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[11 Spontaneous, counter-current imbibition (SI) is a key mechanism in many multiphase
flow processes, such as cleanup of nonaqueous phase liquids (NAPLs), bioremediation, or
CO, storage. For interpreting and upscaling laboratory SI data, and modeling and prediction
purposes, scaling groups are an essential tool. The question of how to formulate a general
scaling group has been debated for over 90 years. Here we propose the first scaling group
that incorporates the influence of all parameters on SI that are present in the two-phase
Darcy model. The group is derived rigorously from the only known exact analytical
solution for spontaneous imbibition by relating the cumulative water phase imbibed to the
normalized pore volume. We show the validity of the group by applying it to 42 published
SI studies for water-oil and water-air experiments, for a wide range of viscosity ratios,
different materials, different initial water saturations, and different length-scales. In all
cases, water was the wetting phase. Our group serves as a ‘“master equation” whose
generality allows the rigorous prediction of the validity of a large number of specialized
scaling groups proposed during the last 90 years. Furthermore, our results give strong
evidence that the Darcy model is suitable for describing SI, and that including dynamic
effects in capillary pressure is not necessary for counter-current SI, contrary to what has
been hypothesized. Two key applications of the group are discussed: First, the group can
serve as the long sought after general transfer rate for imbibition used in dual-porosity
models. Second, it is the so far missing proportionality constant in imbibition-germination

models for plant seeds.
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1. Introduction

[2] Spontaneous imbibition (SI) (Figure 1) occurs if a
wetting fluid (like water or brine) spontaneously enters a
porous medium, and displaces a nonwetting fluid (like oil,
air, nonaqueous phase liquids (NAPL), or CO,), driven by
capillary forces only. It is a process that is of crucial impor-
tance for many processes ranging from groundwater con-
tamination by NAPL transport [Brusseau, 1992], CO,
storage by capillary trapping [Bickle, 2009; Juanes et al.,
2006; Pentland et al., 2011], steam migration in high-
enthalpy geothermal systems [Li and Horne, 2009], the me-
chanical stability and distribution of gas-hydrate bearing
sediments [Clennell et al., 1999; Anderson et al., 2009],
trapping of CO, in coal seems and generation of methane
[Chaturvedi et al., 2009], improved oil recovery from the
world’s largest remaining oil reserves [Morrow and Mason,
2001], evaluating the wettability of a rock [Jadhunandan
and Morrow, 1991 ; Marmur, 2003] and even many other
processes not linked with hydrogeological applications at
all [Alava et al., 2004 ; Finch-Savage et al., 2005].

[3] The advancing displacement front of the wetting phase
during SI shows some “roughness” due heterogeneities at
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the pore scale. While it is well known from statistical physics
[Alava et al., 2004] that the averaged position of the rough
displacement front and the recovery R of the displaced fluid
scales with /7 in time, as predicted by the Lucas-Washburn
equation [Lucas, 1918; Washburn, 1921], the properties of
this scaling are still unknown.

[4] Scaling groups are used to characterize the influence
of key parameters on SI other than time, and are essential
in any context where SI needs to be understood and
described. For example, they are a central tool for interpre-
tation of laboratory data and upscaling them to field condi-
tions [Morrow and Mason, 2001], they lie at the heart of
modeling and simulating multiphase flow in different sce-
narios like flow in heterogeneous, fractured aquifers and
reservoirs [Barenblatt et al., 1960; Warren and Root, 1963 ;
Di Donato and Blunt, 2004], water uptake in plant seeds
[Finch-Savage et al., 2005], or are needed as a starting point
for evaluating the feasibility of water injection in high-
enthalpy geothermal reservoirs [Li and Horne, 2009]. De-
spite this immense practical importance, however, and
although the research on SI and scaling groups spans more
than 90 years [Lucas, 1918; Washburn, 1921], not even
apparently simple questions—Ilike that of the influence of
viscosity ratios on Sl—have been resolved satisfactorily
because of the strong nonlinearities in the capillary-hydraulic
properties [Morrow and Mason, 2001; Marmur, 2003;
Mason et al., 2010].

[s] Scaling groups for SI in realistic porous media
(Table 1) have been derived mainly in two ways. Either a
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Figure 1.

Distance

Schematic representation of countercurrent SI. The water phase is imbibed from the left and

the oil phase moves into opposite direction. If an analytical solution for the saturation profile S,,(x, ¢) is
known, then the analytical expression for the cumulative water imbibed Q,,(¢) (shaded region) can be

0.(0]?

related to the effective pore volume ¢ - L. to obtain a scaling group as t; = [—} .

curve was fitted against a large body of experimental data
and a single parameter was varied to analyze its influence,
or simplifying assumptions on the form of the hydraulic
diffusivity function in Darcy’s equation [Gummerson et al.,
1979; McWhorter and Sunada, 1990; Schmid et al., 2011]
(Table 2) were employed from which new specialized ana-
lytical solutions were derived that then served as basis for
introducing specific scaling groups. Both approaches yield
groups whose applicability is strongly restricted. On the
one hand, a general theoretical understanding on why a cer-
tain group works and when it would fail is left unanswered.
On the other hand, the incorporation of three key aspects
into scaling groups remains open, which play a central role
in many practical applications.

o L.

[6] First, the mobility of the fluids is governed by the rel-
ative permeability of one phase to the other and is weighted
by their respective viscosities. It is unclear [Morrow and
Mason, 2001; Mason et al., 2010] how this weighting
should depend on the viscosity ratio such that in the limit
of an inviscid nonwetting phase the Lucas-Washburn equa-
tion is obtained [Lucas, 1918 ; Washburn, 1921], and how a
single relative permeability value should be chosen such
that it characterizes the strong nonlinear dependence on the
wetting phase volume fraction over the whole saturation
range (Figure 2).

[7]1 Second, if the porous medium initially contains a
wetting phase, competition occurs between the low capil-
lary pressure force and the high phase mobilities (Figure 2)

Table 1. Lucas-Washburn Scaling and Some of the Recently Defined 7, *

Author

Dimensionless Time

Proportionality Constant

Lucas [1918]; Washburn [1921]

Rapoport [1955], Mattax and Kyte [1962]

Ma et al. [1997]

Zhou et al. [2002]

Tavassoli et al. [2005a]

Li and Horne [2006]
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“Characteristic values are denoted by (). It is now apparent, how previous authors (unknowingly) have derived successively better expressions for 7,
by giving approximations to the integral in equation (3). A specific #; will give a good scaling if ¢ is the same for the different data sets, and thus ¢ can be

used to predict the validity of a special scaling group (Figure 4).
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Table 2. Previously Derived Analytical Solutions for Two-Phase Flow With Capillary Effects®

Author and Year

Assumption

Fokas and Yortsos [1982], Yortsos and Fokas [1983], Philip [1960],
Chen [1988], Ruth and Arthur [2011], Wu and Pan [2003]
Kashchiev and Firoozabadi [2002]

Li et al. [2003]

Barenblatt et al. [1990], Zimmerman and Bodvarsson [1989], Tavassoli et al.

[2005b], Tavassoli et al. [2005a], Mirzaei-Paiaman et al. [2011]
Handy [1960], Chen et al. [1995], Sanchez Bujanos et al. [1998],
Rangel-German and Kovscek [2002]
Ruth et al. [2007]

Cil and Reis [1996], Reis and Cil [1993]

Rasmussen and Civan [1998], Civan and Rasmussen [2001]
Zimmerman and Bodvarsson [1991]

Specific functional forms for &, ko, pe

38,
Steady-state, i.e., =0

ot
Piston-like displacement, i.e., F(x,#) =

qw(x*, 1)
qW(O'r t)
Approximate solution for the weak form

Existence of an equivalent constant capillary diffusion coefficient

Self-similarity behaves according to to specific functional form
. . "/ S
Linear capillary pressure, i.e., e _ Pe(So)
dx L
Asymptotic approximation of laplace transformation for S,

Piecewise linear S, profile

“To resolve the influence of capillarity, all of them need to employ additional, nonessential assumptions that restrict their applicability. On contrary,
it can be shown [Schmid et al., 2011] that the solution given in the work of McWhorter and Sunada [1990] is general. It can be viewed as the Buckley-
Leverett analog for countercurrent SI (see section 2.2). This makes the derivation of further specific solutions unnecessary.

[Parrish and Leopold, 1977; Morrow and Mason, 2001].
So far, this effect has only been characterized for cases
where the ratio of nonwetting to wetting phase viscosity is
close to one, and if the capillary pressure and the wetting
behavior can be characterized by a single value [Li and
Horne, 2006] which is unlikely in realistic porous media
[Valvatne and Blunt, 2004] (Figure 2).

[8] Third, capillary pressure curves and the phase mobi-
lities not only depend on the fluids, but also on the geome-
try of the pore structure, and thus are different for different
materials [Valvatne and Blunt, 2004] (Figure 2). Up to
now, however, scaling groups try to characterize the influ-
ence of capillary pressure and wetting by some single value
that is representative of the entire porous medium [7avassoli
et al., 2005a; Li and Horne, 2006 ; Marmur, 2003].

[9] In addition to these three practical issues, the very
theoretical framework for describing SI has been the center
of debate in physics and engineering. It has been proposed
that the classical Darcy approach [Bear, 1972] is unsuitable
for SI and should be replaced by a model that incorporates
dynamic changes in capillary pressure (for recent over-
views, see Hall [2007], Bottero et al. [2011], Goel and
O’Carroll [2011], Manthey et al. [2008]).

[10] In the following, for the first time all three practical
aspects will be accounted for. We also discuss the validity
of the classical Darcy description for describing SI.

[11] The remainder of our paper is structured as follows:
First, the problem formulation and an exact analytical solu-
tion for countercurrent imbibition are introduced. Until
recently [Schmid et al., 2011], the derivations of analytical
solutions for capillary dominated two-phase flow has been
the matter of intensive research (Table 2). We rigorously
derive our scaling group from the only known general ana-
Iytical solution for imbibition [Schmid et al., 2011;
McWhorter and Sunada, 1990], which can be viewed as the
capillary counterpart to the Buckley-Leverett solution for
viscous dominated flow [Buckley and Leverett, 1942]. No
assumptions other than those needed for Darcys model are
made. No fitting parameters are introduced. In section 3.1
we show the validity of our scaling group by correlating 42
published imbibition studies that vary all key parameters,
namely material and capillary-hydraulic properties, viscosity

ratios, initial water saturation, and characteristic lengths
(Table 3). We then show that our group is a “master equa-
tion” for scaling SI, which contains many of the previously
defined groups as special cases (Table 1), and demonstrate
how the generality of our approach allows the prediction of
the validity range of specialized groups (Table 1). This is the
first predictive theory for evaluating scaling groups. We also
will give strong evidence that the classical Darcy description
for SI is appropriate. The paper is finished with some
conclusions.

2. Model Formulation, Exact Solution and the
Universal Scaling Group

2.1.

[12] Conservation of mass for two immiscible, incom-
pressible phases at constant temperature through a homoge-
neous, one-dimensional, rigid, horizontal, i.e., gravity is
absent, porous medium leads to the following equation
[Bear, 1972]

Problem Formulation

S 1o}
Y— — (g, =1 1
ot o (qw)s Sw + S , M

¢

where S,, is the water phase saturation, S, is the nonaqu-
eous phase saturation, and ¢ is the porosity. We assume
that the volume flux of the wetting and nonwetting phase,
q,, and ¢, respectively, can be described by the extended
Darcy equation [Muskat, 1949], which describes the vol-
ume flux due to a gradient in the phase pressures p,, and

Pnw:

ki kn
qw = —K— prn qnw = —-K— Vin- (2)

oy Hn

Here K is the absolute permeability, p,, is the viscosity of
the wetting phase, u, is the viscosity of the nonwetting
phase, and k,,, and k,,, are the relative permeability of the
nonwetting phase and the wetting phase, respectively. The
relative permeabilities describe the impairment of the one
fluid phase by the other. We furthermore assume that the
two-phase pressures p,, and p,, are related through the

30f13



W03507

(a)

SCHMID AND GEIGER: SCALING OF SPONTANEOUS IMBIBITION

W03507

0.6 ]

0.5

0.4

x5 03

0.2

0.1

10 2

)H

104

*
w

)Ken(S

10~ 6

*
w

krw(S

10- 8

10710

10-12 L L I I

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1
s

Figure 2. Capillary-hydraulic properties versus saturation. Capillary-hydraulic properties of Berea
sandstone and a synthetic porous material (blue) [Valvatne and Blunt, 2004] from pore-scale predictions,
a history match that assumes a Darcy model for sandstone (cyan) [Bourbiaux and Kalaydjian, 1990],
and a non-Darcy-model [Schembre and Kovscek, 2006] for diatomite (red). (a) Dimensionless J function.
(b) Relative permeability for the wetting (—) and nonwetting phase (——).

capillary pressure p. = pn,w — pw [Bear, 1972]. Combining
equations (1) and (2), we obtain [Bear, 1972]

3)

S, dfudS, O as,,
T TN +§{D( w) Bx}

where g; = q,, + ¢ny. One can rewrite g,, as an expression
of the total volume flux [McWhorter and Sunada, 1990]

08y,
g =/(S.)a: = DS G- @

[13] We consider the boundary and initial conditions

Sw(x = 0, l) = Sic

(%)
Sw(x,t =0) =8, (00, 1) = Sp.

[14] The functions f'(S,,) and D(S,,) are defined as

kb - kinf dpe
Vo= (g Y = . ®
£(5.) (1 + Wﬂ) e
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Table 3. Parameter Sets Referenced in the Text and Their Corresponding References

Sample® L. [cm] k [mD] o [—] Iy [Pa - 5] Iy [Pa - 5] o [mN/m] So [—1] A [m/+/s]
Zhang et al. [1996]
AAO1 0.5364 510.8 0.218 9.67 x 107* 0.03782 50.62 0 7.307 x 107¢
AA02 0.8029 498.5 0.219 9.67 x 107* 0.03782 50.62 0 7.287 x 107°
AA03 0.9723 519.8 0.222 9.67 x 107* 0.03782 50.62 0 7.44 x 107°
AA04 1.089 521.7 0.224 9.67 x 107* 0.03782 50.62 0 7.45 % 1070
AA05 1.1837 505.5 0.215 9.67 x 107* 0.03782 50.62 0 7.21 x 107°
AA06 1.3059 501.6 0.218 9.67 x 107* 0.03782 50.62 0 7.27 x 107
BC21 6.092 481.9 0.213 9.67 x 107* 0.00398 4738 0 1.25x 1073
BC13 4.998 503.6 0.209 9.67 x 107* 0.03782 4738 0 7.05 x 107°
BC22 5.687 496.8 0.208 9.67 x 107* 0.1563 51.77 0 4.46 x 107°
BD15 1.3506 523.8 0.214 9.67 x 107* 0.00398 4738 0 1.28 x 1073
BD14 1.3506 518.9 0.218 9.67 x 107* 0.03782 50.62 0 7.34 x 107°
BDI8 1.3506 509.7 0.218 9.67 x 107* 0.1563 51.77 0 4.65 % 107°
BA3 13.87 907.1 0.214 9.67 x 107* 0.03782 50.62 0 4.65 x 107
Hamon and Vidal [1986]
A10 9.7 4000 0.472 0.001 0.0115 49.0 0.189 3.36 x 1073
A10-20 19.7 3430 0.453 0.001 0.0115 49.0 0.187 3.1 x107°
A10-30 30.0 3830 0.453 0.001 0.0115 49.0 0.151 3.18 x 1073
A10-40 40.0 3550 0.478 0.001 0.0115 49.0 0.172 333 %1073
A10-85 84.7 3000 0.478 0.001 0.0115 49.0 0.164 3.13x 1073
A10-VI-20 19.8 3200 0.456 0.001 0.0115 49.0 0.164 3.17x 1073
A10-X-20 20.0 2300 0.458 0.001 0.0115 49.0 0.132 2.92 x 1073
Zhou et al. [2002]
Z-2 9.5 6.1 0.72 0.001 8.4 x 1074 51.4 0 3.41 %1073
Z-3 9.5 7.9 0.77 0.001 2.5%x 1072 457 0 1.35x 1073
Z-4 9.5 2.5 0.78 0.001 8.4 x 107 51.4 0 2.72 x 1073
Z-5 9.5 6.0 0.68 0.001 8.4 x 1074 51.4 0 2.86 x 1073
Bourbiaux and Kalaydjian [1990]
GVB-3 29.0 124.0 0.233 0.0012 0.0015 35.0 0.4 1.24 x 1073
GVB-4 14.5 118.0 0.233 0.0012 0.0015 35.0 0.411 9.67 x 107°
Fischer et al. [2006]
EV6-22 7.18 109.2 0.18 0.495 0.0039 28.9 0 4.29 x 1077
EV6-18 7.62 140.0 0.181 0.001 0.063 51.3 0 3.74 x 107°
EV6-21 7.7 107.3 0.187 0.0278 0.0039 34.3 0 1.86 x 107°
EV6-13 7.75 113.2 0.187 0.001 0.0039 50.5 0 7.48 x 107°
EV6-14 7.66 127.2 0.178 0.0041 0.0039 412 0 4.45x107°
EV6-20 7.52 132.9 0.181 0.0041 0.0633 41.7 0 2.45 %107
EV6-16 7.78 136.8 0.181 0.0278 0.0633 34.8 0 1.36 x 107°
EV6-23 7.36 132.1 0.179 0.0977 0.0039 31.3 0 9.92 x 1077
EV6-15 7.3 107.0 0.183 0.4946 0.0633 29.8 0 3.93 x 1077
EV6-17 7.54 128.1 0.19 0.0977 0.0633 32.1 0 8.59 x 1077
Babadagli and Hatiboglu [2007]
F-11 10.16 500.0 0.21 0.001 1.8 x 1073 72.9 0 2.75x 1073
F-12 15.24 500.0 0.21 0.001 1.8 x 1073 72.9 0 2.81 x 1073
F-14 10.16 500.0 0.21 0.001 1.8 x107° 72.9 0 1.95x 1073
F-16 5.08 500.0 0.21 0.001 1.8 x 1073 72.9 0 229 x 1073
F-16 10.16 500.0 0.21 0.001 1.8 x 1073 72.9 0 1.60 x 1073
F-18 15.24 500.0 0.21 0.001 1.8 x 1073 72.9 0 2.07 x 1073

“The porous material in the work of Zhang et al. [1996] Bourbiaux and Kalaydjian [1990], Fischer et al. [2006], Babadagli and Hatiboglu [2007] was
a Berea sandstone, the materials reported in the work of Hamon and Vidal [1986] were performed on a synthetic porous material, and Zhou et al. [2002]
used a diatomite rock was used. For all the experiments, the wetting-phase was water. For all experiments reported for the first five groups of samples, the
nonwetting phase was oil; for the ones reported in the work of Babadagli and Hatiboglu [2007] the nonwetting phase was air.

Here, fis the fractional flow function without the influence
of capillary pressure, and D(S),) can be thought of as a cap-
illary dispersion coefficient of the fluid phases.

[15] In countercurrent SI, the two phases flow into oppo-
site directions, i.e., ¢, = —¢qny (Figure 1), which reduces
equation (3) to the nonlinear dispersion equation

25,
o o

aS“} . ™)

{D(Sw) =

In the following we will only investigate countercurrent SI,
and for simplicity denote it as SI. Solutions to equations of
the dispersion type show self-similar behavior according to
S, o< x\/1, i.e., S,, can be written in terms of the self-similar

variable A = xt/2 as S,, = S,,(\) [McWhorter and Sunada,
1990]. There has been a considerable debate in the literature
(for recent reviews see, e.g., Alava et al. [2004], Cai and Yu
[2011], Hall [2007]) as to when the /7 scaling first proposed
by Lucas [1918] and Washburn [1921] for describing coun-
tercurrent imbibition holds. Published experimental data
strongly suggests that deviations from this scaling in time
only occur for cases where either the porous medium was not
rigid (e.g., imbibition into paper, textiles, or rock samples
with clay inclusions) [4lava et al., 2004; Cai and Yu, 2011;
Hall, 2007], or gravity and evaporation played a role, which
leads to pinning of the wetting fronts (e.g., [Alava et al.,
2004 ; Delker et al., 1996; Dube et al., 2001]). Thus, assum-
ing a 1/ scaling is reasonable.
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[16] Closely related to this, is the assumption made in
equations (1)—(7), where we assumed that k,,,, k,, and p,. are
unique functions of saturation. Since history effects only
occur during a whole imbibition-drainage cycle [Valvatne
and Blunt, 2004; Bear, 1972], this assumption is justified.
Even for the case without hysteresis, however, several
authors (for recent overviews see e.g., [Goel and O’Carroll,
2011; Bottero et al., 2011; Manthey et al., 2008]) proposed
that the relation p.(S)) = pnmw — pw is not sufficient, and
should additionally take the rate of change in saturation
0S,,/0t into account. Allowing for this additional depend-
ence leads to a pseudoparabolic partial differential equation
instead of equation (7) whose solutions would also deviate
from the /¢ dependence [Spayd and Shearer, 2011 ; Hulshof
and King, 1998] the more important dynamic effects become.
As we will discuss in section 3.3, our results strongly indicate
that the inclusion of dynamic capillary effects for SI at the
core scale is unnecessary.

2.2. [Exact Analytical Solution for Si and the Definition
of a Universal Scaling Group

[17] If an analytical solution to equation (7) is known, a
general scaling group can immediately be derived from
these analytical expressions (Figure 1). In section 2.2 we
therefore shortly review known analytical solutions for cap-
illary dominated two-phase flow, and describe an exact ana-
lytical solution to equation (7) together with (5). The exact
solution is solely based on the assumptions made in section
2.1. It can be viewed [Schmid et al., 2011] as the capillary
analog to the Buckley-Leverett solution for viscous domi-
nated flow [Buckley and Leverett, 1942].

1
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[18] While an analytical solution to equation (3) for uni-
directional, viscous dominated flow has long been known
[Buckley and Leverett, 1942], the counterpart for capillary-
dominated flow, equation (7), has been missing, and the
derivation of solutions for capillary dominated two-phase
flow stayed to be the matter of ongoing intensive research
over the last decades (Table 2). The various solutions
obtained in the last decade fall into two categories: In the
first category, additional assumptions on equation (7) are
made, for example a specific functional forms of D(S,,)
(Table 2). In the second category [McWhorter and Sunada,
1990], no additional assumptions on the physics or D(S),)
are made. Instead, an additional boundary condition is
imposed that specifies the inflow as g, (x = 0,7) = 4t~'/2
where A4 is a parameter that cannot be chosen freely, but
depends on the characteristics of the fluid-rock system
according to [McWhorter and Sunada, 1990]

0[5 Sy = S)D(S,)

A2
2y FS)

Sy, ®)

and is related to the cumulative water imbibed (Figure 1)
by

00 = [ 4u(0.00t = 240" ©)

F(S,) is the fractional flow function for countercurrent
SI, i.e., it can be viewed as the capillary counterpart to
f(S,,) employed in the Buckley-Leverett solution [Buckley

0.9

0.8}

0.7}

0.6

0.5+

0.4}

Fractional Flow [—]

0.3

0.2

0.1 -7,

Figure 3. Fractional flow functions f(——) without capillarity and its capillary counterpart ' (—) ver-
sus saturation. The three cases are for pore-scale predicted [ Valvatne and Blunt, 2004] capillary pressure
and relative permeability functions for Berea sandstone and a synthetic porous material (blue) and pa-
rameter set AAOI, a history match that assumes a Darcy model for sandstone (cyan) [Bourbiaux and
Kalaydjian, 1990] and parameter set GVB-3, and a non-Darcy-model [Schembre and Kovscek, 2006] for
diatomite (red) and parameter set Z-2. The parameter sets are listed in Table 3, and the capillary pressure
and relative permeability functions are shown in Figure 2.
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and Leverett, 1942] (Figure 3), and is given by the nonlin-
ear equation

(10)

Together with 4 and its derivative F’, the analytical
solution for equation (7) with (5) and the condition on
gw(0,1) can then be written as [McWhorter and Sunada,
1990]

24

*(Sus ) :gF%sW)t‘”:Q%’)F’(sW). an

The inflow condition ¢, (0,7) = Ar'/?> is the one

McWhorter and Sunada [1990] and subsequent authors

worked with, so that at first the solution (11) seems like

just another specific one. However, it can easily be shown
ds,

[Schmid et al., 2011] that A = —D(Sp) d/\ A = 0. Thus, 4

a8,
is exactly such that ¢,,(0,) = —D(Sp) 8—W |x = 0. This fol-
x

lows from equation (4)

as,, ds,, oA
W(x=0,8) = —D(Sp) =¥ = —D(S) X\ =022
qw(x=0,1) (So) Ee (So) d)\‘ Oax
s (12)
— N =012 = 41712
D(Sy) ) |A=0¢ A7,

Consequently, 4 does not describe forced imbibition, but
rather is such that the inflow ¢,,(0,¢) occurs spontaneously
into the porous medium because of the saturation gradients
at the boundary and the resulting gradients in capillary pres-
sure only. Thus, the boundary condition on ¢,(0,¢) is
redundant, and equation (11) describes the standard situa-
tion found in the laboratory. Any further derivations of ana-
lytical solutions (Table 2) for the countercurrent case seem
unnecessary [Schmid et al., 2011].

[19] Equation (11) can be used to introduce a scaling
group that incorporates all the information present in the
two-phase Darcy equation. To derive a scaling group from
equation (11), we first normalize x by the characteristic
length L. through x/L, where [Ma et al., 1997]

(13)

V, is the bulk volume of the matrix, 4; the area open to
imbibition with respect to the ith direction, and /4, is the
distance that the imbibition front travels from the imbibi-
tion face to the no-flow boundary. L. thus compensates for
different experimental boundary conditions, i.e., for which
sides of a rock sample are sealed in the experiment, and
which are open to flow. L. also has the physical interpreta-
tion of quantifying the length a wetting front can travel
without meeting a boundary or another imbibition front
[Ma et al., 1997]. While the question of how to incorporate
the influence of viscosity ratios, wettability information,
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and so forth into scaling groups remains open, the correct
incorporation of different experimental boundary condi-
tions with the help of L. has been confirmed [Ma et al.,
1997; Zhang et al., 1996].

[20] Although the solutions have been derived for an infi-
nite medium according to the initial condition (5), the x pro-
file for any time 0 < ¢t < oo has a finite extend (Figure 1).
Thus, the solution is valid in a finite matrix block as long as
the wetting front has not reached the end of the block and
has not interferred with other wetting fronts invading from
other areas 4;. The time ¢* when the solutions stop to be
valid in a finite matrix block of characteristic length L. can
hence be obtained from setting x(S,,;, #*) = L. which yields

Lo¢ :|2. (14)

"= [ZAF’(S,-)

For any 0 < ¢ < t* the profiles are given by (11), and Q,, is
given by (9). In Figure 4 we show the analytical solution
for Q,, versus the dimensionless time defined below for the
data set where the sample-specific capillary-hydraulic prop-
erties are known (violet squares in Figure 4, data set GVB-
3 in Table 3). For early times, the analytical prediction is in
good agreement with the data, but for late times it fails to
predict the slow down in recovery. This is because for
t > t*, the end of the block or another wetting front influen-
ces the saturation profile, and equations (11) and (9) are no
longer valid.

[21] We now use that O,,(¢) can be calculated explicitly
by equation (9), and define a scaling group based on the cu-
mulative wetting phase imbibed at any given ¢ and the nor-
malized pore volume in 1-D, ¢ - L. (Figure 1)

C[ou®]?  [247%
X0 T,

(15)

Thus, #, rigorously incorporates all the parameters present
in the two-phase Darcy formulation, and 7, can be thought
of as a characteristic time that quantifies both the influence
of the capillary-hydraulic properties and the physical
dimensions. We note, that this approach is fundamentally
different from dimensionless groups that try to predict pa-
rameters like S, from dimensionless groups [e.g., Anton
and Hilfer, 1999]. We next show the validity of #; by corre-
lating 42 published experiments, and comparing #; to the
often used group by Ma et al. [1997]. Also, t, can be used
as a theoretical tool to assess the validity of a conventional
Darcy description of SI. The good correlation obtained in
Figure 4 shows that ¢, is the general scaling group for SI,
and forms the so far missing center piece for upscaling,
modeling and simulating diverse systems, where SI plays a
role. We then show how ¢, is central for two key applica-
tions, namely, fracture flow modeling and imbibition-ger-
mination modeling in plant seeds.

3. Results
3.1.

[22] To demonstrate the validity of the proposed scaling
group equation (15), we correlated the results of 42 pub-

lished SI experiments with ¢, (Figure 4). In the experiments
the recovery R of the nonwetting phase was measured over

Validity of the Universal Scaling Group
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Figure 4. Recovery of the displaced fluid phase versus time. (a) Time is scaled according to the scaling
group proposed by [Ma et al., 1997] (Table 1). But the scaling does not result in the collapse of the data
onto a single curve. The scaling group can only give a good correlation if the proportionality constant ¢
(Table 1) is similar for the different data sets which is not the case here. (b) Scaling of the experimental
0. (1)

(z) .

2
data with our proposed nondimensionless time ¢; = {—L] . The data falls onto a curve with little scat-

ter, independent of the material and/or fluid characteristics. This indicates that the Darcy model is suita-
ble for characterizing SI. The analytical solution is valid as long as the dimensionless time satisfies
tg < t; = 7.t*. To correlate the behavior for the whole time range, an exponential model [Aronofsky
et al., 1958] is used.

W03507

time, and we correlated the physical time with 7, The ex-
perimental data sets were chosen such that the three central
open aspects of scaling groups—a wide range of viscosity
ratios with the special case of u, tending toward zero, the
presence of an initial wetting phase, and different capillary-
hydraulic properties—are covered. The experiments were

performed on three different porous materials, a synthetic
porous medium, Berea sandstone, and diatomite (Figure 2),
a wide range of nonwetting phase to wetting phase viscos-
ity ratios (0.008 < p,../p,, < 64), initial water content
(0% < Sy < 40%), characteristic length-scales (0.54 cm <
L. <40cm), and water potential (18% <1 — Sy — Sy,
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< 70%, where S, is the residual saturation of the nonwetting
phase). The wetting phase was water and the nonwetting
phase oil or air. Table 3 lists all experimental conditions.

[23] We note that while the experiments considered here
are for different capillary-hydraulic properties, they all
show strongly water-wet behavior, i.e., p. > 0 over the
whole saturation range (Figure 2). The analytical solution
given in equation (11) has been derived for boundary con-
ditions, that are not suitable for treating mixed-wet sys-
tems, i.e., for systems where p. < 0 for some S,, < 1 — S,
[Morrow and Mason, 2001]. How to modify the analytical
solution, equation (2), for the mixed-wet case is currently
investigated.

[24] For comparison, we also correlated the data with
one of the most commonly used scaling groups (Figure 4);
the improvement is significant and immediately apparent.
Equation (15) reduces the maximal horizontal scatter (i.e.,
the one for a fixed recovery rate) from a factor of greater
than 100 down to approximately 5, and the maximal verti-
cal scatter (i.e., the one for a fixed ¢,) from approximately
0.8 to 0.3. This is a remarkably good result given the
widely different experimental conditions and thus experi-
mental noise.

[25] To further improve the scaling, one should use the
capillary-hydraulic properties for the specific sample when
calculating ¢,. Most data sets available in the literature only
report SI measurements or (k,, k) relationships, or p.
curves. In order to calculate #; we therefore assumed that
the (K, kim, pe) sets measured for a certain rock type are
representative for a given material, see section 3.3. It is
also interesting to note, that the data in Figure 4 scatters
around the curve given by the analytical solution that has
been calculated for data where the sample-specific capil-
lary-hydraulic properties are known. It is not clear, whether
this is true only for particular data sets, or shows that the
analytical solution is a master curve for early times on
which all data would collapse if better predictions for the
capillary-hydraulic properties were known. One would
have to calculate the analytical prediction for more data
sets where the sample specific properties are known. As we
explained, however, complete data sets are rare.

3.2. Prediction of the Validity of Specialized Groups

[26] The Lucas-Washburn correlation together with
some of the previously defined scaling groups are listed in
Table 1. Previous scaling groups are related to our scaling
group through a proportionality factor c. Since our group is
the general one, explicit expressions for ¢ can be derived. It
is now apparent that previous authors (unknowingly)
derived successively better approximations to the integral
in equation (8), making the proportionality constant ¢
increasingly simple. Many of the previously derived #, can
be obtained from simple back-of-the-envelope calculations
as special cases of equation (15).

[27] Equation (15) can also be used to derive new scaling
groups that are tailored for a specific SI system by using an
approximation for A4 that is appropriate for that specific
case. The ability of such a special #; to correlate a set of
experiments depends on the similarity of ¢ for the individ-
ual data sets, and thus allows for a rigorous prediction of
their validity and a judgment as to which parameters are
negligible. This property can be used to derive the validity
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of some of the phenomenologically derived groups like that
of [Ma et al., 1997] (Table 1, Figure 4). The scaling group
in Figure 4 can only give a good correlation if the propor-
tionality constant ¢ (Table 1) is similar for the different
data sets. This is the case for some of the SI experiments on
sandstone (blue asterisk in Figure 4) and the synthetic ma-
terial (blue plus in Figure 4) from which Ma et al. [1997]
derived the correlation phenomenologically. Here, the vis-
cosity ratio is approximately one, the initial fluid content is
similar and the capillary hydraulic properties were the
same. These conditions result in similar functional form of
F, similar integral boundaries, and the same integrand for
¢, respectively. Depending on which assumption is vio-
lated, five subgroups different from the (blue asterisk and
plus)-curve emerge: The subgroup for (1) different S, dif-
ferent capillary-hydraulic properties (diatomite with (2)
high and (3) low p,,,/u,), (4) sandstone with strongly
varying ./, and (5) sandstone containing gas, i.e., a
nonwetting phase with neglectable p,,,.

3.3. Do We Need Dynamic Effects in p. to Model Si?

[28] While the main part of this paper is dedicated to
derive the first scaling group that rigorously includes all the
information given in the standard Darcy formulation, the
validity of #, for such a wide range of data sets also has the-
oretical implications: It strongly indicates that a functional
relationship for p. which additionally includes dynamic
effects is not necessary for describing SI at the core scale.

[29] In the foregoing analysis, it was assumed that p,. is a
unique function of S,, only. Recently, the dependence of p,.
on S, only has been questioned by several authors (for
recent overviews see, e.g., Goel and O’Carroll [2011], Bot-
tero et al. [2011], Manthey et al. [2008]), and it has been
proposed that an additional dependence on 7 -38,,/0t
should be included, where 7 is a proportionality factor that
possibly depends on material characteristics, the fluid satu-
rations, and the length scale. Some authors ([Barenblatt
et al., 2003; Le Guen and Kovscek, 2006]; for a recent
overview see Hall [2007]) argue that nonequlibrium effects
are especially important for the case of countercurrent SI
due to the filling process of the pores by the wetting fluid.
Several models have been proposed to incorporate this
dynamic effect. For example Hassanizadeh and Gray
[1990] and Kalaydjian [1992] consider the linearized form

aS,,
T
Obviously, 7 determines the importance of the dynamic
effects, and while it is known that 7 can vary over several
orders of magnitude [Manthey et al., 2008], the functional
dependence of 7, and when/if dynamic effects have to be
considered, remains unclear. Thus, recent work has tried to
shed light on the exact dependence of 7, to resolve the in
part conflicting results for different models, and provide the
often missing experimental confirmation for the theoretical
considerations [Goel and O’Carroll, 2011]. In this context,
the scaling group #, can be used to measure the validity of
the standard formulation for p. for describing SI. If
dynamic effects are not negligible, this has two consequen-
ces for the scaling with ¢,

[30] First, the incorporation of the saturation change
makes equation (7) pseudoparabolic whose solutions would

Po —Pw —Dc = T(Sw) (16)
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deviate from the /¢ dependence [Spayd and Shearer, 2011;
Hulshof and King, 1998] the more important dynamic effects
become. Consequently, the /¢ given through #; as such
should fail. As we have outlined in section 2.1, the experi-
mental evidence for a /7 scaling—as long as the assumptions
of a rigid, homogeneous porous medium, negligible gravity,
and no evaporation are valid—is overwhelming. What is
more important, however, is the fact that the data sets we
chose vary all the key parameters. If dynamic effects played
any role, one would expect that at least one data set signifi-
cantly diverges from the 1/# scaling. We do not observe this.

[31] Second, if 7 really depends on material properties as
has been suggested, then the wide parameter variation of
the data sets we use should also lead to a wider horizontal
spread in Figure 4. As the scaling with ;. has shown,
failing to account for relevant parameters results in the
emergence of different subgroups for the different data
sets. While the maximal horizontal scatter for ¢, (Figure 4)
is still around 5, the reported values for 7 vary several
orders of magnitude [Manthey et al., 2008]. Thus, if
dynamic effects matter for SI at the core scale, one should
obtain a significantly worse horizontal spread. We also note
here, that although we speak of length scales typical for the
core scale, we chose data sets where L. varies by almost an
order of magnitude (Table 3). Thus, if 7 depended on the
length scales as has been suggested [Bottero et al., 2011],
this also should result in a wider horizontal spread.

[32] To rigorously test the second part, the method used
for calculating the capillary-hydraulic properties in 4 must
not presume the validity of the standard Darcy equation. It
is common practice [Gummerson et al., 1979], to obtain
Kiw, ke, and p. from solving an inverse problem that
assumes the validity of the standard Darcy equation. Obvi-
ously, if all the capillary-hydraulic relationships in the sam-
ple data set were obtained this way, then ¢, defined in
equation (2) would give an excellent correlation, since it is
based on an exact solution of Darcy’s equation, and the
constitutive relations would have been determined to fit the
data set, possibly hiding the missing of 7. The question
whether the standard Darcy model without dynamic p.. rela-
tions model is applicable for capillary flow would thus be
bypassed. For the experiments performed on Berea sand-
stone and the synthetic porous medium, we therefore use
pore-scale predictions of the relative permeabilities and the
capillary pressure [Valvatne and Blunt, 2004] (Figure 2),
rather than modeling (k;, ki, p.) through inverse simula-
tion of experimental data.

[33] For the synthetic material, only £, and k,, have
been measured. However, the curves closely resemble that
for the sandstone, which indicates that the two materials
have a similar pore structure. Therefore the pore-scale pre-
dictions made for the sandstone sample were used. For the
water-air experiments on sandstone, the measured and
pore-scale predicted k., and k,,, were similar to that of the
water-oil system [Valvatne and Blunt, 2004]. Hence, we
used the same (ky, km, pe) set as for the water-oil system.
To account for effects of K and surface tensions o, we used
a Leverett J scaling [Bear, 1972]

pe = 0\/% (S3)s

(17
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where S¥ = (S, — Swr)/(1 — Sor — Swr) is the normalized
saturation, and S,,. is the residual water phase. We note
again, that we used the same (%, k,,,,J) set for a certain ma-
terial, rather than direct measurements for the specific sam-
ple. To further reduce the scatter, sample specific relations
should be used. For comparison with the pore-scale predicted
relations, the capillary-hydraulic properties obtained from a
standard Darcy and a history match that includes a dynamic
p. were used for some of the sandstone experiments and the
diatomite experiments, respectively. For the general scaling
ts, the data sets collapses onto a curve with little scatter
(Figure 4) showing that the behavior is well characterized by
t;. Since #; contains all the information present in the Darcy
model, and its validity has not been assumed to calculate the
capillary-hydraulic properties in A, this strongly indicates
that the Darcy model is suitable for characterizing and mod-
eling SI at the core scale. It is important to point out, that for
viscous or gravity dominated flow the rate of change in satu-
ration would be higher, and therefore the influence of none-
quilibrium effects might not be negligible any more.

3.4. Applications of the Universal Scaling Group

[34] In addition to the theoretical insight #; yields as to
whether Darcy’s model is applicable, in an SI application it
is often desirable to describe the influence of certain param-
eters under certain conditions to optimize the system. If the
assumptions for Darcy’s equation hold, our scaling group
provides a simple, yet rigorous, starting point for optimiz-
ing the modeling of any SI system, and strongly reduces
the need for lengthy SI laboratory experiments. We give
two very different examples, one from modeling fracture
flow, the other one from plant science.

[35] Our first application are dual-porosity models where
scaling groups build the center piece. Dual-porosity models
describe the fluid exchange between a high-permeability or
mobile region and a low-permeability, immobile region.
The models are often used as field-scale representations of
fractured reservoirs and aquifers, by separating the subsur-
face model into stagnant, low-permeability regions (the
rock matrix blocks) and high-permeability regions (the
fracture network). A general form for the fluid transfer T
between the fracture matrix—or more generally mobile-
immobile—regions that fully accounts for heterogeneities
in wettabilities and phase mobilities has been a long-stand-
ing question [Barenblatt et al., 1960; Warren and Root,
1963]. To predict the shape of the correlated data over the
whole time range, the analytical solutions for x(S,,, ) and
O, (t) presented in section 2.2 cannot be used since they
are only valid as long as ¢ < ¢*. Thus, instead of predicting
the s shape of the correlated data (Figure 4), they instead
would predict that Q,, increases indefinitely. Therefore, to
fit the data we instead use an exponential model
R =1— e [Aronofsky et al., 1958] with a ~ 70. Since
the transfer 7 between fracture and matrix satisfies
T=¢® it follows that T(R) = agrc(1 —R). Further-
more, as A4 contains all the information about the capillary-
hydraulic properties and the initial fluid content, but is in-
dependent of L., it shows the influence of the porous struc-
ture and fluid characteristics on SI. For sandstone with
water as the wetting phase and oil as the nonwetting phase
(t,/ 1ty = 39,8,; = 0), we found 4 ~7x10%m/\/s,
while for diatomite (with p,/p,, = 25,S,; = 0) we found
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A~ 1.5x%x10"m/ /s, ie., the fluxes Q,(¢) differ by an
order of magnitude. This shows that geological heterogene-
ity present in the subsurface can give rise to widely differ-
ent time scales, independent of different length scales or
fluid viscosities. The coefficient 4 can be used to rigorously
capture this behavior through a multirate model [Di Donato
et al., 2007; Haggerty and Gorelick, 1995].

[36] The second example considers imbibition damage
during water uptake in porous plant seeds. The transient
behavior of the SI process is crucial for the field emergence
of commercial seeds, and determining favorable conditions
for SI with the help of coupled imbibition-germination
models is of great practical interest [Finch-Savage et al.,
2005]. In imbibition-germination models, the water content
in a seed is estimated from an imbibition model. The so-
obtained value for the water content is then used to calcu-
late the germination time, i.e., the time until the seed starts
growing. For these models, the product 3 = a¢7, is an
explicit expression for the proportionality constant used in
coupled imbibition-germination models [Finch-Savage et al.,
2005]. Contrary to the phenomenologically derived constant
however, § can be used for example to predict how the seed-
imbibition depends on L. and thus on seed size without the
need to perform the lengthy and difficult laboratory experi-
ments on plant seeds that up to now have been necessary.

4. Conclusions and Outlook

[37] Capturing the influence of key parameters in SI
through scaling groups is central for many applications,
and the question how to formulate a general group has been
open for over 90 years. We derived the first universal scal-
ing group for SI for water-wet rocks that incorporates all
the information present in the two-phase Darcy model. Our
scaling group was derived rigorously from an exact solu-
tion to Darcy’s equation for spontaneous imbibition (Table
2), without the introduction of any fitting parameters by
relating the cumulative water phase imbibed to the normal-
ized pore volume. The new scaling group is a “master
equation” for scaling groups, and contains many of the pre-
viously derived scaling groups as special cases (Table 1).
We demonstrated how the generality of our approach
allows the prediction of the validity range of specialized
groups. We showed the validity of our scaling group by cor-
relating 42 published imbibition studies for water-wet rocks
and different materials, a wide range of viscosity ratios, ini-
tial water content and characteristic length scales (Table 3).
The correlated data falls onto one curve (Figure 1). This
strongly indicates that the standard Darcy model is suitable
for describing SI, contrary to what recently has been
hypothesized. To further improve the scaling, we suggest
that the capillary-hydraulic properties for the specific sam-
ple for calculating ¢, should be used, rather than using one
set for any sample of a given rock type. For early times, the
data in Figure 4 scatters around the curve given by the ana-
lytical solution. It is not clear whether this is true only for
particular data sets, or shows that the analytical solution is a
master curve all data would collapse on for early times if
better predictions for the capillary-hydraulic properties were
available. This should be further investigated with data sets
where the measurements and the sample specific properties
are available. Our results are applicable to any situation
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where SI plays a role and where gravity can be ignored. We
provided two key examples where our results can be used.
First, we demonstrated how based on #, the first fluid trans-
fer function can be obtained that rigorously captures all the
capillary-hydraulic properties in dual-porosity models for
fracture flow, and we showed how the constant 4 is a mea-
sure for the subsurface heterogeneity that exists due to dif-
ferences in pore structure. As a second example, we showed
how germination models for plant seeds can easily account
for seed size and other key parameters, thus eliminating the
necessity of lengthy laboratory experiments.
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