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[1] Linearized representations of the stochastic groundwater flow and transport equations
have been heavily used in hydrogeology, e.g., for geostatistical inversion or generating
conditional realizations. The respective linearizations are commonly defined via Jacobians
(numerical sensitivity matrices). This study will show that Jacobian-based linearizations
are biased with nonminimal error variance in the ensemble sense. An alternative
linearization approach will be derived from the principles of unbiasedness and minimum
error variance. The resulting paradigm prefers empirical cross covariances from Monte
Carlo analyses over those from linearized error propagation and points toward methods
like ensemble Kalman filters (EnKFs). Unlike conditional simulation in geostatistical
applications, EnKFs condition transient state variables rather than geostatistical parameter
fields. Recently, modifications toward geostatistical applications have been tested and
used. This study completes the transformation of EnKFs to geostatistical conditioning
tools on the basis of best unbiased ensemble linearization. To distinguish it from the
original EnKF, the new method is called the Kalman ensemble generator (KEG). The new
context of best unbiased ensemble linearization provides an additional theoretical
foundation to EnKF-like methods (such as the KEG). Like EnKFs and derivates, the KEG
is optimal for Gaussian variables. Toward increased robustness and accuracy in non-
Gaussian and nonlinear cases, sequential updating, acceptance/rejection sampling,
successive linearization, and a Levenberg-Marquardt formalism are added. State variables
are updated through simulation with updated parameters, always guaranteeing the
physicalness of all state variables. The KEG combines the computational efficiency of
linearized methods with the robustness of EnKFs and accuracy of expensive realization-
based methods while drawing on the advantages of conditional simulation over
conditional estimation (such as adequate representation of solute dispersion). As proof of
concept, a large-scale numerical test case with 200 synthetic sets of flow and tracer data is
conducted and analyzed.
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1. Introduction and Approach

1.1. Motivation: The Biasedness of Linearizations

[2] The principle of linearized error propagation can look
back on a long history of successes in stochastic hydro-
geology and, in more general, in describing uncertain
dynamic systems [e.g., Schweppe, 1973]. Typical hydro-
geological applications include geostatistical inversion [e.g.,
Zimmerman et al., 1998; Keidser and Rosbjerg, 1991; Yeh
et al., 1996; Kitanidis, 1995], maximum likelihood estima-
tion of covariance parameters [e.g., Kitanidis and Vomvoris,
1983; Kitanidis and Lane, 1985; Kitanidis, 1995, 1996],
and geostatistical optimal design [e.g., Cirpka et al., 2004;
Herrera and Pinder, 2005; Feyen and Gorelick, 2005].

However, the crux of linearization techniques is the trade-
off between their computational efficiency, conceptual ease
and limited range of applicability.
[3] Jacobian-based linearizations have been shown to be

biased for nonlinear problems. A first goal of this study is to
find a new type of linearization that has better properties.
The biasedness of a linearization is defined as the system-
atic deviation of a tangent from the actual nonlinear
function. It can occur for all processes that depend non-
linearly on their parameters, including all flow and transport
processes in heterogeneous subsurface environments.
[4] This general statement is easily supported by the fact

that all scale-dependent physical process depend nonli-
nearly on their parameter fields. For any scale-dependent
process, inserting the ensemble average of a parameter field
into the original equation does not predict the ensemble
mean behavior. Instead, the correctly averaged equation
requires effective parameters or even has a different math-
ematical form [e.g., Rubin, 2003; Zhang, 2002].
[5] A powerful example is solute transport in heteroge-

neous aquifers, and it shall serve as illustration throughout
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the entire study. For solute transport, the effective ensemble
mean equation is macrodispersive, whereas the transport
equation with ensemble mean parameters is only locally
dispersive and underestimates dispersion [e.g., Rubin,
2003].
[6] The current study will revise the concept of lineari-

zation. A linearization scheme for nonlinear equations (and
stochastic partial differential equations in particular) will be
derived from the principles of unbiasedness and minimum
approximation error in the ensemble mean sense. Because
of its properties, it will be called best unbiased ensemble
linearization (EL). Being based on ensemble statistics, EL
will also guarantee adequate treatment of solute dispersion.
[7] The remainder of the introduction will review where

biasedness occurs in geostatistical inverse modeling, and
how it may be overcome by conditional simulation. Condi-
tional simulation methods may be split into realization-
based (MC-type) ones that treat individual realizations one
by one, and ensemble-based ones, which work on entire
ensembles at a time. The latter are computationally more
efficient, yet can be stochastically rigorous and conceptually
straightforward, and can outperform realization-based meth-
ods [e.g., Hendricks Franssen and Kinzelbach, 2008b].
[8] Recently, ensemble-based methods have been modi-

fied from pure state space data assimilation tools [e.g.,
Evensen, 1994] toward joint updating of parameters and
states [e.g., Chen and Zhang, 2006; Hendricks Franssen
and Kinzelbach, 2008a; Evensen, 2007, p. 95]. The most
recent trend is further modification toward pure parameter
space updating, where updated states are obtained via
simulation with updated parameters [e.g., Liu et al.,
2008]. The contribution of this work, summarized at the
end of the introduction, may be seen as final step in the
transformation of ensemble Kalman filters toward geostat-
istical inversion.

1.2. Biasedness in Geostatistical Estimation Techniques

[9] A large class of linearizing methods can be found in
geostatistical inversion of flow and tracer data, or in the
generation of conditional realizations. These methods obtain
cross covariances and autocovariances and expected values
by Jacobian-based linearized error propagation. Jacobians
are derived in sensitivity analyses of the involved flow and
transport models, e.g., by adjoint state sensitivities [e.g.,
Townley and Wilson, 1985; Sykes et al., 1985]. Examples
are the quasi-linear geostatistical method of Kitanidis
[1995] and the successive linear estimator of Yeh et al.
[1996], later revisited by Vargas-Guzmán and Yeh [2002].
[10] Dependent state variables are estimated by inserting

the current estimate of the parameter field into the original
equation. This technique is accurate only to zeroth order,
and clearly biased. Returning to the example of solute
dispersion, the bias appears as a lack of dispersion: because
of the scale dependence of transport, dispersion is system-
atically underrepresented on estimated conductivity fields
that are smoother than conditional realizations. The trivial
lore ‘‘not to use best estimates of conductivity fields for
transport simulations’’ is a direct consequence. Likewise,
the corresponding first-order concentration variance fails to
represent the uncertainty of concentration related to macro-
dispersive effects. All interpretations of concentration data
based on such linearized approaches are bound to produce
inaccurate results.

[11] Successive linearization about an increasingly het-
erogeneous conditional mean conductivity field may grad-
ually include more effects of heterogeneity [e.g., Cirpka and
Kitanidis, 2001], but will still underrepresent dispersion and
fail to interpret concentration data accurately. Rubin et al.
[1999, 2003] derived dispersion coefficients that apply to
estimated conductivity fields, but require perfect separation
of scales between large blocks of estimated conductivity
and small-scale dispersion phenomena. Simultaneous esti-
mation of a space-dependent dispersivity also helps to
overcome the lack of dispersion [Nowak and Cirpka,
2006], but entails a scale dependence on the support volume
of available tracer data.

1.3. Realization-Based Conditional Simulation

[12] The same lore that recommends not performing
transport simulations on estimated parameter fields suggests
simulating solute transport on conditioned conductivity
fields instead, pointing toward the Monte Carlo framework.
Each conditioned random conductivity field honors both
data and natural variability, and therefore represents solute
dispersion accurately.
[13] Available techniques are computationally quite ex-

pensive: the pilot point method of RamaRao et al. [1995]
and LaVenue et al. [1995] [see also Alcolea et al., 2006],
sequential self-calibration by Gómez-Hernández et al.
[1997] and Capilla et al. [1997] [see also Hendricks
Franssen et al., 2003], or Monte Carlo Markov chain
methods [e.g., Zanini and Kitanidis, 2008]. Detailed dis-
cussion of realization-based methods is provided by H. J.
Hendricks Franssen et al. (A comparison of seven methods
for the inverse modelling of groundwater flow. Application
to the characterisation of well catchments, submitted to
Advances in Water Research, 2009).
[14] These realization-based methods rely less on linear-

ized error propagation for data interpretation. For transport
simulations, they avoid estimated conductivity fields and
can legitimately use the hydrodynamic (local) dispersion
tensor without the above dispersion and biasedness issues.
[15] The most widespread ones, i.e., the pilot point

method and sequential self-calibration, substitute indirect
data types (such as hydraulic heads) by a selection of pilot
points or master blocks, which are then used for kriging-like
interpolation just like direct data (conductivity data values).
Values for the pilot points or master blocks are found by
quasi-linear optimization, such that the random conductivity
fields comply with the given data values. Some of their
drawbacks include (1) the approximate character of this
substitution, (2) a lack of options to enforce a prescribed
distribution shape of measurement/simulation mismatch,
and (3) the computational effort involved for optimizing
individual realizations. The first two drawbacks may be
minor and of little relevance to the resulting ensemble
statistics, as shown in the comparison study by Hendricks
Franssen et al. (submitted manuscript, 2009), but the issue
of computational effort remains.
[16] The Monte Carlo Markov chain method of Zanini

and Kitanidis [2008] can be seen as a postprocessor to the
quasi-linear geostatistical approach (QLGA) [Kitanidis,
1995] to improve the quality of conditional realizations. It
is stochastically rigorous, but still involves a massive
computational effort for conditioning individual realiza-
tions. Without that upgrade, the QLGA either requires to
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use a single linearization about the conditional mean (at the
cost of inaccuracy unless the conditional covariance is very
small) or to use individual linearizations for each condi-
tional realization (at excessively high computational costs).
A most rigorous and fully Bayesian high end-member of
conditional simulation with a minimum of assumptions and
simplifications is the method of anchored inversion by Z.
Zhang and Y. Rubin (Inverse modeling of spatial random
fields using anchors, submitted to Water Resources Re-
search, 2009). At the current stage, its advantages come
at even higher computational costs, which may be reduced
by further research.

1.4. Ensemble-Based Methods

[17] The advantages of conditional simulation may be
exploited at substantially reduced computational costs,
when conditioning entire ensembles rather than individual
realizations. The current study will use the EL concept
along these lines, obtaining a quasi-linear generator for
conditional ensembles. Only to mild surprise, the resulting
method is quite similar to an ensemble Kalman filter
(EnKF), therefore called the Kalman ensemble generator
(KEG).
[18] The EnKF has been proposed by Evensen [1994],

later clarified by Burgers et al. [1998] and extensively
reviewed by Evensen [2003]. EnKFs update transient model
predictions whenever new data become available. Designed
for real-time forecasting of dynamic systems, they have a
strictly forward-in-time flow of information. In other words,
they do not update the past with present data. Their key
elements are a transient prediction model, a measurement
model and a forward-in-time Bayesian updating scheme.
[19] Similar to other conditioning techniques, EnKFs

require expected values and cross covariances and autoco-
variances between all model states. These are extracted from
an ensemble of realizations which is constantly being
updated. The most compelling motivation to use ensemble
statistics is to avoid computationally infeasible sensitivity
analysis and storage of excessively large autocovariance
matrices of parameters. At the same time, EnKFs behave
more robustly for nonlinear problems because the ensemble
statistics can be accurately evolved in time with nonlinear
models. Burgers et al. [1998] showed that EnKFs retain
higher-order terms compared to the original Kalman filter or
the extended Kalman filter [e.g., Jazwinski, 1970].
[20] The EL concept derived in this study will add a new

angle to the theoretical foundation of EnKFs: It links the
choice of ensemble covariances to the fundamental princi-
ples of unbiasedness and minimum approximation error.
Seen from this angle, the EnKF and the KEG use lineariza-
tions that are optimal for the entire ensemble, providing
them with excellent computational efficiency. Moreover,
they are conceptually straightforward, stochastically rigor-
ous, easy to implement, and require no intrusive modifica-
tion of simulation software. The accuracy of the conditional
statistics obtained by the KEG and its overwhelmingly low
computational costs will be demonstrated later.

1.5. From State Space to Parameter Space

[21] Recent developments indicate a transition of the
EnKF from the state space toward the parameter space. In
their mostly meteorological and oceanographic applications,
EnKFs focused on the state space alone. State space

methods use measurements of state variables to update the
prediction of state variables. Time-invariant physical pa-
rameter fields are insignificant, and the notion of geostat-
istical structures is entirely absent.
[22] This differs from hydrogeostatistical applications,

which focus on the parameter space. Soil parameters are
modeled as time-invariant (static) random space functions.
The main motivation is to identify static parameter fields of
soil properties, much less to combine real-time predictions
with incoming streams of observed data. The concept of
forward-in-time flow of information does not apply. Instead,
great attention is paid to the geostatistical structure of
variability, because it plays a major role in the effective
behavior of heterogeneous porous media [e.g., Rubin,
2003].
[23] A somewhat intermediate concept is the ensemble-

based static Kalman filter [e.g., Herrera, 1998; Herrera and
Pinder, 2005; Zhang et al., 2005], sKF for short. It involves
a steady state rather than a forward-in-time prediction
model, but is still a state space method. Its primary objective
is still to improve model predictions, not to condition
geostatistical parameter fields.
[24] On the basis of its past successes, EnKFs have

received quickly growing attention in hydrogeological stud-
ies, as summarized by Chen and Zhang [2006], Hendricks
Franssen and Kinzelbach [2008a, 2008b]. The aforemen-
tioned studies (and other works cited therein) included
geostatistical parameters into the list of variables to be
updated by the EnKF.
[25] Wen and Chen [2006] demonstrated the improvement

of accuracy when restarting the EnKF once the parameter
values have been conditioned. Hendricks Franssen and
Kinzelbach [2008a] tested the restart principle and found
only little or no improvement, probably because their model
equations are much closer to linearity. The restart accurately
reevaluates the ensemble statistics of state variables using
the original equations. This moves the EnKF from a state
space or mixed state/parameter space method toward a
parameter space method.
[26] The KEG introduced in the current study will com-

plete the transformation of EnKFs into classical parameter
space methods. Parameters will be seen as static random
space functions. Only the parameter space will be updated
from measurements. Updated states will be obtained indi-
rectly by simulation with the updated parameters, which is
somewhat similar to an enforced restart in the work of
Hendricks Franssen and Kinzelbach [2008a] and Wen and
Chen [2006]. In the examples provided here, the KEG will
generate ensembles of log conductivity fields conditional on
flow and tracer data, and on measurements of log conduc-
tivity itself.
[27] The rigorous theoretical foundation via best unbiased

ensemble linearization and the successful history of the
EnKF strongly advocate the further use of the KEG, sKF
and EnKF methods in hydrogeostatistical applications. In
the tradition of geostatistical inversion methods, the KEG
will allow for measurement error, but not for model error.
Kalman filters require model error to conceptualize mea-
surement/simulation mismatch. In the geostatistical tradi-
tion, this mismatch is attributed to yet uncalibrated
parameters and boundary conditions.
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[28] Erroneous model assumptions can lead to biased
parameter estimates, and considering model error may
increase the robustness in such situations. The highly
flexible EnKF framework, however, gives little reason not
to include additional uncertain quantities into the list of
parameters for updating, thus reducing the arbitrariness and
potential errors in model assumptions. A good example is
the joint identification of uncertain conductivity and re-
charge fields of Hendricks Franssen and Kinzelbach
[2008a], or the joint identification of unknown boundary
values. But of course, extensions of the KEG toward model
error will be possible.
[29] A remaining concern in the current study is the

original state space character of EnKF-like methods and
the KEG. Before extensively using the KEG in applications
that raise high requirements to geostatistical structures, it
will undergo a deep scrutiny in the current study. Chen and
Zhang [2006] tested the ability of EnKFs to cope with
inaccurate assumptions on geostatistical structures. Since
their synthetic data set was almost exhaustively dense, the
EnKF was still able to converge toward the reference
conductivity field from which the synthetic data were
obtained.
[30] Quite contrarily, the rationale behind the tests in the

current study is to investigate whether the KEG maintains
a prescribed geostatistical model in the absence of strong
data, or whether the spatial statistics of the parameter
field degenerate during the updating procedure. This is
somewhat related to the filter inbreeding problem dis-
cussed, e.g., by Hendricks Franssen and Kinzelbach
[2008a]. Filter inbreeding is the deterioration of ensemble
statistics due to an insufficient ensemble size and leads to
underestimated prediction variances. While Hendricks
Franssen and Kinzelbach [2008a] and others cited therein
only tested one-point statistics (the field variance), the
current study will include two-point statistics (covariances)
in order to test geostatistical properties. Further quality
assessment includes the compliance of measurement/
simulation mismatch statistics with the assumed distribu-
tion shape for measurement errors.

1.6. Contributions and Organization of the Current
Study

[31] The new contributions of the current study can be
summarized as follows.
[32] 1. The quasi-linear Kalman ensemble generator

(KEG) finalizes the trend [e.g., Chen and Zhang, 2006;
Hendricks Franssen and Kinzelbach, 2008a; Liu et al.,
2008] of ensemble Kalman filters (EnKFs) toward geo-
statistical conditional simulation.
[33] 2. The underlying idea of EnKFs is to use ensemble

covariances in their updating equations. This concept is
rederived from the principles of best unbiased linearization,
providing an additional theoretical foundation to EnKF-like
methods. The rederivation also clarifies the advantages
of the KEG over Jacobian-based linearized conditioning
techniques.
[34] 3. A two-step updating approach like the one by

Hendricks Franssen and Kinzelbach [2008a] is used. The
KEG first processes direct data (linearly related to the
parameter field) to update the parameters prior to any
simulation of state variables. Then, it processes indirect
data (nonlinearly related) by updating the parameters to

reduce the measurement/simulation mismatch. For the indi-
rect data, it has a quasi-linear iteration scheme, stabilized by
a geostatistically driven Levenberg-Marquardt technique
[Nowak and Cirpka, 2004].
[35] 4. The physicalness of updated model states is

always guaranteed because they are updated indirectly via
simulation with updated parameters. In combination with
the above, this significantly improves accuracy of results.
[36] 5. The accuracy of maintaining a prescribed geo-

statistical structure (two-point covariances) during the
conditioning step is assessed. Previous studies looked at
one-point statistics only. The filter bias is shown to be
zero, complying with the rederivation from best unbiased
ensemble linearization.
[37] The current study is organized as follows: First, the

concept of best unbiased ensemble linearization will be
derived in section 2. Section 3 summarizes the geostatistical
framework in brief to install the necessary notation. The
quasi-linear Kalman ensemble generator is introduced in
section 4, and its similarity and differences to the EnKF and
sKF methods are discussed in more detail. In a computa-
tionally intensive test case, section 5 assesses the geostat-
istical properties of the KEG and discusses its computational
efficiency.

2. Best Unbiased Ensemble Linearization

[38] Let s be a parameter vector following a multivariate
distribution p(s). The value of a dependent state variable at a
location xm is denoted by y(xm) = f(s), where the operator
f(�) represents a model equation (e.g., in the form of a
stochastic partial differential equation). In the hydrogeolog-
ical context, s is the field of log conductivity discretized on
a numerical grid, f(�) might represent the stochastic flow or
transport equation, and y(xm) would denote a hydraulic head
or tracer concentration as predicted by the model.
[39] For simplicity, the following derivation considers a

single datum. The goal is to approximate f(s) by a
linearization:

f sð Þ � ~f sð Þ ¼ y0 þH s� s0ð Þ: ð1Þ

In a purely geometric interpretation, [s0; y0] is a supporting
vector to a hyperplane that approximates the surface y = f(s),
and H is the hyperplane slope. Jacobian-based linearization
would now evaluate H = @f(s)/@s via sensitivity analysis at
s0 = �s (the mean of p(s) or the current conditional mean in
successive Bayesian updating schemes). Instead, this study
treats s0 and H as free parameters, optimized for unbiased-
ness and minimum approximation error.
[40] The outcome is not a tangent hyperplane to f(s) at �s,

but rather a global best fit secant hyperplane. To this end,
the error e = f(s) � ~f (s) must have zero mean and minimum
variance:

E e½ 	 ¼ 0 ð2Þ

E e2
� �

! min : ð3Þ

Here, E[�] is the expected value operator over p(s). Because
of the conditions in equations (2) and (3), the resulting
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linearization ~f (s) may legitimately be called best and
unbiased linearization in the ensemble sense, i.e., over the
distribution p(s).
[41] The advantages of the concept become apparent

when estimating the distribution of the dependent variable
y. By virtue of the unbiasedness condition, the estimated
mean value will be exact. Because of the minimum variance
of approximation error, the error of estimating the variance
is automatically minimal among all possible unbiased
linearizations.
[42] Figure 1 illustrates the principle for a univariate case.

Please observe that for the function

f sð Þ ¼ 0:725� 1

4
x� 1

4

� �
� 5 x� 1

4

� �

chosen in this example, the local tangent is consistently
larger than f(s). This holds everywhere except at the support
point �s, where it is equal to f(s). As a consequence, the
estimated distribution p(y) based on the tangent is biased
toward higher values. The true mean value and variance
of y are �y = 1/2 and sy

2 = 0.068273, respectively. The
approximation of f(s) by the local tangent through [�s; f(�s)]
yields �y = 0.5884 and sy

2 = 0.031755, which is a significant
bias and a significant underestimation of the variance.
Approximation by the global best fit secant results in �y = 1/2
and sy

2 = 0.052327, which is free of bias and a substantially
smaller error in estimating the variance.
[43] When inserting e = f(s) � ~f (s) into the unbiasedness

condition, the straightforward result is that any unbiased
linearization has to return E[f(s)] if evaluated at E[s]
(Appendix A). Hence,

s0 ¼ E s½ 	 ð4Þ

y0 ¼ E f sð Þ½ 	: ð5Þ

This is independent of the slope H, which is still arbitrary at
this point. Instead of the true value �y = E[f(s)], traditional
linearization uses E[f(s)] � f(�s), which is known to be biased
for nonlinear functions.
[44] When adding the minimum error variance condition

(Appendix B), one obtains

QssH
T ¼ qsy

()H ¼ Q�1
ss qsy

� �T

; ð6Þ

in which qsy is the true covariance between s and y in the
joint distribution p(s, y), and Qss is the autocovariance
matrix for p(s). In other words, a best linearization must
choose H such that the cross covariance from linear error
propagation, given by QssH

T [e.g., Schweppe, 1973],
exactly meets the actual cross covariance qsy. In that sense,
H is an effective derivative @y/@s over the distribution p(s).
[45] The resulting (now minimized) expected square error

is given by

E e2
� �

¼ s2
y �HQHT ; ð7Þ

i.e., by the error in predicting the variance of y with the
linearized method. Appendix B shows that, similar to the
Cramer-Rao inequality [Rao, 1973, p. 324], HQHT is a
lower bound to sy

2. It is equal to sY
2 if f(s) is linear in s.

[46] The above analysis has assumed knowledge of three
quantities: themeanvalue�y=E[y], thevariancesy

2=E[(y��y)2]
and the cross covariance qsy = E[(s � �s)(y � �y)]. These may
theoretically be taken from higher-order accurate analytical
solutions in simple cases. In the remainder of the study, they
will be approximated readily via Monte Carlo estimates
(denoted by ~�y, ~sy

2 and ~qsy), allowing to cover arbitrarily
complex cases.
[47] The required MC analysis of course requires com-

putational effort to set up a respective ensemble. The same
ensemble can be used for linearization of many data
dependencies. For EnKF-like methods, this ensemble is at

Figure 1. Principles of (top) local tangent (traditional
linearization) and (bottom) global best fit secant (best
unbiased linearization) for the univariate case comparing the
estimated distributions of a dependent variable from each
approach. Circles, support points of the tangent and the
secant; crosshairs, true mean values of s and y. For the local
tangent, the bias is identical to the difference between circle
position and crosshair position.
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the same time the initial unconditional ensemble to be
updated later on.
[48] From a signal processing perspective, the term

Qss
�1qsy in equation (6) represents a deconvolution. It can

be solved at impressive speed using FFT-based PCG solvers
[e.g., Chan and Ng, 1996], if Qss is stationary and s is
discretized on a regular grid. Fritz et al. [2009] extended
this class of solvers to intrinsic cases and allow for irregular
grids. Deconvolution amplifies noise, so one may be
concerned about noisy qsy from an insufficiently large
ensemble, leading to an inaccurate approximation of H. In
that case, one can perform the deconvolution combined with
geostatistically based noise-filtering [Nowak, 2005].
[49] The deconvolution can even be avoided entirely,

because H in its raw form seldom appears in common
applications. The actual required quantities are the follow-
ing (co)variances:

qsy � QssH
T ¼ ~qsy ð8Þ

s2
y � HQssH

T ¼ qysQ
�1=2
ss

� �
Q�1=2

ss qsy

� �
� ~s2

y : ð9Þ

[50] The first expression suggests to directly use the
Monte Carlo estimate ~qsy. The second equation requires
only a semideconvolution to evaluate HQssH

T. One may
still be concerned about a semideconvolution, or one may
deem the restriction to intrinsic cases (enforced by practi-
calities of the deconvolution problem) as inadequate. In
such cases, an inconsistent but reasonable approximation is
to set

HQssH
T ¼ ~s2

y ; ð10Þ

where ~sy
2 is the Monte Carlo approximation to the true

variance of y. Note that because of the inconsistency, this
does not lead to a zero error variance via equation (7).
[51] The results above suggest simply to use expected

values and covariances from Monte Carlo analysis. As
discussed earlier, it is common practice to do just so in
EnKF methods. In their context, however, this is a rather
practical choice to avoid costly evaluations of tangents, and
to retain higher-order terms in comparison to the original or
extended Kalman filters [e.g., Evensen, 2003]. There has
been no link to the fundamental concepts of unbiasedness
and minimum error variance of an implicit linearization.
The current study supports this choice with a new context
and a firm theoretical basis.
[52] Two different unbiasedness and minimum variance

properties are relevant in the current study. All Kalman
filters have the unbiased and minimum variance property in
estimation, if the model equations are strictly linear. The
later test cases will demonstrate that the unbiased minimum
variance property in linearization helps to stay close to the
unbiased minimum variance property in estimation even in
nonlinear cases.

3. Geostatistical Framework

[53] Within the context of stochastic hydrogeology, the
unknown parameters s are typically discretized values of log

conductivity Y(x) = ln K(x). These are modeled as a random
space function, defined by a geostatistical model [Diggle and
Ribeiro, 2007; Matheron, 1971]. For the sake of maximum
generality while keeping notation short, log conductivity is
here assumed to be intrinsic, generalized to uncertain rather
than unknown mean and trend coefficients.

3.1. Generalized Bayesian Intrinsic Model

[54] Consider the parameter vector sjb � N(Xb, Css), i.e.,
multi-Gaussian with mean vector Xb and covariance matrix
Css which is assumed to be known. X is an ns � p matrix
containing p deterministic trend functions and b is the
corresponding p � 1 vector of trend coefficients. In the
generalized intrinsic case, these coefficients are again
random variables, distributed b � N(b*, Cbb) with
expected value b* and covariance Cbb.
[55] While sjb � N(Xb, Css) holds for known values of

b, s for uncertain b follows the distribution s � N(Xb*,
Gss), where

Gss ¼ Qss þ XCbbX
T ð11Þ

is a generalized covariance matrix [Kitanidis, 1993]. The
generalization to Gaussian uncertain (rather than entirely
unknown) mean and trend coefficients goes back to
Kitanidis [1986] and has been refined for and applied in
geostatistical inversion by Nowak and Cirpka [2004]. The
notational advantage of generalized covariance matrices is
the formal identity of equations to the known-mean case,
i.e., the absence of symbols for estimating the trend
coefficients b.
3.2. Conditioning Conductivity Fields on Data

[56] Now, consider the ny � 1 vector y of measured state
variables at locations xm according to y = f(s) + e. Here, f(s)
is a process model and e � N(0, R) is a vector of
measurement errors with zero mean and covariance matrix
R. For known s, the measurements have the conditional
distribution yjs � N(f(s), R).
[57] Linearized error propagation yields the marginal

distribution of y to be N(�y = HXb*, Gyy), where

Gyy ¼ HGssH
T þ R ð12Þ

is the generalized covariance matrix of y. H is a linearized
representation of the process model that relates observed
state variables to conductivity. Without loss of generality,
the additive constant in the linearized representation is
omitted from notation. Direct measurements of conductivity
are included in this notation by setting the corresponding
row in H to all zeros with a single unit entry at the sampled
position [e.g., Fritz et al., 2009]. Including direct measure-
ments of parameter values is a standard procedure in
the hydrogeostatistical literature. In the original context of
the EnKF, this is rarely seen because information on
model parameters is not the primary focus. Any arbitrary
data type can be processed if a model function f(s) for the
underlying process is available. This includes, e.g.,
geophysical data.
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[58] Within linear(ized) approaches, the conditional dis-
tribution sjy is again multi-Gaussian with conditional mean
ŝ and covariance Gssjy:

ŝ ¼ Xb*þGsyG
�1
yy yo � �yð Þ

Gssjy ¼ Gss �GsyG
�1
yy Gys

Gsy ¼ GssH
T : ð13Þ

[59] The accuracy of linearization may be improved by
successive linearization about a current estimate [e.g.,
Kitanidis, 1995; Yeh et al., 1996], but this leaves the
multi-Gaussian assumption untouched. To the concern of
the current study, the zeroth-order approximation of �y via
HXb* and the first-order approximations of Gyy and Gsy

lead to a bias and nonminimal error in data interpretation.
Especially the interpretation of tracer data is affected, as
discussed in the introduction.

4. Quasi-Linear Kalman Ensemble Generator

4.1. Linear Kalman Ensemble Generator

[60] The previous sections presented the concept of best
unbiased ensemble linearization (EL) and summarized the
necessary notation for geostatistics and conditioning. The
upcoming section employs the EL concept to condition
random conductivity fields on flow and tracer data, leading
to a new method called the quasi-linear Kalman ensemble
generator (KEG). This set of physical quantities is chosen
for illustration, but the method applies to arbitrary sets of
random parameters and arbitrary data types.
[61] When using EL in the conditioning context, the

statistics required in equation (13) are extracted from a
sufficiently large ensemble as Monte Carlo estimates, ~Gyy,
~Gsy = ~Gys

T and ~�y. Adequate ensemble sizes (about 500) for a
closely related EnKF are discussed by Chen and Zhang
[2006]. The ensemble contains random fields su,i drawn
from p(s), their respective model outcomes yu,i = f(su,i), and
an ensemble of random measurement errors ei drawn from
p(e). The resulting method is called the KEG to distinguish
the new (parameter space) method from the (state space)
ensemble Kalman filter. The KEG conditions each uncondi-
tional realization su,i according to the common equation

sc;i ¼ su;i þ ~Gsy
~G
�1

yy yo � f su;i
� �

þ ei
� �

: ð14Þ

[62] Basic similarities and differences to the EnKF have
been discussed in section 1. The similarity lies in the formal
identity of equation (14) to the updating equation in the
EnKF. The major differences is that s denotes the parameter
space and follows a geostatistical model. Model states are
evaluated by rerunning the simulation with updated param-
eters, ensuring accurate uncertainty propagation for nonlin-
ear systems and the physicalness of model states.
[63] In the form denoted here, equation (14) is not a

sequential updating scheme (yet). For trivial extension
toward sequential application, the required ensemble statis-
tics are simply updated after each step. Time-dependent
problems require time-dependent models, and different data
sets may resemble snapshots of the system at different
times. Still, no explicit or implicit time direction is associ-

ated to equation (14) because the updated quantity s is the
time-invariant log conductivity field, not transient model
states. The management of time-dependent data will be
touched later.

4.2. Acceptance/Rejection Sampling

[64] The EL concept may be best and unbiased, but still
remains a linearization. The actual distribution p(y) is not
Gaussian, so the conditioning procedure will not be exact.
As a test for accurate conditioning on data, the ensemble
statistics of ri = yo � f(sc,i) should comply with the
distribution p(e). The following acceptance/rejection sam-
pling framework enforces this condition to increase the
accuracy of conditional statistics.
[65] 1. For each realization, compute the critical CDF

value Pri in the c2 distribution for ci
2 = ri

TR�1ri.
[66] 2. If Pri is smaller than a random number drawn

from the interval [0; 1], accept the ith realization as a
legitimate member of the conditional ensemble. For all
rejected realizations, repeatedly apply equation (14) until
acceptance.
[67] Most realization-based conditional simulation methods

(e.g., the pilot point method or sequential self-calibration)
allow for measurement error, but do not offer a rigorous
treatment of its statistics: they merely impose a convergence
threshold to the measurement-simulation mismatch, which
leads to conditional distributions of the mismatch with
uncontrolled shape.

4.3. Successive Ensemble Linearization With
Levenberg-Marquardt Regularization

[68] Successive linearization improves the performance of
linearized approaches. For geostatistical inversion, Carrera
and Glorioso [1991] concluded that cokriging-like techni-
ques should be performed iteratively. Following this
rationale, several iterative methods emerged, like the
quasi-linear geostatistical approach by Kitanidis [1995]
and the successive linear estimator by Yeh et al. [1996].
Their underlying optimization algorithms are based on the
well-known Gauss-Newton method.
[69] Dietrich and Newsam [1989] pointed out how an

artificially increased R added to equation (12) stabilizes the
geostatistical inverse problem while suffering a loss of
information. Nowak and Cirpka [2004] modified this idea
toward a geostatistically based Levenberg-Marquardt algo-
rithm: the added R is successively reduced to zero as the
algorithm converges. This keeps the benefit of regulariza-
tion while avoiding the loss of information.
[70] Within the current context, the principle of succes-

sive linearization and regularization leads to the following
quasi-linear approach.
[71] 1. Generate an unconditional ensemble as described

in section 4.1.
[72] 2. Choose a value R* > R for use in equation (14),

which leads to weaker conditioning and hence to smaller
step sizes.
[73] 3. Evaluate all other ensemble statistics needed for

equation (14).
[74] 4. Perform the above acceptance/rejection sampling

algorithm.
[75] 5. Decrease R* toward R.
[76] 6. Repeat steps 3 to 5 untilR* >R, or [optionally] until

the overall ensemble statistics of ri
TR�1ri are satisfactory.
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[77] This procedure improves the robustness for cases
with higher variability and for data types with more non-
linear relations y = f(s).

4.4. Sequential Conditioning

[78] Previous studies have shown improved efficiency
and accuracy by considering separate subsets of the overall
data within sequential updating schemes [e.g., Vargas-
Guzmán and Yeh, 2002]. For example, direct measurements
of parameters can be included accurately and without the
inverse framework in a first conditioning stage as in the
work by Hendricks Franssen and Kinzelbach [2008a].
[79] The KEG follows the same approach: in the first

stage, the unconditional ensemble is conditioned on all
available direct measurements. Indirect data are added in a
second step, using the quasi-linear setting. If desired, the
second step can be split into several more steps, where
indirect data could be added in their order of nonlinearity,
i.e., head measurements first, then measurements of draw-
down, and finally tracer data. With a smaller remaining
parameter covariance after the first step, the linearized
approach for indirect data has to hold only over smaller
variations of the parameter field in subsequent applications
of equation (14), will be more accurate, and hence will
require a lower number of quasi-linear iteration steps.
[80] For application to time-dependent systems, data

snapshots from different time steps may also be included
sequentially, as in the original EnKF framework. While
updating the snapshots sequentially, the parameters offer an
increasingly good representation of the system, so that later
snapshots are expected to require a lower number of quasi-
linear iteration steps.

5. Synthetic Test Case

[81] Toward an extensive test case, the KEG is imple-
mented in MATLAB, using standard Galerkin FEM for flow
and the streamline upwind Petrov-Galerkin FEM for trans-
port [Hughes, 1987; Fletcher, 1996]. The resulting
equations are solved using the UMFPACK solver [Davis,
2004]. For random field generation, the spectral method of
Dietrich and Newsam [1993] is implemented. The number
of realizations in the ensemble is set to 2000. This relatively
high number was chosen to obtain highly accurate reference
statistics in the test of two-point statistics. More on the
choice of ensemble size is addressed in section 7.
[82] For direct comparison, the same test case is evaluated

with the quasi-linear geostatistical approach (QLGA) by
Kitanidis [1995], stabilized by the geostatistically driven
Levenberg-Marquardt technique [Nowak and Cirpka,
2004], sped up with the FFT-based methods for error
propagation provided by Nowak et al. [2003], and equipped
with adjoint state sensitivity analysis [e.g., Townley and
Wilson, 1985; Sykes et al., 1985].
[83] The test case considers steady state groundwater

flow and advective-dispersive transport of a conservative
tracer in a depth-integrated confined aquifer. The domain is
sized 100 m �100 m, with Dirichlet head boundaries f = 1
and f = 0 on the west and east, impermeable boundaries in
the north and south. A pumping well for aquifer testing is
located at the domain center and pumps at 50% of the
domain’s total discharge. Drawdown Df is simulated at
steady state. A fixed-concentration plume from a tracer test

enters the west boundary with 20 m width and c0 = 1.
Concentration c is simulated separately, not affected by the
pumping test. Table 1 summarizes all relevant parameter
values.
[84] Synthetic data sets are generated from random con-

ductivity fields and their respective simulated heads, draw-
downs and concentrations. The isotropic exponential model
is assumed for the covariance of log conductivity, modified
by a microscale smoothing parameter [e.g., Kitanidis,
1997]. Each data set features 25 point-like sampling
locations of log conductivity, hydraulic head, drawdown
and tracer concentration, summing up to 100 measurements.
Measurement locations are placed randomly within the
inner 80% of the domain, and are identical for all data sets.
Measurement errors are assumed independent and Gaussian,
defined by a standard deviation for each data type. The
geostatistical parameters and measurement error levels are
included in Table 1.
[85] One synthetic case is provided in the left plots of

Figure 2, showing a realization of log conductivity
together with its simulated head, drawdown and concentra-
tion, and the measurement locations. The results for that
specific case are shown in Figures 2 and 3. The match
between the synthetic field and the conditional ensemble
average (Figure 2) and the standard deviation of the condi-
tional ensemble (Figure 3) look as expected, and will not be
discussed in much detail. The quality of results will be
assessed in the following section on the basis of more than
a trivial comparison for one single data set. The difference
in the results between the KEG and the QLGA is discussed
in section 8.

6. Assessment of Accuracy

[86] A single data set is insufficient for assessing the
geostatistical properties and their accuracy of a conditioning
method. For example, the synthetic data may display a
smaller variance than average because of its limited size.
The resulting log conductivity ensemble would then also
display a smaller variance (because it is calibrated to values

Table 1. Parameter Values Used for the Synthetic Test Case

Parameter Unit Value

Numerical Grid
Domain size [Lx, Ly] m [100, 100]
Grid spacing [Dx, Dy] m [1, 1]

Transport Parameters
Effective porosity ne - 0.35
Dispersivities [a‘, at] m [2.5, 0.25]
Diffusion coefficient Dm m2/s 10�9

Geostatistical Model for ln Ka

Geometric mean Kg m/s 10�5

Variance sY
2 - 1

Integral scale [lx, ly] m [10, 10]
Microscale smoothing d m 2.5

Measurement Error Standard Deviations
ln K sr,Y - 0.25
Head f sr,f m 0.02
Drawdown Dfh sr,Df m 0.01
Concentration c sr,c - 20%

aValues are exponential.
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Figure 2. One synthetic test case for the quasi-linear Kalman ensemble generator. (left). A synthetic log
conductivity field together with simulated head, drawdown, and tracer concentration. (middle) Ensemble
mean values from the quasi-linear Kalman ensemble generator. (right) Same as the middle plots but for
the quasi-linear geostatistical approach. Dots are the locations of measurements; contour lines are drawn
at identical levels.

W04431 NOWAK: QUASI-LINEAR KALMAN ENSEMBLE GENERATOR

9 of 17

W04431



Figure 3. Standard deviation of estimation for the synthetic test case shown in Figure 2. (left) Prior
standard deviations of log conductivity, head, drawdown, and tracer concentration. (middle) Standard
deviations in the conditional ensemble from the quasi-linear Kalman ensemble generator. (right) Same as
the middle plots but for the quasi-linear geostatistical approach. Dots are the locations of measurements;
contour lines are drawn at identical levels.

10 of 17

W04431 NOWAK: QUASI-LINEAR KALMAN ENSEMBLE GENERATOR W04431



close to the mean value) and pretend the existence of a filter
inbreeding problem. In order to overcome these effects, a
total of 200 random data sets are used. The KEG is applied
to each of them, and the desired accuracy measures are
evaluated from statistics across all cases.
[87] The properties of linear estimators are well

researched and rigorously defined and can be derived
analytically. Of course, any method should approach the
best unbiased linear estimator at the limit of linear depen-
dence between data and parameters. The KEG fulfills this
property, as follows directly from equation (14) at the limit
of an infinite ensemble size and for linear f(s). The depen-
dence of EnKF accuracy on the ensemble size has been
investigated by Chen and Zhang [2006]. Because of the
similarity in using ensemble statistics, an according
convergence analysis for the KEG is not repeated here.
[88] For the more general nonlinear case, fewer options

are available. A set of sensible and easy-to-check postula-
tions used in the current study is that nonlinear geostatistical
conditioning method (1) should not violate fundamental
principles of information processing, (2) should assimilate
any given data set while accurately accounting for its
information and uncertainty, and (3) should honor the
spatial structure of the random space function as prescribed
by the prior model. These three postulations will be dis-
cussed in the following three subsections.

6.1. Principles of Information Processing

[89] Consistency with the fundamental principles of in-
formation processing can be tested in many ways. Here, a
test based on the A measure of information in geostatistical
estimation (W. Nowak, Measures of parameter uncertainty
in geostatistical estimation and design, submitted to
Mathematical Geology, 2008) is used. A is the average of
all eigenvalues of Gssjy, and also the spatial average of the
estimation variance. For the test, evaluate the conditional
ensemble estimation variance

ŝ ¼ 1

nr

Xnr
i¼1

sci ð15Þ

s2
est ¼

1

nr � 1

Xnr
i¼1

sci � ŝð Þ ð16Þ

and assure that (1) the estimation variance is always equal
or smaller than the prior variance and that (2) its spatial
average A approaches zero at the limit of exhaustive
sampling with exact measurements.
[90] The estimation variance stayed smaller than the prior

variance of sY
2 = 1 in all but one in 200 cases. In the one

exceptional case, a small spatial peak reached a value of
1.01, which is regarded as insignificant. For the current
quantity and quality of data, A assumed an average value of
�A = 0.492 over all test cases, with a very small coefficient of
variation CVA = 0.051. This indicates a highly accurate
processing of information across all 200 synthetic data sets.
In a series of test cases not shown here, the asymptotic
approach A ! 0 for increasing data quantity and quality
was ensured.
[91] A more widespread and more visual test examines

scatterplots of the synthetic true field versus the conditional

ensemble mean [e.g., Chen and Zhang, 2006; Zhu and Yeh,
2005; Woodbury and Ulrych, 2000] and then computes
correlation coefficients. Nowak (submitted manuscript,
2008) showed that this intuitive approach is based on a
hidden but less rigorous version of the A measure, so it is
not pursued here.

6.2. Measurement-Simulation Mismatch

[92] The second postulation requires the normalized
mismatch

rc;i ¼ R1=2 yo � f sc;i
� �� �

ð17Þ

to honor the assumed distribution p(e) � N(0, I) of the
measurement error, normalized to a variance of unity. R1/2 is
an appropriate square root decomposition of R. This
postulation is explicitly enforced by the built-in acceptance/
rejection scheme, so additional tests are redundant.
[93] Figure 4 compares the ensemble statistics of the

measurement-simulation mismatch to the assumed distribu-
tion of measurement error. Each gray line is the normalized
distribution of measurement-simulation mismatch of a par-
ticular data point, averaged over 200 conditional ensembles
of 2000 realizations each. The resulting distributions should
match the assumed normal distribution, normalized to a
standard deviation of unity. The overall mean and two times
the standard deviation (the 95% confidence interval) are
indicated by the gray circles and cross marks, respectively.
[94] The overall mean and standard deviation displays

very accurate values for all four types of data. The histo-
grams of log conductivity, heads and drawdown show an
excellent fit, but some measurement locations of concentra-
tion fail to do so. The reason lies in the non-Gaussian
distribution of concentration. Bounded quantities cannot
assume arbitrary prescribed distributions p(e) if the
measured value is close to bounding values. Given the
boundary conditions of the test case, heads and concentra-
tions are bounded between zero and one, and drawdown is
nonpositive.
[95] Theoretically, concentration follows the beta distri-

bution [Fiorotto and Caroni, 2002; Caroni and Fiorotto,
2005] if measured in small support volumes, and
approaches normality for larger support volumes [Schwede
et al., 2008]. Similar distributions have been found for
hydraulic heads between two Dirichlet boundaries [Nowak
et al., 2008].
[96] In the test case, heads and drawdown appear unaf-

fected because the measurements are not placed close to the
boundaries. The locations of the concentration measure-
ments that produce the worst fit are those where measured
concentration is close to either zero or to one in most of the
200 synthetic cases. In conclusion, the data are assimilated
as accurate as possible.
[97] The shown accuracy for bounded variables is an

improvement over the original EnKF. Zhou et al. [2006,
Figure 1] tested the ability of EnKFs to handle bounded
state variables. Their conditional values exceeded the
physically admissible range, even if the mean value was
very accurate and statistical moments up to fourth order
were quite acceptable. In restart versions of the EnKF and in
the KEG, this could not happen because state variables are
always evaluated according to the model equations, and
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never directly updated. The acceptance/rejection sampling
further adds to the accuracy of conditional statistics.
[98] Unfortunately, Kalman filters and its derivates are

optimal only for multi-Gaussian distributions of all involved
variables. Further improvement might be possible via suit-
able transforms to render the data approximately univariate
Gaussian, which is a necessary but not sufficient condition

for multi-Gaussianity. A promising technique along these
lines is the Box-Cox transform for concentration data,
which includes the log transform as special case [Kitanidis
and Shen, 1996]. The degree of possible improvement in
conditional simulation should be a subject for further
investigation.

6.3. Fidelity Toward Spatial Statistics

[99] Even if a random field is large enough to be ergodic,
a data set of limited size (which is only a subset of the field)
is not ergodic, so each data sets leaves its nonergodic
fingerprint on the respective conditional ensemble. There-
fore, to check the third requirement, the only rigorous
option is to combine all conditional ensembles into one.
Only the combined ensemble can be asked to match the
prior distribution p(s). This follows from

Ey p sjyð Þ½ 	 ¼
Z

p sjyð Þp yð Þ dy

¼
Z

p s; yð Þdy ¼ p sð Þ: ð18Þ

[100] When testing only with a single data set, the
expected value over y is not considered. In the current case,
the overall combined ensemble has to exhibit the assumed
prior mean and the prior covariance Gss.
[101] The difference b between the spatial average of ŝ

and the prior mean ln Kg is an indication of filter bias. The
average value of b over all test cases is �b = 0.015,
corresponding to a 1.49% deviation from the true value of
Kg. Given the variance sY

2 = 1 and the standard deviation of
the filter bias sb

2 = 0.240, �b is not significantly different
from zero. Figure 5 (top) compares the flat prior mean of ln
K(x) with the conditional mean ln K(x) field, averaged over
all 200 cases. It resembles the flat prior mean with a low
degree of spatial trends or fluctuations. In conclusion, this
confirms the unbiasedness of the KEG.
[102] The case-averaged covariance function is compared to

the assumed covariancemodel in Figure 5 (bottom). The overall
structure has been preserved to a very high degree. Close
comparisonsof the contour lines reveal that theKEGintroduced
slightly smaller correlation over large distances, and a slightly
increased overall variance (i.e., the covariance for zero separa-
tiondistance) fromsY

2 = 1 to sY
2 = 1.019. Considering that sY

2

itself has a standard deviation between individual test cases
of 0.192, this deviation is statistically not significant and
could vanish at a higher number of test cases.

7. Computational Efficiency and Robustness

[103] The computational efficiency of EnKFs for large
problems is well established. Their well-known main advan-
tage lies in avoiding sensitivity analyses that require many
calls of the numerical model [e.g., Evensen, 2003; Chen and
Zhang, 2006], especially for large data sets. The same
beneficial properties apply to the new KEG. In the previous
section, 200 test cases were performed with 2,000
conditional realizations per test case (not counting the
initial generation of the unconditional ensemble). The
average computational cost in the test cases was 4,291
calls to the simulation code for the 2,000 conditional
realizations in each case. These computational costs are
significantly smaller than for alternative realization-based

Figure 4. Ensemble statistics of measurement-simulation
mismatch. Gray lines, distributions for each measurement
location, averaged over 200 conditional ensembles of 2000
realizations each. Black solid lines, assumed normal distribu-
tion ofmeasurement error. Black dashed lines, average over all
distributions of one data type. All distributions are normalized
by the respective standard deviation of measurement error.
Gray circles and crosses, overall mean and double standard
deviation for each data type.
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methods. For the same ensemble size, the pilot point
method would take 150,000 calls to obtain sensitivities for
each indirect measurement (represented in this example by
just one pilot point per measurement), plus additional calls
for its iterative procedure.
[104] For fairness in comparison, two additional points

should be mentioned. First, ensemble-based methods re-
quire a certain number of realizations in order to achieve
accurate corrections of its individual realizations, whereas
realization-based methods correct individual realizations. If
only a smaller ensemble size is required for a given
application (e.g., only 200 realizations), then the pilot point
method would only take in the order of 15,000 simulation
calls plus the iterative effort. Second, the 2,000 realizations
chosen in the current test case are a relatively high number
to exclude with certainty any effects of limited ensemble
size. Typical numbers for ensemble-based methods range
about 500 [e.g., Chen and Zhang, 2006; Hendricks
Franssen and Kinzelbach, 2008b].
[105] At only 2.15 calls to the simulation model per

average realization, the computational costs are amazingly
low. The coefficient of variation for computational costs
was 0.2538. The average number of quasi-linear iteration
steps was 2.165 with a CV of 0.2527. This is a striking
demonstration for the computational efficiency, and docu-
ments the robustness of the iterative procedure.
[106] A second aspect of computational efficiency is that

storage requirements of some methods may restrict the

freedom in choosing geostatistical models or the spatial
resolution of s [Zimmerman et al., 1998]. Traditional
linearized error propagation via equation (12) quickly
becomes cumbersome for large domains, up to the point
where explicit storage of Css exceeds the capability of
arrays of modern hard disk drives [Zimmerman, 1989;
Nowak et al., 2003]. When assuming stationarity or
intrinsicity (or certain simple cases of nonstationarity) in
conjunction with regular equispaced grids, FFT-based
methods for error propagation [Nowak et al., 2003; Cirpka
and Nowak, 2004] avoid this problem. Extensions to
irregular grids are offered by Fritz et al. [2009] and Li
and Cirpka [2006].
[107] More flexibility, free of any such assumptions, is

provided by the pilot point method of RamaRao et al.
[1995]. It can use any arbitrarily complex geostatistical
model, given an adequate field generator. The same
flexibility is offered by the KEG, when replacing the
deconvolution in equation (9) by the approximation in
equation (10). Given an adequate field generator, the huge
autocovariance matrix of the unknown parameters is
obsolete, allowing for larger problems and finer resolutions.

8. Comparison to the Quasi-Linear Geostatistical
Approach

[108] The QLGA is a classical representative of methods
that use Jacobian-based linearizations, implemented with

Figure 5. Conservation of spatial structure by the quasi-linear Kalman ensemble generator. (top)
Comparison of (left) assumed flat prior mean and ensemble means in the union of the 200 conditional
ensembles for (middle) the KEG and (right) the QLGA. (bottom) Comparison of (left) assumed
covariance model and covariance in the union of the 200 conditional ensembles for (middle) the KEG
and (right) the QLGA.
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adjoint state sensitivities in the current study. It is a well-
researched and efficient method. At first sight, its results
(Figures 2 and 3, right) may not seem to differ drastically
from the results of the KEG.
[109] A closer look reveals that it is affected by the

biasedness and nonminimal approximation error of Jacobi-
an-based linearizations that were discussed in the introduc-
tion. For example, the conditional mean of concentration by
the QLGA (Figure 2, bottom right) is less dispersive than
the corresponding synthetic field (see, for example, the
longer persistence of the inner isocontour lines), because
it is computed with local dispersivities on the smooth
conditional mean conductivity field. The conditional mean
of concentration has to be more dispersive than the synthetic
truth because of the remaining uncertainty within the
conditional ensemble. As discussed in depth by Nowak
and Cirpka [2006], the interpretation of tracer data with
local dispersivities on smooth estimated fields is a
discrepancy that inevitably leads to inaccurate data inter-
pretation, scale inconsistencies and convergence problems.
[110] The QLGA allows generating conditional realiza-

tions on the basis of the conditional covariance of the
estimated field. In the current study, this is done without
further iteration on the basis of the linearization about the
conditional mean. For each synthetic data set from the test
case, 2000 conditional realizations were generated on the
basis of this technique. The conditional standard deviation
for dependent variables (Figure 3, right) is evaluated from
such a conditional ensemble. The resulting histograms from
all 200 cases are shown in the right plots of Figure 4.
Apparent differences are a bias toward stronger drawdown,
a bias toward higher concentrations, and a worse histogram
fit for concentration data.
[111] For the QLGA, the overall filter bias b is negligible,

but the conditional mean field averaged across all 200 test
cases (Figure 5, top right) shows a pronounced spatial
pattern of estimation bias compared to the results of the
KEG. The case-averaged covariance function (Figure 5,
bottom right) shows that the QLGA has introduced a
significant increase of long-range correlation because of its
weaker accuracy in handling nonlinear data.
[112] The author expects the bias to be more pronounced

for weaker data sets, when the conditional covariance is
larger and the linearization has to hold over larger intervals.
Also, smaller dispersivities will further reduce the accuracy
of the QLGA with respect to concentration data, since the
discrepancy between ensemble dispersion and local disper-
sion increases with decreasing local dispersion.
[113] Thanks to the modified Levenberg-Marquardt

algorithm, the QLGA converged in an average of 3.95
quasi-linear iteration steps, and required 407 calls to the
simulation model on average. This is mostly for the adjoint
state sensitivity analysis in each iteration step, where
conductivity data require no simulation call, heads and
drawdown data require one, and concentration data require
two simulation calls each. Because of the inconsistency of
tracer data interpretation on smooth estimated fields, the
QLGA converged to estimates with mostly unacceptable
statistics of measurement-simulation mismatch.
[114] When using numerical differentiation instead of

adjoint state sensitivities, the computational costs of the
QLGA would have risen by a factor of 100, far above the

computational costs of the KEG. The disadvantage of
relying on adjoint state sensitivity analysis is that they
require a certain freedom of modifying simulation codes.
This is hardly possible for commercial software. The KEG
does not rely on adjoint states and so is more compatible
with arbitrary commercial simulation codes, while being
computationally much more efficient than the QLGA with
numerical differentiation. In summary, the computational
costs of the QLGA are below those of the KEG, but the
savings come at the price of four drawbacks: (1) bias and a
lower accuracy, (2) inconsistent interpretation of tracer data
on smooth estimated fields with local dispersivities, (3) an
extensive list of methodical add ons is required compared to
the lightweight implementation of the KEG, and (4) a lower
flexibility in the choice of commercial simulation software
due to the use of adjoint state sensitivities.

9. Summary and Conclusions

[115] This study has pursued and combined two inves-
tigations: (1) the concept of best unbiased ensemble linear-
ization and (2) its application to generate ensembles of log
conductivity conditional on head and tracer data.
[116] The concept of best unbiased ensemble linearization

for the stochastic groundwater flow and transport equation
(or any other stochastic partial differential equation) has
been derived. It may be called best and unbiased because
the error between exact function and linearized approxima-
tion is zero on average and minimal in the mean square
sense. Its key properties are as follows.
[117] 1. The best unbiased ensemble linearization is a best

fit secant to the original function over the entire population
rather than a tangent.
[118] 2. The unbiasedness condition requires the secant to

pass through the expected values of the dependent state
variable at the expected value of the parameters. This is
regardless of the slope.
[119] 3. The minimum error variance condition requires a

slope such that the linearized cross covariance between
parameters and modeled quantity meets their exact cross
covariance, resembling an effective average slope rather
than a traditional Jacobian matrix of model sensitivities.
[120] 4. Using a best unbiased ensemble linearization

implies to use empirical mean values, covariances and
variances from Monte Carlo analyses.
[121] Application of this principle to geostatistical condi-

tioning problems lead to the new quasi-linear Kalman
ensemble generator (KEG). The KEG is the transformation
of the ensemble Kalman filter (EnKF) idea to geostatistical
inverse problems. The EnKF is a state space method that
updates time-dependent model predictions in real-time
applications. The KEG, in contrast, is a parameter space
method that generates an ensemble of log conductivity
fields (and arbitrary additional uncertain parameters) con-
ditional to arbitrary data. State variables are updated
through simulation with updated parameters, which always
ensures the physicalness of all states and improves the
conditional statistics.
[122] The similarity between both methods is that they

use ensemble covariances instead of first-order approxima-
tions for their conditioning steps. This makes implicit use of
a best unbiased ensemble linearization. The derivation of
ensemble Kalman filters has not been aware of the unbi-
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asedness and minimum error variance property of its im-
plicit linearization. The idea to use ensemble means and
covariances has been supported with a new theoretical basis
in the current study. The resulting conditional ensembles
display a high accuracy of their desired statistics at intrigu-
ingly low computational costs.
[123] At the same time, known issues with solute disper-

sion in estimation problems are avoided. It is common to all
estimation methods that estimated conductivity fields are
inadequate for transport simulations with hydrodynamic
dispersion coefficients. Since EnKFs and the KEG are
conditional simulation tools rather than estimation tools,
they avoid this inconsistency.
[124] Similar to the two-step approach of Hendricks

Franssen and Kinzelbach [2008a], the KEG has been
equipped with a two-stage updating scheme that first uses
direct measurements of log conductivity. Indirect data with a
nonlinear relation to log conductivity are processed in a
separate second step. The current study improved the accuracy
of the second step by a quasi-linear iteration scheme,
combined with an acceptance/rejection sampling scheme.
[125] Further improvements may be achieved by suitable

transforms of non-Gaussian data (such as concentrations) to
almost-Gaussian forms. By ensuring at least univariate
normality, the optimality of Kalman filters and for multi-
Gaussian relations may be exploited to a larger extent. The
degree of possible improvement should be subject for
further investigations. The KEG is not meant to replace
Monte Carlo Markov chain methods such as the one by
Zanini and Kitanidis [2008]. Instead, it would be desirable
to combine these two methods in later developments.
[126] The accuracy, robustness and efficiency of the KEG

were positively assessed in a large-scale series of test cases.
200 synthetic data sets of log conductivity, hydraulic heads,
drawdown and tracer data were generated. Each data set was
used to condition an ensemble of 2,000 realizations, and the
statistics of performance were discussed. When using only
direct data, the KEG is a best unbiased simulator. When
including hydraulic heads, drawdown data and tracer data,
the accuracy of conditional simulations versus the measured
data values was highly satisfactory across all test cases. As
test for fidelity toward a prescribed geostatistical model, all
200 conditional ensembles were combined, and the overall
mean and covariance function assessed via variogram
analysis. The resulting covariance function did not differ
significantly from the prescribed covariance model used for
generation. Also, no significant filter bias or signs of filter
inbreeding could be found.
[127] The computational efficiency is extremely high. On

average over the 200 test cases, the KEG required only 2.15
calls to the simulation model per conditional realization, or
4,291 calls for conditioning an ensemble of 2000 realiza-
tions. The author expects that for sequential updating in
time-dependent systems, the number of iterations for later
data sets will decrease, because more information has
already been absorbed in the ensemble. For the same
ensemble size, the pilot point method would take about
150,000 calls (at one pilot point per indirect measurement),
but the ratios depend of course on the desired ensemble
sizes. Using ensemble statistics avoids storing or handling
the autocovariance matrix of log conductivity, which has

been a limitation to the allowable problem size of many
conditioning methods in the past.
[128] The same series of test cases was performed with the

quasi-linear geostatistical approach (QLGA) by Kitanidis
[1995] for direct comparison to Jacobian-based methods.
Only when equipped with an extensive list of methodical
upgrades, the QLGA is computationally more efficient than
the KEG. For example, the QLGA can do without adjoint
state sensitivities, but its computational effort would rise by
2 or more orders of magnitude, depending on the spatial
resolution of the conductivity field. Compared to the QLGA
and comparable Jacobian-based methods, the KEG over-
comes a list of drawbacks.
[129] 1. It is unbiased with minimal approximation error.
[130] 2. It avoids the inconsistent interpretation of tracer

data on smooth estimated fields.
[131] 3. Its implementation is easy and does not require an

extensive list of methodical add ons.
[132] 4. It offers a maximum flexibility in the choice of

commercial simulation software due to its nonintrusive
Monte Carlo–like character, e.g., by avoiding adjoint state
sensitivities.
[133] In combination, the suggested KEG method offers

an accuracy that compares to expensive realization-based
methods at a computational efficiency almost as low as
quasi-linear estimation methods. The final conclusion is that
the KEG (just like the ensemble Kalman filter) can be used
with confidence for geostatistical applications. Further
promising fields of application include geostatistical opti-
mal design of site exploration W. Nowak and F. P. J. de
Barros (Bayesian geostatistical design: Optimal site inves-
tigation when the geostatistial model is uncertain, manu-
script in preparation, 2009) successfully apply the KEG for
that purpose in a parallel study. At the same time, they
extend the KEG to estimate covariance parameters from the
data, similar to the quasi-linear geostatistical approach by
Kitanidis [1995].

Appendix A: Unbiasedness

[134] The error of linearization is defined by

e ¼ f sð Þ � y0 �H s� s0ð Þ: ðA1Þ

Inserting into the unbiasedness condition (equation (2))
leads to

E f sð Þ � y0 �H s� s0ð Þ½ 	 ¼ �y� y0 �H �s� s0ð Þ ¼ 0; ðA2Þ

where �y = E[f(s)] and �s = E[s]. Equation (A2) requires that,
regardless of H, the condition ~f (�s) = �y has to be fulfilled.
Without loss of generality, one may choose

s0 ¼ �s ðA3Þ

y0 ¼ �y: ðA4Þ

Appendix B: Minimum Squared Error

[135] Together with equations (4) and (5), the lineariza-
tion and its error become

~f sð Þ ¼ �yþH s� �sð Þ ðB1Þ
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e ¼ f sð Þ � �y� H s� �sð Þ: ðB2Þ

For notational convenience, set f(s) � �y = y0 and s � �s = s0.
Then

E e2
� �

¼ E y0 �Hs0ð Þ y0 �Hs0ð ÞT
h i

¼ s2
y � qysH

T �Hqsy þHQssH
T ; ðB3Þ

where sy
2 = E[(y0)2] is the variance of y, qys = qsy

T = E[y0(s0)]T

is the cross covariance between y and s, and Qss = E[(s �
�s)(s � �s)T] is the autocovariance of s. Identical to the
minimum estimation variance in kriging, condition (3) leads
to normal equations:

E e2
� �

! min ) @

@H
E e2
� �

¼ 0; ðB4Þ

which is in this case

0 ¼ @

@H
s2
y � qysH

T �Hqsy þHQssH
T

h i

¼ �2qsy þ 2QssH
T : ðB5Þ

This results in

QssH
T ¼ qsy

()H ¼ Q�1
ss qsy

� �T

: ðB6Þ

Inserting into equation (B3) yields

E e2
� �

¼ s2
y �Hqsy ¼ s2

y �HQHT : ðB7Þ

[136] Acknowledgments. This study has been funded by the Deut-
sche Forschungsgemeinschaft (DFG) under grant NO 805/1-1. The author
is indebted to Yoram Rubin for hosting and discussion and would like to
thank Zepu Zhang for discussions about statistical topics and Felipe de
Barros and Erika Bäcker for editorial comments. The constructive review
comments of H.-J. Hendricks Franssen and two other reviewers helped to
strengthen this manuscript.

References
Alcolea, A., J. Carrera, and A. Medina (2006), Pilot points method incorporat-
ing prior information for solving the groundwater flow inverse problem,Adv.
Water Res., 29, 1678–1689.

Burgers, G., P. J. V. Leeuwen, and G. Evensen (1998), Analysis scheme in
the ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724.
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