α-Level (Zj1 , Zj2) (Xj1 , Xj2) (Wj1 ,Wj2)

0.01 433 (99.54%) 402 (92.41%) 433 (99.54%)
0.05 419 (96.32%) 360 (82.76%) 421 (96.78%)
0.10 398 (91.49%) 323 (74.25%) 405 (93.10%)

Table 5.1. Summary of multivariate Shapiro-Wilks test applied
on all bivariate marginal distributions of Z, X and W. A random
sub-sample (n=500) from the available data was used for each test-
ing. Out of the total

(
30
2

)
= 435 bivariate combinations, the total

number (and percentage) of combinations by which the Normality
hypothesis cannot be rejected at the respective α-level are shown.

Gaussian 2-dimensional vector1. The same test procedure was performed on all(
30
2

)
= 435 pairs of marginals, for Z, X and W. The results are summarized at

table (5.1). It can be seen that non-Gaussian vectors, X and W, exhibit gaussian
bivariate marginals most of the time. Results are qualitatively similar to those of
Z, in particular for W.

1This procedure was repeated several times, and some of the p-values obtained were rightly
under 0.05.
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Figure 5.4. Quantile-quantile plots of four randomly selected
components of Z and X. The p-values of the Anderson-Darling
test for equality in distribution (n=3650) are given. The marginal
distributions illustrated can be reasonably accepted to be equal.

A more detailed analysis of the 2-dimensional components of Z and X, comprises
the study of their respective empirical copulas. Data plotted at �gure (5.6) is given,
exemplifying for data of vector X, by

ui,j = F̂j (xi,j)

where

F̂j (a) :=
# {xi,j : xi,j ≤ a}

n+ 1
stands for the empirical cumulative distribution function of component Xj , for j =
1, . . . , 30, and i = 1, . . . , n. Visually, both data sets seem to have the same empirical
copula. The test proposed by Kojadinovic and Yan (2011) and implemented for
package copula of R, was applied to a randomly selected sub-sample of size n=500
of data from (X3, X28), with the number of multipliers replications set to N=1000.
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Figure 5.5. Dispersion plot of two typical components of Z and
X. The p-value of the multivariate Shapiro-Wilks test applied to
500 randomly selected samples of (X3, X28) test is 0.191.

α-Level (Zj1 , Zj2) (Xj1 , Xj2)

0.01 433 (99.54%) 433 (99.54%)
0.05 413 (94.94%) 416 (95.63%)
0.10 392 (90.11%) 397 (91.26%)

Table 5.2. Summary of goodness of �t test for the Gaussian cop-
ula applied on all bivariate marginal distributions of Z and X. A
random sub-sample (n=500) from the available data was used for
each testing. Out of the total

(
30
2

)
= 435 bivariate combinations,

the total number (and percentage) of combinations by which the
Normality hypothesis cannot be rejected at the respective α-level
are shown.

The resulting p-value is 0.955, whereby Gaussianity in the underlying copula seems
an acceptable hypothesis. Note that this test is already very e�cient under sample
sizes of n=300 (see Kojadinovic and Yan (2011)).

The same testing procedure was applied to all possible pair-wise combinations
of components of Z and X, as had been done with the multivariate Shapiro-Wilks
test. Results are summarized at table (5.2). Again, the bivariate sub-vectors of
X are most of the time considered to have the Gaussian copula, in a qualitatively
similar proportion as the 2-dimensional sub-vectors of Z.
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Figure 5.6. Empirical copula plots for: (left) data from (Z3, Z28),
and (right) data from (X3, X28). The p-value of goodness of �t test
for Gaussianity on a randomly selected subsample (n=500) is 0.955.

D.o.f quantile (%) (Zj1 , Zj2) (Xj1 , Xj2)

5% 35.75 17.97
50% 500.00 34.67
95% 500.00 500.00

Table 5.3. Quantiles of the degrees of freedom �tted to each of
the 435 pairs combinations (Zj1 , Zj2) and (Xj1 , Xj2). Using all
data, the �tted degrees of freedom are 500 and 45.75 for Z and X,
respectively.

We also �tted T-copulas to the data of all 435 pairs of components, using the
data available (n=3650). The idea is to �nd out how many degrees of freedom
would be an optimal assignment for each pair of components, both of Z and of X.
The �tting method employed is described at section 4.2 of Demarta and McNeil
(2005), and named "method of moments using Kendall's Tau".

The 5%, 50% and 95% quantiles of the �tted degrees of freedom are shown at
table (5.3). By �tting all data one gets to a T-copula with 500 and 34.62 degrees
of freedom for Z and X, respectively2. As seen in section (5.1), however, the
tail dependence of X is comparable to that of a multivariate T distribution with
15 degrees of freedom, a fact totally invisible for the T-copula �tting procedure,
even with a sample size of n=3650. Such a tail behavior, which has gone mostly
unnoticed in the one and two dimensional marginals (what Geostatistics check!),
may have a great impact on the wider �eld, of which the data from X constitute
but a partial observation. See section (5.7).

2500 degrees of freedom were the highest possible attainable with the employed �tting
algorithm.



BEYOND CORRELATION IN SPATIAL STATISTICS MODELING 21

Vector Mean Range par. Nugget Var

Z 0.007 19.966 0.000 1.000
X 0.006 19.992 0.000 0.992
W 0.006 19.876 0.000 0.994

Table 5.4. Gaussian �eld speci�cation, as estimated by maximum
likelihood (n=3650), and using the exponential covariance function
model.

Figure 5.7. Plots of �tted exponential covariance functions for Z
(red), X (black) and W (green). Plots are practically identical.

5.5. The �tted covariance function. On the basis of the analysis of the one
and two dimensional marginal distributions, we deem adequate to �t a multivariate
Normal distribution to Z, X and W.

Since data comes from the Spatial context illustrated at �gure (5.3), we �t co-
variance matrices, cov (Z), cov (X) and cov (W), using an exponential covariance
function. The estimation method was maximum likelihood using the Normal dis-
tribution as model. Estimated parameters are shown in table (5.4), whereas plots
of the resulting covariance functions appear at �gure (5.7).

Note that both the parameter estimates and the covariance function plots are
practically identical. As was true during the analysis of the one and two dimensional
marginal distributions, there is little evidence that the distributions of Z, X and
W are not the same.



BEYOND CORRELATION IN SPATIAL STATISTICS MODELING 22

5.6. Analysis of Aggregating statistics. We have seen that both the 1-dimensional
and the 2-dimensional marginal distributions of X and W seem to indicate that
these vectors can be safely modeled by a multivariate Normal model, like the one
suitable for Z. We know, however, that the distributions of Z and X are not the
same.

In this sub-section we compute some statistics that indicate that the probability
distributions of X and W may actually be di�erent from that of Z. In Rodríguez
and Bárdossy (2013) these statistics are called interactions manifestations.

The �rst aggregating statistic we consider, is the number of components tres-
passing a given threshold a. Data observed from X lead to realizations of random
variable LX, de�ned as

LX =

J∑
j=1

1 {Xj > a}

where

(5.2) 1 {Xj > a} =

{
1, Xj > a

0, Xj ≤ a

Similar constructions lead to LZ and LW from Z and W, respectively. Denote
by lZ1 , . . . , l

Z
n ; l

X
1 , . . . , l

X
n and lW1 , . . . , lWn the samples of LZ, LX and LW. These are

plotted in �gure (5.8). Note that the di�erence among the plots begins to be quite
apparent for thresholds 2.326 through 3.09. As opposed to what was seen when
analyzing the one and two dimensional marginals separately, there seems to be a
di�erence among the distributions of LZ, LX and LW, and hence of X, Z and W.

The second statistic we mention, is the "congregation measure" used by Bár-
dossy and Pegram (2009) and Bárdossy and Pegram (2012), for the sake of model
validation. This is a measure not a�ected by monotonic transformations on the
components of the vector analyzed.

The congregation measure referred to is constructed as follows. Set a threshold
percentile, b ∈ (0, 1). Select a set of indexes (ji1 , . . . jiK ), with 1 ≤ ji1 < . . . <
jiK ≤ J . For the analysis of the components of X, de�ne binary random variables

(5.3) ςb (jik) =

1, Fjik

(
Xjik

)
> b

0, Fjik

(
Xjik

)
≤ b

This results in a discrete random vector ςb = (ςb (ji1) , . . . , ςb (jiK )). The congre-
gation measure referred to is de�ned to be the entropy of a sub-vector of ς,

(5.4) congrb

(
Xji1

, . . . , XjiK

)
=

−
∑

ji1 ,...,jiK

Pr (ςb (ji1) , . . . , ςb (jiK )) log (Pr (ςb (ji1) , . . . , ςb (jiK )))

That is, the measure is de�ned as the entropy of the joint distribution of the bi-
nary variables just de�ned. A higher value of this measure indicates less association.

A similar de�nition applies to congrb

(
Zji1 , . . . , ZjiK

)
. Note that this measure is

not a�ected by the marginal distributions of the components employed, hence

congrb

(
Wji1

, . . . ,WjiK

)
= congrb

(
Xji1

, . . . , XjiK

)
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Figure 5.8. Boxplots of number of components trespassing the
four thresholds indicated (1.645, 2.326, 2.576 and 3.09), for samples
from Z (left), X (middle) and Z (right). Data has been jittered for
visualization purposes. The di�erence among the plots becomes
most apparent as the threshold is pulled up.

We applied this measure to three components of vectors Z and X, namely com-
ponents 3, 28 and 19, of which the former two were visualized at �gure (5.5). We
used percentiles b ∈ {0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999}, and computed

rb =
congrb

(
Zji1 , . . . , ZjiK

)
congrb

(
Xji1

, . . . , XjiK

)
The resulting ratio values are shown in �gure (5.9). The estimated association

of the components (Z3, Z28, Z19), as quanti�ed by this measure, does not seem
to decrease considerably as compared to that of (X3, X28, X19). A "parametric
bootstrap" (see Efron and Tibshirani (1993)) con�dence interval has been added
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Figure 5.9. Ratio, rb, of congregation measures for the per-
centiles b ∈ {0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999}. Asso-
ciation among the three components (Z3, Z28, Z19) decreases con-
siderably as compared to that of (X3, X28, X19) from the 99% per-
centile on. A bootstrap based con�dence interval has been added
for signi�cance assessment.

for the ratio of the entropies, computed by simulating a Normal sample of size
n = 3650 with zero means and correlation matrix the sample correlation matrix
of (Z3, Z28, Z19). The procedure is repeated 10000 times to create the con�dence
interval.

However, as shown in �gure (5.10), if the sample size is increased to n=10000, the
association among subvectors of X can be seen to increase considerably as compared
to that of subvectors of Z. In particular this is the case as one approaches the
uppermost tail of the 2, 3, 4 and 5-dimensional distributions. Subvectors employed
for the evaluation are indicated in �gure (5.10). This was to be expected in view of
the uppermost tail of scaling variable V , see the right panel of �gure (5.2). Hence,
on the basis of the analysis of only three through �ve components, it is possible to
notice a di�erence in the dependence structure of the �elds (compare Bárdossy and
Pegram (2009)), provided the sample size is su�ciently large.

A third kind of aggregating statistic comprises the quantiles of the sum of com-
ponents above given thresholds. To this end, we took the n=3650 observations of
each vector, Z, X and W, and obtained from them sZ1 , . . . , s

Z
n , . . . , s

W
n . Where, for
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Figure 5.10. Ratio, rb, of congregation measures for the per-
centiles b ∈ {0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999}. Associ-
ation among two, three, four and �ve components of Z decreases
considerably as compared to that of subvectors of X from the 99%
percentile on. A bootstrap based con�dence intervals have been
added for signi�cance assessment. Subvectors used have indexes
(3, 28) , (3, 28, 19) , (3, 28, 19, 16) and (3, 28, 19, 16, 25).

a given threshold a, one has for example,

(5.5) sXi =

30∑
j=1

1 {xij > a} × xij

with i = 1, . . . , 3650.
The empirical cumulative distribution functions built from sX1 , . . . , s

X
3650 and

sW1 , . . . , sW3650 are presented in �gure (5.11), for thresholds a = {1.04, 1.28, 2.5, 3}.
Simulation based 90% con�dence intervals (appearing in red) for the empirical cu-
mulative distribution function of sZ1 , . . . , s

Z
3650 were also added. These con�dence



BEYOND CORRELATION IN SPATIAL STATISTICS MODELING 26

intervals were created for each threshold, a, by repeting 1000 times the following
procedure: simulate n=3650 realizations of a gaussian random vector with mean
and covariance as estimated for X in section (5.5), and then apply construction
(5.5). In this manner we obtain 1000 empirical cumulative distribution functions;
at each percentile u ∈ [0, 1], we compute the values of all 1000 e.c.d.f. and take
from them the 5% and 95% quantile values.

It is clear from �gure (5.11), that tails of the distribution functions obtained for
sX1 , . . . , s

X
3650 for thresholds a ∈ {2.5, 3} are heavier than expected from a gaussian

vector having the same means, covariance matrix, and approximately the same
marginal distributions as X. Hence, the analysis of these statistics is valuable for
diagnosis of higher order interaction.

5.7. Applications-relevant discrepancies in the underlying �elds. The ob-
ject of this section and of section (5.8) is to show what kind of inference can go
(unnoticed) wrong, if one does not pay attention to the discrepancies pointed out
by the aggregating statistics shown above. We focus on characteristics of the whole
underlying �elds, relevant for hydrological applications, in this section. In section
(5.8) we deal with conditional distributions, more relevant for mining geostatistics.

We present two aggregating statistics of the complete �elds, Z∗, X∗ and W∗,
portrayed in �gure (5.3). We indicate the kind of global statistics that would go
totally unnoticed, if we were to check only the one and two dimensional marginal
distributions of the data available, and �t a Gaussian �eld to the whole region.

Sums of positive values of the whole �eld. The �rst interaction manifestation we
investigate is the distribution of

(5.6) S+
X∗ =

J=90000∑
j=1

max (Xj , 0)

that is, of the sum of positive values of the whole �eld, X∗. Similarly, we de�ne
S+
Z∗ and S

+
W∗ on the basis of �elds Z∗ and W∗, respectively.

The distribution is investigated in terms of the sample quantiles of S+
X∗ , S

+
Z∗ and

S+
W∗ . These are important statistics for rainfall modeling over a basin, for example,

since a value proportional to this sum must �nd its way through the outlet of the
basin, possibly causing a �ood.

Boxplots illustrating the distribution of the sum of positive values are given in
�gure (5.12), whereas a table with some important sample quantiles of S+

Z∗ , S
+
X∗

and S+
W∗ are given in table (5.5). Notice that the sample quantiles of S+

Z∗ begin

to deviate from those of of S+
X∗ and S

+
W∗ from the 99% quantile on. The relative

percentage increase of the quantiles of S+
X∗ and S

+
W∗ with respect to those of S+

Z∗

are given within parentheses in table (5.5).
A sample of size n = 3650 would amount to a 10-year period, if data were to

represent some daily measured variable. If the �eld X∗ were to represent daily
rainfall over a basin, the maximum total rainfall would be 47.58% higher than one
would expect by �tting a gaussian model with adequate one and two dimensional
marginal distributions and covariance function. By letting the simulation run up to
n = 10000 (roughly ten years data), the increase in the maximum sum ascends to
61.11% for X∗ and to 50.36% for W∗, as compared to the maximum sum produced
by �eld Z∗. These possibilities are completely missed by an analysis based on one
and two dimensional marginal distributions, and the �eld's covariance function.
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Figure 5.11. Empirical distributions of sums above various
thresholds (1.04, 1.28, 2.5 and 3) for the n=3650 observations of
random vectors X (black) and W (green). Simulation based 90%
con�dence intervals for the empirical distributions arising from a
gaussian vector with the same means and covariance matrix as X
appear in red. The tail of the sums above thresholds 2.5 and 3 is
signi�cantly heavier than the gaussian model would prescribe.

Number of components of the whole �eld trespassing a given threshold. A second
interaction manifestation we shall investigate for the whole �elds, is the distribution
of the number of components trespassing a given threshold. Analogously to (5.2),
we de�ne for X∗ ∈ RJ∗ ,

LX∗ =

J∗∑
j=1

1
{
X∗j > a

}
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Figure 5.12. Boxplots of sums of positive values for n realizations
of Z∗, X∗ and W∗, with n = 3650.

Quantile Gauss Non-Gauss Non-Gauss_QQ

80% 41901.96 41992.56 (+0.22%) 42288.41 (+0.92%)

90% 45342.97 46334.13 (+2.19%) 46576.23 (+2.72%)

95% 48609.21 49678.96 (+2.20%) 49910.30 (+2.68%)

99% 54906.90 57634.93 (+4.97%) 57583.49 (+4.87%)

99.5% 57660.03 62627.25 (+8.61%) 62794.43 (+8.90%)

99.9% 62331.09 81939.63 (+31.46%) 76972.03 (+23.49%)

100% 68099.17 100503.12 (+47.58%) 90353.53 (+32.68%)

Table 5.5. From left to right: Sample quantiles (n = 3650) for
S+
Z∗ , S

+
X∗ and S

+
W∗ . Percentages within parentheses indicate per-

centage increase with respect to data from the Gaussian �eld.

where J∗ = 300× 300, and

(5.7) 1
{
X∗j > a

}
=

{
1, X∗j > a

0, X∗j ≤ a

In the context of spatial statistics, LX∗ can be interpreted as the total area over
which the environmental variable of interest realizes "extreme" values. Similar
constructions de�ne LZ∗ and LW∗

. We have a total of n=3650 samples from each
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Figure 5.13. Boxplots of the number of components above
thresholds 1.28 (left) and 3.0 (right). The two non-gaussian �elds
are very di�erent from the gaussian one with respect to this interac-
tion manifestation. The di�erence is exacerbated as the threshold
is pulled upwards. More extensive areas with very high values are
to be expected for the non-gaussian �elds.

of these three random variables, which are plotted at �gure (5.13) for thresholds
1.28 (left) and 2.5 (right).

Notice the great di�erence between the samples of LZ∗ and LW∗
(labeled "Gauss"

and "Non-Gauss_QQ", respectively) when we use 2.5 as threshold. This occurs
even though marginally �elds Z∗ and W∗ have exactly the same distribution, and
the covariance function of both �elds is the same. In more practical terms, the
di�erence in this variable amounts to Z∗ and W∗ having very di�erent types of
clusters, as illustrated in �gure (5.14). Field W∗ can exhibit big clusters of values
above 4 (99.99683% quantile of its marginal distribution), even though marginally
and in terms of its covariance function it has the same speci�cation as Z∗.

5.8. Conditional distributions and interpolation. The conditional distribu-
tion of the random quantity at a new location, given a partial observation of the
�eld will now be analyzed, by using the approximation given at equation (4.3).
This is an important type of distribution in mining geostatistics, where inference
on the random quantity investigated is necessary at unbored locations. We shall
illustrate the type of discrepancy between the conditional distribution arising from
a gaussian model as compared with model given by equation (2.5), by focusing on
a realization of a sub-vector of X.

Vector

(5.8) zI = (−1.489,−0.626,−0.050, 0.068, 0.491, 0.832,−0.666)

constitutes the �rst realization of ZI = (Z3, Z28, Z19, Z16, Z25, Z9, Z21) used in the
illustrative example of this section. Due to the mechanism depicted by equation
(3.3), one can have immediately a realization, xI , of XI = (X3, . . . , X21) by multi-

plying ZI by probable values of scaling variable
√
V . For our analysis we employ
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Figure 5.14. Di�erent clustering characteristics between one re-
alization of the gaussian (left) and non-gaussian (right) �elds Z∗

and W∗. Scaling originally corresponding to non-gaussian �eld is√
V = 2. Field W∗ can exhibit big clusters of values around 4,

even though marginally and in terms of the covariance function it
has the same speci�cation as Z∗.

the following values as realizations of
√
V : 0.64, 1 and 2; hence obtaining three

di�erent realizations of XI .
We analyze the distribution of Z3 and ofX3, conditioned on an increasing number

of values. Such conditioning values are given by multiplying (5.8) times 0.64, 1 and
2. We plot percentiles: 80%, 90%, 95%, 99%, 99.5%, 99.9%, 99.99% and 99.999%.

In �gure (5.15) we show the conditional distributions using
√
v = 0.64 for XI . A

moderate increase in the discrepancy between the conditional distributions is seen
as the number of conditioning values increases, while the tail of the non-gaussian
distribution becomes lighter and lighter as compared with that of the conditional
gaussian.

In �gure (5.16) we show the conditional distributions using
√
v = 1 for XI . Note

that the non-gaussian conditional distribution keeps its similarity to the gaussian
conditional, though it has higher quantiles for all conditioning schemes.

In �gure (5.15) we show the conditional distributions using
√
v = 2 for XI . The

conditional distribution given one conditioning value is very similar for both models,
but this situation quickly changes, as more conditioning values are considered. The
quantiles of the upper part of the conditional distribution for X3 become sensibly
bigger already for 2 conditioning values. Note that the values one may expect for
the conditioned ("ungauged") variable is considerably greater for X3 than for Z3.
This is a relevant issue for applications.

5.9. Estimated parameters. We employ now the simple technique given in sec-
tion (3.3) to estimate the additional parameters, c2, . . . , c5, corresponding to the
cumulants of a non-degenerate (constant) scaling variable V . The estimated cumu-
lants and moments of squared scaling variable V are presented in table (5.6).
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Figure 5.15. From left to right and downwards: Comparison
of upper parts of conditional distributions for Z3 (red) and X3

(black), for n = 1, 2, 4, 6 conditioning values. Realization of XI is
given by 0.64× zI (small scaling variable).

Using the method of moments, and the n=3650 data values, we �tted a mixture
of 5 gamma distributions to each the series of moments shown in table (5.6). The
resulting distributions, together with the distribution of the original squared scaling
variable V > 0 are shown and compared in �gure (5.18). The distribution of the
scaling variable of a student multivariate distribution with 15 degrees of freedom,
shown in blue, has been added for comparison.

We notice that the scaling variable is approximately recovered by this technique.
However this technique cannot be used, for example, in the context of rainfall
modeling, where data is constrained to be positive. Even though a latent vari-
able approach (cf. Sanso and Guenni (1999)) can be employed for �tting the best
gaussian model to data (step 1 of estimation), the step e�ecting the estimation of
additional parameters c2, . . . , c5 determining important interaction manifestations
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Figure 5.16. From left to right and downwards: Comparison
of upper parts of conditional distributions for Z3 (red) and X3

(black), for n = 1, 2, 4, 6 conditioning values. Realization of XI is
given by 1× zI (middle-valued scaling variable).

of the �eld, cannot be executed via the method of moments: the latent imputed data
correspond to a Normal distribution and hence does not produce valid realizations
of squared generating variable, R2.

A paper describing an alternative second step for the estimation method, which
circumvents this di�culty, is already in preparation.

6. Discussion and work in progress

We have seen that modeling of spatial data that attempts to �t properly one
and two dimensional marginal distributions only, may lead to erroneous speci�ca-
tion of the underlying mechanism which generates data. As an illustration we have
seen that data from random vectors Z, X and W, which represent a network of 30



BEYOND CORRELATION IN SPATIAL STATISTICS MODELING 33

Figure 5.17. From left to right and downwards: Comparison
of upper parts of conditional distributions for Z3 (red) and X3

(black), for n = 1, 2, 4, 6 conditioning values. Realization of XI is
given by 2× zI (high-valued scaling variable).

gauging stations each, had to be more carefully analyzed in order to notice possi-
ble discrepancies in their dependence structure. Conveniently selected aggregating
statistics can help to notice dependence structure di�erences that are not visible in
the one and two dimensional marginals.

In particular, the congregation measure (5.4) and the distribution of the number
of components trespassing a given threshold (5.2) pointed to discrepancies between
gaussian �eld Z∗ and non-gaussian �elds X∗ and W∗, on the basis of 3650 realiza-
tions of respective sub-vectors Z, X and W.

The model introduced by (2.5) allows for the consideration of joint cumulants
of order greater than two (covariances) in a manner that is convenient for spatial
modeling: building on available geostatistical techniques, requiring a minimum of
extra parameters, and respecting the principle of consistency.
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Estimated Gauss Non-Gauss Non-Gauss_QQ

m.1 1 1 1

m.2 0.9998 1.0792 1.0547

m.3 0.9988 1.4098 1.2378

m.4 0.9958 2.8072 1.8129

m.5 0.9897 9.0952 3.6831

c.1 1 1 1

c.2 -2e-04 0.0792 0.0547

c.3 -7e-04 0.1722 0.0738

c.4 -3e-04 0.6244 0.1806

c.5 2e-04 2.2289 0.4100
Table 5.6. Coe�cients estimated by the method of moments,
rounded up to four decimal places.

Figure 5.18. Estimated squared scaling variables, uppermost
part: for X (black), Z (red), W (green), and a Student with 15
degrees of freedom (blue). The squared scaling variable originally
employed for the simulation case study is shown in gray. The
method of moments estimation was successful in capturing the up-
permost behavior of the scaling variable.
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The basic estimation technique outlined in section (3.3) was successful in re-
covering scaling variable V of (3.3), which is responsible for beyond-covariance
interactions among components of �eld X∗. An alternative method is under test-
ing, which can allow estimation even if we need to deal with truncated data, as in
the case of daily rainfall modeling.

The speci�c implementation of model (2.5), whereby the squared scaling variable,
V , is modeled by a mixture of gamma distributions, will be explored in future
research.

Acknowledgments. This research forms part of the Ph.D thesis of the �rst au-
thor, which was funded by a scholarship of the German Academic Exchange Service
(DAAD).

Appendix A. Derivation of joint cumulants

Our object of study is the cumulant generating function of a random variable
X ∈ RJ . We shall be interested in joint cumulants such as

(A.1) cum (Xj1 , . . . , Xjr )

where some, or all, of the indexes can be repeated. Hence it is convenient to refer
to a random vector X∗ ∈ RJ∗ having the components of X, even repeated, and
then �nd the joint cumulants that appear with degree at most one, of this �new�
random vector. Thus we can, without loss of generality, focus on �nding the joint
cumulants with degree not greater than one, given by

(A.2)
∂r

∂tjr . . . ∂tj1
KX∗ (t) |t=0:= cum (Xj1 , . . . , Xjr )

where no tj , for j ∈ {j1, . . . , jr}, is repeated.
For example, when computing the variance of a component, Xj , of X, one would

rather compute the covariance of vector X∗ = (Xj , Xj), namely κ11 (X∗).
The archetypal dependence structure advocated for in this work is given by

(A.3) KX∗ (t) = c1
1

2
tTΓt +

1

2!
c2

[
1

2
tTΓt

]2
+

1

3!
c3

[
1

2
tTΓt

]3
+ . . .

for some coe�cients c1, c2, c3, . . . and covariance matrix ΓJ∗×J∗ , and t ∈ RJ∗ .
By expansion, the above expression can be written as

(A.4) KX∗ (t) =
c1
1!

1

2

J∑
j1,j2=1

tj1tj2Γj1j2 +
c2
2!

1

22

J∑
j1,...,j4=1

tj1 . . . tj4Γj1j2Γj3j4+

c3
3!

1

23

J∑
j1,...,j6=1

tj1 . . . tj6Γj1j2Γj3j4Γj5j6 + . . .

For each coe�cient c r
2
, for r even, there appears a sum of the form

(A.5)
c r

2

r
2 !

1

2
r
2

J∑
j1=1

. . .

J∑
j2r=1

tj1 . . . tjrΓj1j2 . . .Γjr−1jr

This is the only block-summand of (A.4) that does not vanish upon di�erentiation
with respect to each variable and equation to zero, as in (A.2). Other blocks will
vanish either upon di�erentiation with respect to a variable that does not appear
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in them, or upon equation to zero, since such blocks become a sum of zeroes. So,
it su�ces to focus on this block, to di�erentiate it and equate it with zero.

Let each member of the (A.5) be labeled

sj1...,jr = tj1 . . . tjrΓj1j2 . . .Γjr−1jr

then, we have stated that,

(A.6)
∂r

∂tjr . . . ∂tj1
KX∗ (t) |t=0=

c r
2

r
2 !

1

2
r
2

J∑
j1=1

. . .

J∑
j2r=1

∂r

∂tjr . . . ∂tj1
sj1,...,jr

Partial di�erentiation of sj1,...,jr is readily found to be

(A.7)
∂r

∂tjr . . . ∂tj1
sj1,...,jr = Γj1j2 . . .Γjr−1jr

Sub-indexes appearing in the factors, Γj1j2 , Γj3j4 , . . . constitute a partition of
size r

2 of the set A = {j1, j2, . . . , jr}. That is, the union of the r
2 non-overlapping

sets

{j1, j2} , {j3, j4} , . . . , {jr−1, jr}
formed with elements of set A = {j1, j2, . . . , jr}, is equal to that set:

{j1, j2} ∪ {j3, j4} ∪ . . . ∪ {jr−1, jr} = A

Since the sum at (A.6) runs over all indexes in A, the sum returning the joint
cumulant in question comprises all partitions of size two of A. How many di�er-
ent partitions of size two can be obtained for A, by forming sets out of di�erent
combinations of indexes? In general, a set with n elements, n even, can be seen to
have

1× 3× . . .× (n− 1)

such partitions.
We have shown that joint cumulants of the archetypal dependence structure are

given by

(A.8) cum (Xj1 , . . . , Xjr ) =
c r

2

r
2 !

1

2
r
2

J∑
j1,...,jr=1

Γj1j2 . . .Γjr−1jr

Appendix B. Relation between moments of squared scaling variable

and generating variable

Assume that we have random vector Z ∈ RJ with c.g.f (2.5), with µ = 0 and
covariance matrix equal to the identity matrix, Σ = IJ×J . For this special case, in
agreement with representation (1.8), we have

‖Z‖2 =
√
‖Z‖2 ‖Z‖2 =

√
‖R×UJ−1‖2 ‖R×UJ−1‖2 = R× 1

since
∥∥UJ−1

∥∥
2

= 1. Then,

(B.1) R2 =

J∑
j=1

Z2
j

which in turn means that,
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(B.2)

E
((
R2
)k)

= E

 J∑
j1=1

Z2
j1

× . . .×
 J∑
jk=1

Z2
jk

 =

J∑
j1=1

. . .

J∑
jk=1

E
(
Z2
j1 . . . Z

2
jk

)
Since Z has c.g.f. given by

KZ (t) =
c1
1!

(
1

2
t
′
t

)
+
c2
2!

(
1

2
t
′
t

)2

+
c3
3!

(
1

2
t
′
t

)3

+ . . .

it follows, as seen in section 2, that

MZ (t) = 1 +
m1

1!

(
1

2
t
′
t

)
+
m2

2!

(
1

2
t
′
t

)2

+
m3

3!

(
1

2
t
′
t

)3

+ . . .

with coe�cients given by

m1 = c1

m2 = c2 + c21

m3 = c3 + 3c2c1 + c31

m4 = c4 + 4c3c1 + 3c22 + 6c2c
2
1 + c41(B.3)

and so on. A particular case of this function is the Gaussian moment generating
function, for which all cr>1 are set to zero. In particular, for ξ ∼ NJ (0, IJ×J),

(B.4) Mξ (t) = 1 +
c1
1!

(
1

2
t
′
t

)
+
c21
2!

(
1

2
t
′
t

)2

+
c31
3!

(
1

2
t
′
t

)3

+ . . .

with c1 = 1. Hence joint moments of Z and ξ are similar, except for what pertains
to coe�cients c2, c3, . . .. In fact, calling

hr (t) =

(
1

2
t
′
t

)r
one has ∂r1+...+rk

∂tj1 ...∂tjk
Mξ (t) = c1

1!
∂r1+...+rk

∂tj1 ...∂tjk
h1 (t) +

c21
2!
∂r1+...+rk

∂tj1 ...∂tjk
h2 (t) + . . .

∂r1+...+rk

∂tj1 ...∂tjk
MZ (t) = m1

1!
∂r1+...+rk

∂tj1 ...∂tjk
h1 (t) + m2

2!
∂r1+...+rk

∂tj1 ...∂tjk
h2 (t) + . . .

Hence, for odd orders joint moments of both random vectors are zero, and for
even orders

E (ξiξj) =
c1
m1

E (ZiZj)

E (ξiξjξkξl) =
c21
m2

E (ZiZjZkZl)

...

E
(
ξr1j1 . . . ξ

rk
jk

)
=

c
1
2

∑k
j=1 rj

1

m 1
2

∑k
j=1 rj

E
(
Zr1j1 . . . Z

rk
jk

)
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whenever order =
∑k
i=1 ri is an even integer. It is then clear that the following

relation holds, for joint moments of even order:

m1

c1
E (ξiξj) = E (ZiZj)

m2

c21
E (ξiξjξkξl) = E (ZiZjZkZl)

...
m 1

2

∑k
j=1 rj

c
1
2

∑k
j=1 rj

1

E
(
ξr1j1 . . . ξ

rk
jk

)
= E

(
Zr1j1 . . . Z

rk
jk

)
(B.5)

Product moments appearing on the left hand side of equation (B.5) can be
readily found, since they are the moments of a multivariate Gaussian distribution
with covariance matrix equal to identity matrix IJ×J .

Coe�cients m1,m2,m3, . . . are given in terms of c1, c2, c3, . . . (and vice versa).
Hence we have, by virtue of (B.2), identi�ed requirements on all moments of
(squared) generating variable R2, so that the resulting multivariate distribution
X has cumulant generating function (2.5).
Summarizing these results: First, since the multivariate Gaussian distribution re-
ferred to at equation B.5 has covariance matrix equal to identity, one can write for
any set of components (j1, . . . , jk),

(B.6)
mk

ck1
E
(
ξ2j1 . . . ξ

2
jk

)
= E

(
Z2
j1 . . . Z

2
jk

)
where ξ is a J-dimensional normally distributed vector with mean vector 0 and
covariance matrix IJ×J , the identity matrix on RJ×J . Equation (B.2) holds in
particular for vector ξ, in which case R2 ∼ χ2

J , and

J∑
j1=1

. . .

J∑
jk=1

E
(
ξ2j1 . . . ξ

2
jk

)
= E

((
χ2
J

)k)
=

2kΓ
(
k + J

2

)
Γ
(
J
2

)
Second and more importantly, by virtue of (B.6), one can re-write (B.2) as

(B.7) E
((
R2
)k)

=

J∑
j1=1

. . .

J∑
jk=1

mk

ck1
E
(
ξ2j1 . . . ξ

2
jk

)
=
mk

ck1

2kΓ
(
k + J

2

)
Γ
(
J
2

)
which expresses the moments of R2 in terms of parameters mk (hence indirectly of
ck) and the dimension of the random vector X.
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