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[1] We derive a set of semianalytical solutions for the movement of solutes in immiscible
two-phase flow. Our solutions are new in two ways: First, we fully account for the effects of
capillary and viscous forces on the transport for arbitrary capillary-hydraulic properties.
Second, we fully take hydrodynamic dispersion for the variable two-phase flow field into
account. The understanding of immiscible two-phase flow and the simultaneous miscible
displacement and mixing of components within a phase is important for many applications,
including the location of nonaqueous phase liquids in the subsurface, the design of
contaminant cleanup procedures, the sequestration of carbon dioxide, and enhanced oil-
recovery techniques. For purely advective transport we combine a known exact solution for
the description of immiscible two-phase flow with the method of characteristics for the
advective transport equations to obtain solutions that describe cocurrent flow and
countercurrent spontaneous imbibition and advective transport in one dimension. We show
that for both cases the solute front can be located graphically by a modified Welge tangent.
For the advective-dispersive solute transport, we derive approximate analytical solutions by
the method of singular perturbation expansion. On the basis of this, we obtain analytical
expressions for the growth of the dispersive zone for the case with and without the influence
of capillary pressure. We show that for the case of spontaneous countercurrent imbibition the
order of magnitude of the growth rate is far smaller than that for the viscous limit. We give
some illustrative examples and compare the analytical expressions with numerical reference
solutions.
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1. Introduction
[2] The movement of solutes within two-phase systems

is important in many environmental and engineering appli-
cations because in almost all cases each fluid phase consists
of different components rather than just one. Consequently,
both the unsteady flow of the two phases and miscible dis-
placement within each phase occur at the same time. Dis-
placement processes of this kind take place, for example, if
water is pumped into a geological formation or aquifer con-
taminated with nonaqueous phase liquids (NAPL) and the
ionic composition of the connate water is different from
that of the injected water. In this scenario, both for the pur-
pose of bioremediation and the cleanup of NAPL and
enhanced oil recovery, surfactants and polymers are dis-
solved in the injected aqueous phase to mobilize the NAPL
[West and Harwell, 1992; Khan et al., 1996; Sorbie, 1991].
Here the appropriate design of an efficient chemical flood
crucially depends upon the brine composition since the
interfacial activity, phase behavior, and mobility control of
the chemical flood depend as much on the concentration of

the chemicals as they depend on the composition and
mixing behavior of the ionic environment itself [Lake and
Helfferich, 1977]. Similarly, for the design of aquifer reme-
diation schemes, a vital step is to identify the location and
distribution of the NAPL. To this end, tracer tests can be
performed where a range of both partitioning and nonparti-
tioning solutes are injected into the subsurface and recov-
ered down gradient at the extraction wells [Datta-Gupta et
al., 2002]. Another example is carbon sequestration. In
recent years, a growing awareness of the hazardous conse-
quences of anthropogenic greenhouse gases has been seen,
and one helpful mitigation method seems to be the seques-
tration of carbon dioxide in the subsurface, i.e., the reaction
of carbon dioxide molecules (CO2) with mineral grains
[Javadpour, 2009; Xu et al., 2006]. In this case, CO2 is dis-
solved in the water phase, and the mixing with the brine
triggers a number of aqueous reactions that lead to the CO2
being trapped by the minerals. If water is pumped into a
hydrocarbon reservoir in order to produce oil, the two aque-
ous solutions mix while replacing the oil, and the otherwise
inert brine components react. In many reservoirs, this leads
to the precipitation of minerals, such as barium sulfate
(BaSO4), and formation of scale [Sorbie and Mackay,
2000; Mackay, 2003] that can hinder production. In other
scenarios, different ionic compositions have been shown to
enhance oil recovery if the injected brine has a salinity
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different from that of the connate brine [Zhang and Mor-
row, 2007; Austad and Standnes, 2003; Hiorth et al.,
2010], and a good understanding of the transport of the dif-
ferent compositions within the two phases due to the inter-
play of dispersion and viscous and capillary forces builds
the fundament for appropriate upscaling of transport and for
determining its field efficiency [Stoll et al., 2008; Stephen
et al., 2001]. In all of these cases, a proper understanding of
miscible displacement and dispersive mixing is fundamental
to properly assess the amount of reactive solutes involved
in chemical reactions [see, e.g., Emmanuel and Berkowitz,
2005; De Simoni et al., 2005, 2007; Cirpka, 2002; Dentz et
al., 2011]. Although the effects of dispersion and even spa-
tial heterogeneity on miscible displacement and mixing for
single-phase flow are increasingly well understood and a
significant body of literature exists [see, e.g., Werth et al.,
2006; Rahman et al., 2005; Bolster et al., 2010; Paster and
Dagan, 2008; Willingham et al., 2008], investigations for
two-phase systems so far only focus on the spreading of the
phases themselves [Neuweiler et al., 2003; Cvetkovic and
Dagan, 1996; Langlo and Espedal, 1994; Panfilow and
Floriat, 2004]. This is surprising given the practical impor-
tance of simultaneous flow and transport in two-phase sys-
tems, but it can be explained with the complexity of the
governing equations where capillary, viscous, and disper-
sive terms are coupled in a highly nonlinear way.

[3] Clearly, for gaining a full understanding of all the
mechanisms and effects involved, numerical simulations are
important, and in recent years, there has been substantial
progress in the development of numerical methods [see,
e.g., Blunt et al., 1996; Geiger et al., 2004; Huber and Hel-
mig, 1999; Reichenberger et al., 2006; Hoteit and Firooza-
badi, 2005; Lunati and Jenny, 2006]. However, the
development of numerical models requires verification and
validation as to which new analytical solutions contribute an
important part. Also, analytical solutions allow a deeper
insight into the structure of a problem and, thus, as to which
parameters control processes and often act as a building
block for numerical methods [e.g., Lie and Juanes, 2005;
Blunt et al., 1996]. Finally, constitutive relationships, such
as relative permeabilities, are normally gained from core
flood experiments where numerical simulations are matched
with flow rates. However, interpretation of experimental
data would be faster and more reliable if the forward prob-
lem was solved analytically [Juanes, 2003]. Our solutions
provide the framework for the common situation of two-
phase core floods, where both flow rates and breakthrough
curves of tracers are available and where all physical mech-
anisms, i.e., viscous and capillary forces and hydrodynamic
dispersion, are considered.

[4] The outline of this paper is as follows: In section 2,
we introduce the mathematical model and basic notation
and give a short overview of existing solutions for immisci-
ble two-phase flow without transport. In section 3, we solve
the advection problem exactly by two different methods:
On the basis of a known integral solution for two-phase
flow, we first combine a variable transformation with the
physical notion for which in the dispersion-free limit, the
solutes can be written as functions of their carrying fluid
only; second, we use the method of characteristics. We
show that if the boundary and initial conditions of the flow
problem satisfy the McWhorter and Sunada problem

[McWhorter and Sunada, 1990], the solution to the transport
equation can be represented by a modified Welge tangent
[Welge, 1952]. In section 4, we use a perturbation expansion
to derive analytical expressions for hydrodynamic disper-
sion for the case where the dispersion coefficient is small
compared to the characteristic length of the system. On the
basis of these equations, we are able to obtain an analytical
expression for the growth rate of the dispersive mixing
zone. These solutions are the first known analytical expres-
sions for hydrodynamic dispersions in two-phase flow. In
section 4, we compare the obtained solutions against the nu-
merical reference solution for the cases of cocurrent and
countercurrent imbibition and for the capillary-free limit,
the Buckley-Leverett problem [Buckley and Leverett, 1942],
and then finish with some conclusions.

2. Preliminaries
2.1. Problem Formulation and Assumptions

[5] We consider immiscible, incompressible, isothermal
two-phase flow through a homogeneous, horizontal, one-
dimensional porous medium where the fluid phases addi-
tionally transport components. Material balance for the two
phases leads to the equations [Bear, 1972]

’
@Sw

@t
¼ � @

@x
qwð Þ ð1Þ

Sn þ Sw ¼ 1; ð2Þ

where Sw is the wetting phase saturation, Sn is the nonwet-
ting phase saturation, and ’ is the porosity, which is
assumed to be constant throughout the whole domain. Fur-
thermore, we assume that the volume flux of the wetting
and the nonwetting phases, qw and qnw, can be described by
the multiphase extension of Darcy’s equation [Muskat,
1949], which describes the volume flux because of a gradi-
ent in the phase pressures pw and pnw :

qw ¼ �K
kw

�w
rpw;

qnw ¼ �K
knw

�nw
rpnw:

ð3Þ

[6] Here K is the absolute permeability, �w is the viscos-
ity of the wetting phase, �nw is the viscosity of the nonwet-
ting phase, and knw ¼ knw(Sw) and kw ¼ kw(Sw) are the
relative permeability of the nonwetting and wetting fluids,
respectively, which describe the impairment of the one
fluid phase by the other. The two-phase pressures pw and
pnw are related through the capillary pressure pc ¼ pnw �
pw. Combining the definition of capillary pressure with
equations (1) and (2), one can rewrite qw as an expression
of the total volume flux qt ¼ qnw þ qw, which yields

qw ¼ f ðSwÞqt � D
@Sw

@x
: ð4Þ

[7] Here D can be thought of as a capillary dispersion
coefficient for the fluid phases, and together with f, it
describes the capillary-hydraulic properties of the fluid-
porous medium system and is defined through
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f ðSwÞ ¼ 1þ knw�w

kw�nw

� ��1

;

DðSwÞ ¼ �K
knwf
�nw

dPc

dSw
:

ð5Þ

[8] We consider components Cj, j ¼ 1, . . . , n and �k ; k ¼
1, . . . , m that are transported in the wetting phase and the
nonwetting phase, respectively. In the following, we assume
that (1) they do not alter the porous medium (e.g., through
chemical reactions), (2) they do not change the flow param-
eters, (3) they do not partition into the other phase, (4) the
solute mass flux due to hydrodynamic dispersion within a
phase is described by a Fickian model, and (5) density
effects can be ignored. The continuity equation can then be
written as [Acs et al., 1985; Gerritsen and Durlofsky, 2005]

’
@ðSwCjÞ
@t

¼ � @

@x
ðqw � CjÞ þ

@

@x
’SwDH ; �

@Cj

@x

� �
ð6Þ

’
@ðSn�kÞ
@t

¼ � @

@x
ðqn � �kÞ þ

@

@x
’SnDH ; �

@�n

@x

� �
: ð7Þ

[9] As stated, the components are assumed to not change
the flow field. If chemical flooding with surfactants, poly-
mers, foams, etc., is considered, the constitutive relationships
depend on both saturation and component concentration. For
this case, analytical solutions can be derived if both capillar-
ity and hydrodynamic dispersion are ignored. This leads to a
system of hyperbolic conservation laws, and the method of
characteristics can be used to derive analytical solutions
[e.g., Pope, 1980; Johansen and Winther, 1988; Juanes and
Blunt, 2006; LaForce and Johns, 2005; Seto and Orr,
2009]. As explained in section 1, our primary interest is the
mixing of the inert components (Figure 1). We hence assume
that the capillary-hydraulic properties are functions of satura-
tion only.

[10] For the solutes in the water phase, equation (6)
assumes that the volume fraction of the components is small
compared to that of the wetting phase, which, for most prac-
tical applications, such as different ion-compositions, is an
excellent approximation [Pope, 1980]. The solutes in the
nonwetting phase can consume any arbitrary fraction of the
nonwetting phase volume [Lie and Juanes, 2005]. The DH

is the hydrodynamic dispersion coefficient and for the one-
dimensional case becomes [Bear, 1972]

DH ; � ¼ �l; �
q�
’
þ Dmol; � 2 n; wf g ð8Þ

where �l; � is the coefficient of hydrodynamic dispersion
and accounts for effects of the flow field and Dmol is the
effective molecular diffusion coefficient. In the analysis that
follows, we will assume that j ¼ 1, but the entire analysis
immediately carries over to the case where more than one
component is present. Similarly, we mainly will focus on
the case where the nonwetting phase has a homogeneous
composition, i.e. k ¼ 1, and is completely described by the
restriction (2). Again, the analysis that follows can easily be
extended to multiple solutes �k ; k ¼ 1, . . . , m. To simplify
notation, we will write DH instead of DH,w.

[11] Both the conservation equation for the fluid phase
and the solutes are of parabolic type and, consequently, the
resulting solutions are smooth. Therefore, we can expand
equation (6) to arrive at

’Sw
@C
@t
¼ �qw

@

@x
ðCÞ þ @

@x
’SwDH

@C
@x

� �
: ð9Þ

[12] We denote the Peclet number of phase � by
Pe� ¼ q� � L=ð’DmolÞ, � 2 n; wf g, where L is the length
characteristic for hydrodynamic dispersion. For advection-
dominated problems with a Peclet number Pe� > 10, molec-
ular diffusion becomes negligible compared to mechanical
dispersion [Bear, 1972] and thus is ignored in the following.
The transport of a component thus consists of an advective
part, which, according to equation (4), has a viscous and a
capillary component and a dispersive component.

[13] We derive an analytical solution for the transport
equation (6) that fully considers both capillary effects and
hydrodynamic dispersion. Thus, all the physical mecha-
nisms that account for solute transport and mixing in a ho-
mogeneous two-phase system are taken into account. The
solution is obtained from two main ideas. First, we note
that, for cases where Sw and qw are known in equation (9) ei-
ther from analytical or numerical solutions, the problem of
solving equations (1)– (6) reduces to solving an advection-
dispersion equation (ADE). The Sw and qw are fully deter-
mined by equations (1) together with equations (4) and (5).
The highly nonlinear term because of capillary forces in
equation (4) poses a main mathematical difficulty for deriv-
ing analytical solutions and, thus, only few exact solutions
are known. We will capitalize on the one derived by
McWhorter and Sunada [1990] for reasons explained below.
Although this significantly reduces the complexity of the
problem, the ADE (equation (9)) still has time- and space-
dependent coefficients, and no analytical solutions are
known. Second, to derive a solution for it, we use a general
analytical approximation that separates the two physical
transport mechanisms in equation (6), i.e., the advective
motion because of viscous and capillary forces and disper-
sive mixing. The advective part is solved for exactly by two
different approaches: First, we use the physical notion that
if dispersion can be ignored, i.e., DH ; � ¼ 0 in equation (6),
C is a function of Sw only, and an explicit expression for the
location of the solute front can be derived. Second, we use
the method of characteristics. Both approaches yield the
same result, which furthermore gives the mathematically
rigorous justification that for the dispersion-free limit, C is a
function of Sw only. We show that, if qw and Sw are
described by the McWhorter and Sunada problem, the loca-
tion of the solute front can be determined graphically by a
modified Welge tangent [Welge, 1952]. To the best of our
knowledge, this is the first analytical solution that accounts
for capillary effects on tracer transport.

[14] Next, the effect of hydrodynamic dispersion is
superimposed on the advective motion via a singular per-
turbation expansion around the advective front of the sol-
ute. Singular perturbation techniques have been used
previously for describing dispersion in unsteady flow fields
of a single phase [Gelhar and Collins, 1971; Dagan, 1971;
Eldor and Dagan, 1972; Nachabe et al., 1995; Wilson and
Gelhar, 1981, 1974]. We show that if the dispersion is
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small compared to a characteristic length of the system,
very good agreement between our analytical approximation
and a numerical reference solution is achieved. While we
are mainly concerned with the combined effects of capil-
lary, viscous, and dispersive processes in this paper, the
equations derived for the characteristics and the hydrody-
namic dispersion are valid for any given flow field. For
illustration, we also combine them with the solution for the
capillary-free limit, i.e., the Buckley-Leverett problem
[Buckley and Leverett, 1942], which is the classical solu-
tion for the case where external driving forces become
large and capillary effects become negligible. To the best
of our knowledge, this is the first analytical solution that
fully describes the complex dependence of the hydrody-
namic dispersion on the simultaneous and unsteady flow of
the two phases. From these analytical expressions, we
finally obtain equations for the growth rate of the dispersive
zone both for the case where capillary pressure is consid-
ered and for the viscous limit.

2.2. Semianalytical Solutions for Immiscible
Two-Phase Flow

[15] Since the derivatives in the conservation equation
for the solutes can be written out because of the product
rule, for known qw and Sw, the problem of solving for
simultaneous flow and transport, and thus the whole set of
conservation equations, reduces to solving one advection-
dispersion equation for highly nonlinear, but known, coeffi-
cients. Hence, we first give a short overview over analytical
solutions for qw and Sw that satisfy equations (1)– (5). The
strong nonlinearity of the capillary drive in equation (4)
makes the determination of exact solutions difficult, and
only a few analytical solutions are known. Two approaches

exist: either closed-form solutions are determined at the
cost of restricting the capillary-hydraulic properties krw(Sw),
krn(Sw), and Pc(Sw) to very particular nonlinearities, or more
general nonlinearities are chosen and the resulting exact an-
alytical expressions are mostly nonlinear expressions that
generally need to be solved numerically. Examples for the
first approach are the solution given by [Fokas and Yortsos,
1982; Chen, 1988; van Duijn and de Neef, 1998; Philip,
1960; Kashchiev and Firoozabadi, 2002]. For all these sol-
utions, the specific form of the nonlinearities excludes the
adequate study of flow for different porous media and often
also the possibility to study both cocurrent and countercur-
rent flows. Examples for the second approach can be found
by Chen et al. [1995], McWhorter and Sunada [1990], and
van Duijn and Peletier [1992]. We choose the ones derived
by McWhorter and Sunada [1990] since they allow for both
general capillary-hydraulic properties and the consideration
of cocurrent and countercurrent flows. The only time we
make specific use of the special form of these solutions,
however, is for the explicit determination of the saturation
level at which the solute advective front breaks through, and
in the examples given in section 5. The nonlinear expres-
sions derived for the characteristics and the hydrodynamic
dispersion are valid for any flow and saturation field known,
either from numerical solutions such as streamline simula-
tions [Blunt et al., 1996; King and Datta-Gupta, 1998;
Datta-Gupta and King, 1995] or analytical considerations.

3. Solution of the Advective Problem
[16] We first consider the dispersion-free limit of equa-

tion (9), i.e., the case DH ¼ 0. We will show that if an ini-
tial wetting phase is present, the solute front travels behind

Figure 1. Schematic representation of one-dimensional, unidirectional displacement of a nonwetting
phase by a wetting phase with an initial wetting saturation Si. Behind the wetting front, a mixing zone
between the old composition of the wetting phase and the new one of length �ðtÞ develops. Note that the
solute front always trails the saturation front if Swr > 0 (see Figure 3).
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the fluid displacement front, and breaks through at certain
saturation value S�w. We will show that the retardation is
because of the initial wetting saturation, which acts as a
storage for the solute. Two possibilities exist for deriving
an analytical solution and the determination of S�w. The first
one uses the physical notion that C is carried by the respec-
tive fluid phase and we can therefore write C ¼ C(Sw).
This, together with a variable transformation, leads to a
simple ordinary differential equation (ODE) for C. From
this, we obtain an explicit expression for the saturation
value S�w at which the advective front occurs, which can be
represented graphically by a modified Welge tangent
[Welge, 1952]. We can obtain the same result for the loca-
tion of the shock front if we employ the method of charac-
teristics for solving equation (9). This has two advantages:
First, it gives a mathematically rigorous justification for the
physical notion that for the dispersion-free limit, C must be
a function of Sw. Second, we obtain analytical expressions
for the characteristic coordinates. They will prove to be
central for the derivation of the dispersion approximation.

[17] For the solute, we consider the boundary and initial
conditions

Cðx ¼ 0; tÞ ¼ C0;

Cð1; tÞ ¼ Ci;

Cðx; 0Þ ¼ Ci;

ð10Þ

and for qw and Sw we use the initial and boundary condi-
tions

q0 ¼ qwðx ¼ 0; tÞ ¼ At�1=2; ð11aÞ

Swðx ¼ 0; tÞ ¼ S0; ð11bÞ

Swð1; tÞ ¼ Si ð11cÞ

Swðx; 0Þ ¼ Si; ð11dÞ

where the parameter A is a constant that depends on Si and
S0 as specified by the analytical expression given in Appen-
dix A. This represents cocurrent flow (see Figure 2). The
maximal possible value for S0 is 1 � Snr, where Snr is the
residual saturation of the nonwetting phase. The conditions
given in equation (11) are as specified by McWhorter and
Sunada [1990] and are the ones that they used for their
investigations. However, for the case of countercurrent
flow (Figure 2), these conditions are equivalent to sponta-
neous imbibition, where

qwðx; tÞ ¼ �qnðx; tÞ; ð12aÞ

Swðx ¼ 0; tÞ ¼ S0; ð12bÞ

Swð1; tÞ ¼ Si; ð12cÞ

Swðx; 0Þ ¼ Si; ð12dÞ

i.e., there is no forced inflow rate at the left boundary as is
the case for the cocurrent setting, and the flow within the
system is totally determined by the saturation gradients and
the resulting gradient in capillary pressure (see Appendix
A). We set fi ¼ f(Swi) and we introduce the modified frac-
tional flow function [Philip, 1973; McWhorter, 1971]

Fðx; tÞ ¼ qw=q0 � fiR
1� fiR

; ð13Þ

where q0 ¼ qw(x ¼ 0, t) and R ¼ qt/q0. Contrary to the clas-
sical fractional flow function f(Sw), F fully incorporates the
influence of capillary pressure and will be helpful for the
following derivations. For one-dimensional injection, qt ¼
q0 and thus R ¼ 1, and for countercurrent flow, qt ¼ R ¼ 0.
The physical meaning of F is therefore the ratio of the net
wetting phase flux at (x, t) to the net influx of a wetting
phase. We introduce the variable transformation

� ¼ xt�1=2: ð14Þ

[18] Since the saturation profile Sw(x, t) is a monotone
function of (x, t), we have Sw ¼ Swð�Þ or � ¼ �ðSwÞ,
respectively, and one obtains the ODE [McWhorter and
Sunada, 1990]

�ðSwÞ ¼
2Að1� fiRÞ

’

dF
dSw

ð15Þ

subject to

F ¼
1 for Sw ¼ S0;

0 for Sw ¼ Si:

(
ð16Þ

[19] For transformation of equation (16), the continuity
equation (9) becomes

dC
dSw

��þ 2A Fð1� fiRð Þ þ fiRÞ
�Sw

� �
¼ 0: ð17Þ

Figure 2. Situation of cocurrent imbibition where the displacement is (left) unidirectional and (right)
countercurrent imbibition.
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[20] The ODE given in equation (17) needs to be supple-
mented with boundary conditions. By using C ¼ C(Sw), the
boundary and initial conditions for C given in (10) can be
rewritten as

C ¼
C0 for Sw ¼ S0;

Ci for Sw ¼ Si:

(
ð18Þ

[21] The solution to equation (17) is a step profile, where
C jumps from its initial concentration C0 to the injected
one Ci at some saturation S�w where the concentrations
break through, i.e., C satisfies

CðSwÞ ¼
C0 for Sw < S�w;

Ci for Sw > S�w:

(
ð19Þ

[22] From the ODE (17), it is apparent that S�w must be
such that the bracket becomes zero. From (15), it directly
follows that S�w needs to satisfy

FðS�wÞ
S�w
þ fiR
ð1� fiRÞS�w

¼ dF
dSw
jðS�wÞ; ð20Þ

respectively, for Swi ¼ Swr and fw(Swi) ¼ fi ¼ 0:

FðS�wÞ
S�w

¼ dF
dSw
jðS�wÞ: ð21Þ

[23] All the functions and parameters in equations (20)
and (21) are known explicitly from the equations given in
Appendix A, and the solution easily can be obtained by pre-
scribing S0, determining F from (A2b), and then solving the
nonlinear equation (20). Any capillary-hydraulic properties
can be used. For arbitrary functions, the integrals of the exact
solution need to be solved numerically. The derivative of a
function (in our case the fractional flow function) at a certain
point can always be visualized as a tangent to that function
at that point. If equation (21) is multiplied with Sw*, the
equation reads like the standard formulation of the straight
line with its slope being dF/dSw. Determining S�w can there-
fore also be performed graphically by drawing a straight line

from ð0; fiR
ð1�fiRÞÞ tangent to the fractional flow curve F (see

Figure 3). Note that if initially a wetting phase is present,
which is the case for most realistic geological formations
and reservoirs, the component front gets retarded and does
not travel along with the phase front. This is intuitively
obvious because, if the connate wetting phase has a composi-
tion different from the injected wetting phase, the ‘‘new’’
composition needs to fill the ‘‘old’’ phase first (Figure 1).

[24] As stated initially, we mainly focus on solutes in
the wetting phase, and merely note that for the case where
S0 < 1, the saturation of the nonwetting phase at the left
boundary is nonzero, and we can prescribe the following
initial and boundary conditions for solutes in the nonwet-
ting phase:

�ðx ¼ 0; tÞ ¼ �0;

�ð1; tÞ ¼ �i;

�ðx; 0Þ ¼ �i;

ð22Þ

which immediately gives

�ðSnÞ ¼
�0 for Sn < S�n ;

�i for Sn > S�n ;

(
ð23Þ

where S�n satisfies

S�n ¼ 1� S��w ; ð24Þ

and

dF
dSw
jðS��w Þ ¼

FðS��w Þ
ð1� S��w Þ

� Rð1� fiÞ
ð1� fiRÞð1� S��w Þ

: ð25Þ

[25] Equation (25) is the counterpart of equation (20).
[26] Next, we derive the location of S�w by the method of

characteristics. The equation for characteristics for the con-
servation equation (9) is

qwdt � ’ � Swð Þ dx ¼ 0: ð26Þ

[27] Equation (26) has an analytical solution in the sense
that there exists a function 	ðx; tÞ such that

�d	 ¼ qwdt � ð’ � SwÞdx;

@	

@t
¼ �qw;

@	

@x
¼ ’Swð Þ;

ð27Þ

if and only if

@ ’Swð Þ
@t

¼! � @qw

@x
: ð28Þ

[28] This is simply the continuity equation for the wet-
ting phase and, thus, 	 as specified above exists. The char-
acteristic can be determined from equation (27). From the
second equation of (27), it follows that

	ðx; tÞ ¼
Z x

0
’ � Swð
; tÞð Þ d
 þ ~cðtÞ: ð29Þ

[29] The function ~cðtÞ must be determined from the first
equation in (27). It follows that

@	

@t
¼ �qw ¼

Z x

0
� @qw

@x
j
d
 þ

d~c
dt
: ð30Þ

[30] Altogether, we arrive at

	ðx; tÞ ¼
Z x

0
’Swð
; tÞ½ � d
 �

Z t

0
qwð0; �Þd�: ð31Þ

[31] In the following, it will be useful to transform the
first integral on the right-hand side of 	 onto the (Sw, t)
coordinate system, i.e., to use the fact that x ¼ x(Sw, t). By
substitution, we thus get

	ðSw; tÞ ¼
Z Sw

S0

’
ð Þ @x
@Sw
j
d
 �

Z t

0
qwð0; �Þd�: ð32Þ

[32] We set

�ðSw; tÞ :¼
Z Sw

S0

’
ð Þ @x
@Sw
j
d
;

�ðtÞ :¼
Z t

0
qwð0; �Þd�:

ð33Þ
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[33] The characteristic coordinates given in equation (32)
are valid for arbitrary initial and boundary conditions, and
any qw, Sw, and Sn that satisfy equations (1) and (2). To
derive an explicit expression for the value Sw at which the
solute front occurs in the case where capillary effects are
fully considered, we now capitalize on the features of the
solution derived by McWhorter and Sunada [1990].

[34] By construction, � and � are the coordinates along
which equation (6) reduces to the simple form

@C
@�
þ @C
@�
¼ 0: ð34Þ

[35] If C is given by the function H(x) at time t ¼ 0, then
the above PDE has the simple solution

Cð�; �Þ ¼ Hð�� �Þ ð35Þ

and an initial solute front travels along the curve that satis-
fies �¼! � , i.e., S�w is such that 	¼! 0, and the saturation S�w,
which satisfies this condition, is again given by equations
(20) and (21), respectively (see Appendix B). Before we
derive the dispersion approximation, we discuss some fea-
tures of the solution for the advective case.

3.1. Buckley-Leverett Limit for the Case of
Unidirectional Displacement

[36] It is interesting to note the similarity of equations
(19) together with (21) with the solution obtained for
the two-phase, multicomponent viscous case, sometimes
referred to as the extended Buckley-Leverett problem. The

extended Buckley-Leverett problem also satisfies equation
(21), where, for Si ¼ Swr, the constant S�w is given by Pope
[1980] and Johansen and Winther [1988]:

f ðS�wÞ
S�w
¼ df

dSw
jðS�wÞ; ð36Þ

i.e., we have the very same structure with the only differ-
ence being that the fractional flow function f(Sw) neglects
capillary forces, where F(Sw) can be viewed as a modified
fractional flow function that incorporates both viscous and
capillary effects.

[37] In cases where the imposed injection is large, capil-
lary effects can be neglected and the Buckley-Leverett, i.e.,
viscous, limit is approached. For our setting, this is reached
by making the parameter A large. It can be shown analyti-
cally [Chen et al., 1992] that limS0!Sm AðS0Þ ¼ Acr, where
Sm is the maximal achievable value and

Acr ¼
�

2 1� fið Þ2
Z Sm

Si

ðSw � SiÞD
F � fn

dSw

" #1=2

<1: ð37Þ

[38] If the Welge tangent saturation [Welge, 1952] is
denoted by Sb, for the limiting case, the fractional flow
function F becomes [McWhorter and Sunada, 1990, 1992]

FðSwÞ ¼
fnðSwÞ for Sw � Sb;

fnðSbÞ Sw�Si
Sb�Si

� �
for Sw � Sb;

8<
: ð38Þ

Figure 3. Fractional flow functions for purely viscous, cocurrent, and countercurrent (spontaneous
imbibition) flow for different inlet saturations S0 and for Si ¼ Swr. For the viscous and the countercurrent
case, S0 ¼ 1 � Snr, and for the cocurrent case, S0 < 1 � Snr. The straight lines give the saturation values
for the respective cases at which the component jumps from its initial value to the injected concentration
for the dispersion-free limit.
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where fn is the normalized fractional flow function

fn ¼
ðf � fiÞR
1� fiR

: ð39Þ

[39] This gives equation (36), since the component front
occurs after the wetting front, and thus S�w � Sb:

3.2. Countercurrent Imbibition
[40] Countercurrent imbibition occurs when the wetting

fluid spontaneously imbibes into the porous medium, thus
replacing the nonwetting phase, which flows out into the op-
posite direction, i.e., in our notation qw ¼ �qo (see Figure
2) and hence R ¼ fn ¼ 0. We can show that the inflow con-
dition q0 ¼ A�t�1/2 is automatically satisfied for saturation
values as specified in equation (12) (see Appendix A). For
partly water-wet fractured reservoirs, spontaneous, counter-
current imbibition represents a key recovery mechanism
since there the water imbibes from the fracture into the ma-
trix, thus replacing the oil that could not be produced
through flooding and thus through viscous effects [Behba-
hani et al., 2006]. In the foregoing analysis, R was not set to
a specific value, and therefore the respective expressions for
A and F can be obtained immediately from setting R ¼ 0
(see Appendix A) and the semianalytical solution for C
directly follows from equation (19) for the modified expres-
sions for A and F with

FðS�wÞ
S�w

¼ dF
dSw
jðS�wÞ: ð40Þ

4. Dispersion Approximation
[41] The analytical solution derived above is valid if

hydrodynamic dispersion can be ignored; we will now
derive an approximate analytical solution for the ADE. The
solution is constructed in the same way the solution to the
linear ADE would be constructed, with the only difference
being that the parameters depend on the solution for the sat-
uration profile. This introduces a strong time and space de-
pendency of the coefficients, for which no exact analytical
solutions for dispersion are known, and we will give an
approximate analytical solution through an asymptotic
expansion. Although we will focus on the case where the
nonwetting phase is homogeneous and consists of one com-
ponent only, the same analytical procedure can be used for
analyzing the effect of hydrodynamic dispersion in the
nonwetting phase. To this end, we first normalize the ADE
by introducing c :¼ C/C0, �x :¼ x=L0; �t ¼ t=T0; and
�qw ¼ qw=V0; where L0, T0, and V0 are a characteristic
length, time, and velocity, respectively, such that OðT0Þ ¼
OðL0Þ ¼ OðV0Þ [Wilson and Gelhar, 1974]:

’Swð Þ @c
@�t
¼ ��qw


@c
@�x
þ "
 @

@�x
Sw�qw

@c
@�x

� �
; ð41Þ

with

" :¼ �L

L0
and 
 :¼ V0T0

L0
:

[42] For the case where dispersion needs to be taken into
account, the only known analytical solutions for the ADE

are valid for the single-phase case with a constant flow field
where the fact that DH is constant is heavily exploited to
derive a solution [Carslaw and Jaeger, 1959]. We therefore
employ a different approach: singular-perturbation expan-
sion. Singular-perturbation techniques have been used in
many areas of applied mathematics and fluid mechanics
[Kevorkian and Cole, 1981; Van Dyke, 1975] and have
been used before for treating the effect of nonuniform flow
fields on dispersion of inert and adsorbing tracers in satu-
rated and unsaturated single-phase flow through porous
media [Gelhar and Collins, 1971; Dagan, 1971; Eldor and
Dagan, 1972; Nachabe et al., 1995; Wilson and Gelhar,
1981, 1974]. Its fundamental idea is that, for small ", dis-
persion can be thought of as a perturbation to the advection
equation. For " 6¼ 0, the mathematical character of equation
(41) fundamentally changes from a hyperbolic PDE to a
parabolic PDE, and thus the perturbation is of singular na-
ture. The solution (19) to the advection problem (9) is
viewed as an outer solution to the ADE that is a good
approximation away from a boundary layer. The boundary
layer is characterized as the zone where dispersive effects
are strong and thus will be located around the advective
front. By magnifying this zone through appropriate coordi-
nate transformations, and by using the notion that around
the front, qw and Sw can be approximated by their values at
the front, the PDE (9) reduces to the well-known heat
equation. The inner and outer solutions are matched and
a uniformly valid, closed-form analytical solution is
obtained. Formally, equation (6) is the same as for the un-
saturated single-phase case, where ’Sw corresponds to the
soil-moisture content and no restriction for a second phase
is present. Thus, formally the dispersion approximation for
equation (6) can be derived in the same manner as the one
employed by Wilson and Gelhar [1981, 1974], and we will
only give a rough outline. However, the characteristic
length L0 for the two-phase case is the distance between the
wetting front and the point where the solutes start to break
through. This is different from the single-phase case, where
L0 is the total distance traveled by the solute front [Gelhar
and Collins, 1971; Dagan, 1971; Eldor and Dagan, 1972;
Nachabe et al., 1995; Wilson and Gelhar, 1981, 1974].

[43] Through extensive use of Leibnitz’ rule and the
product rule, the PDE (41) can first be transformed from
the ð�x; �tÞ coordinate system onto the ðSw; �tÞ coordinate sys-
tem and from there onto the ð��; ��Þ coordinate system,
where the overbar denotes the normalized version of a vari-
able, which yields

@c
@��
þ @c

@ ��
¼ "

�qw0

1
Swð@�x=@SwÞ

@

@Sw
S2

w�qw

� 	 @c

@��

�

þð�ðSwÞ2�qwÞ
@2c

@ ��
2

�
:

ð42Þ

[44] Note that if " ¼ 0 in equation (42), we obtain the
normalized version of the hyperbolic advection equation
(34).

[45] Next, the region around the solute front is magnified
through the coordinate transformation of equation ð��; ��Þ
onto ð
; ��Þ, where


 ¼
��� ��

"m
: ð43Þ

W02550 SCHMID ET AL.: SOLUTIONS FOR IMBIBITION AND DISPERSION OF SOLUTES W02550

8 of 16



[46] The exponent m determines the thickness of the
boundary layer and can be determined either from physical
or mathematical reasoning. Physically, it needs to be such
that within the boundary layer, dispersive changes are of the
same order of magnitude as temporal changes. Mathemati-
cally, it follows from the principle that it must be possible
to match the inner solution around the boundary region with
the outer one close to the boundary region. Formally, this
leads to Van Dyke’s principle of least degeneracy [Van
Dyke, 1975; Kevorkian and Cole, 1981], which yields the
same boundary-layer thickness as the one obtained from
the physical approach. Transforming equation (42) onto the
ð��; 
Þ-coordinate system leads to m ¼ 1/2, which is the
same thickness as for the single phase case with nonuniform
flow and with streamlines nontangential to the solute front
[Dagan, 1971]. We now seek an approximate analytical so-
lution for equation (41) through an asymptotic expansion

Cð��; 
Þ � C0ð��; 
Þ þ "ð1=2ÞC1ð��; 
Þ þ Oð"Þ: ð44Þ

[47] Inserting this and only retaining terms of zeroth
order in " leads to

@c
@��
¼ 1

�qw0
�S2

w�qw

� 	 @2c
@
2

: ð45Þ

[48] This is the well-known diffusion equation and, for
the case where the coefficients on the right-hand side are
functions of �� only, many analytical solutions are known
[Crank, 1979; Carslaw and Jaeger, 1959]. To arrive at that
form of the diffusion equation, we use the heuristic notion
that Sw and �qw will undergo small changes around the sol-
ute front, and thus can be approximated by their values at
the front. Formally, this corresponds to a Taylor expansion
around the solute front that is truncated after the first term
and thus gives the same order Oð"1=2Þ as the perturbation
expansion. Altogether, we arrive at

@c
@��
¼ 1

�qw0
�S�w�q�w
� 	 @2c

@
2
; ð46Þ

where the ( )* denote that the value is taken at the solute
front. The consequences and limitations of this approxima-
tion are discussed below. To be complete, the diffusion
equation (46) needs to be supplemented with initial and
boundary conditions. They follow from the inner and outer
solutions, and, for the case of the step profile, coincide with
equation (10). The diffusion equation (46) together with (10)
has the solution [Dagan, 1971; Carslaw and Jaeger, 1959]

cð��; ��Þ ¼ 1
2

erfc
��� ��

2"ð1=2Þ
R ��

0
’ðS�wÞ

2�q�w
�qw0

h ið1=2Þ

0
B@

1
CA: ð47Þ

[49] By construction, the solution given in equation (47)
is valid for the region around the boundary layer, whereas
the solution given through equation (19) is valid away from
the boundary layer. For the initial and boundary conditions
as specified in (10), the uniformly valid composite solution
for the zeroth-order approximation coincides with equation
(47), and we can rewrite equation (47) in the (x, t) coordi-
nate system as

Cðx; tÞ ¼ C0

2
erfc

R x
0 �Swð
; tÞd
 �

R t
0 qwð0; �Þd�

2�1=2
l

R �ðtÞ
0 �ðS�wÞ

2ðqwðS�wÞ
qwðS0ÞÞdt

h i1=2

0
B@

1
CA: ð48Þ

[50] As in the purely advective case, for the derivation of
equation (48), no features of the solution derived by
McWhorter and Sunada [1990] were used. Consequently,
this expression is valid for the initial and boundary condi-
tions given in equation (10) and any qw, Sw, and Sn that sat-
isfy equations (1) and (2). The respective expressions can
stem from either analytical solutions or could be combined
with numerical calculations from, e.g., streamline simula-
tions [Blunt et al., 1996; King and Datta-Gupta, 1998;
Datta-Gupta and King, 1995]. In case boundary and initial
conditions other than equation (10) are used, the matching
function and the composite solution need to be modified
accordingly.

[51] From equation (48), we can obtain an expression for
the growth of the dispersive zone � (Figure 1). Dispersion
only plays a role around the solute front, i.e., where
x ¼ xðS�w; tÞ, and thus �, can be described by the rate of
change around that front. This gives

�ðtÞ ¼ � @C=C0

@x

� ��1

x¼xðS�w ; tÞ
: ð49Þ

5. Discussion of Validity and Illustrative Examples
[52] In this section, we give some examples and compare

our analytical expressions to some numerical solutions. For
the perturbation expansion to be valid, "1=2 ¼ �L=L0ð Þ1=2

<< 1 needs to be satisfied. We show that, for the two-
phase case, L0 is the distance between the wetting front and
the point where the solutes start to break through. This is
different from the single-phase case, where L0 is the total
distance traveled by the solute front. Furthermore, we dis-
cuss the difference between the growth rate �ðtÞ of the
dispersive zone (Figure 1) for the cases with and without
capillary pressure. We can show that for the case of sponta-
neous imbibition the order of the growth rate, and thus the
rate of dispersive mixing, is smaller than that for the
viscous case, i.e., the Buckley-Leverett case, by a factor of
(1/2).

[53] For the numerical simulations, we use the complex
system modeling platform (CSMPþþ), a Cþþ library for
multiphase-flow in heterogeneous media, a software pack-
age widely used to model single-phase and multiphase flow
in fractured porous media [see, e.g., Geiger et al., 2006,
2004, 2009; Geiger, 2010; Matthäi et al., 2007, 2009].

[54] The functions D(Sw), f(Sw), and Pc(Sw) represent the
capillary and hydraulic properties of the fluid-medium
interaction and are either determined from experimental
measurements or described analytically (see Figures 4 and
5). Several models exist to algebraically describe them. In
the foregoing analysis, no assumptions for the functions D,
f, and Pc were used other than what is known from the
underlying physics, and, thus, any description for them can
be used in our context. One of the most common models
employed in both hydrological applications and the petro-
leum literature, the Brooks-Corey model, uses the effective
wetting saturation
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Se ¼
Sw � Swr

1� Swr � Snr
; 0 � Se � 1; ð50Þ

where Snr is the residual saturation of the nonwetting phase.
The Brooks-Corey model [Brooks and Corey, 1964] then
uses the relations

krwðSeÞ ¼ Sð2þ3�BCÞ=�BC
e ; ð51aÞ

krnðSeÞ ¼ ð1� SeÞ2ð1� Sð2þ3�BCÞ=�BC
e Þ; ð51bÞ

PcðSeÞ=pd ¼ S�1=�BC
e ; Pc � pd : ð51cÞ

[55] Here pd is the entry pressure for the nonwetting fluid
and �BC is the Brooks-Corey parameter, with �BC 2 0:2;½
3:0� (see Figures 4 and 5). In the following examples, we
restrict ourselves to the Brooks-Corey model, but as already
mentioned above, any choice for krw, krn and Pc is
applicable.

5.1. Cocurrent and Countercurrent Imbibition
[56] For the McWhorter and Sunada problem, equations

(48) and (49) become

Cðx; tÞ ¼C0

2
erfc

R x
0 �Swd
� 2At1=2

2ð��lÞ1=2S�w 2At1=2ðFðS�wÞð1� fiRÞþ fiRÞ
� 	1=2

 !
;

�ðtÞ ¼ 2
��L

�

� �
2qwðS�wÞt

� �1=2

¼ 2
��l

�
2A

ffiffi
t
p
ðFðS�wÞð1� fiRÞþ fiRÞ

� �1=2

:

ð52Þ

[57] Figure 6 shows the comparison between numerical
solutions and the analytical solution for the cocurrent flow
and transport of solutes derived in this paper for times t ¼
0.7d, 1.5d, 2.5d and the parameter set given in Table 1.
Figure 7 shows the comparison for the case of countercur-
rent imbibition for times t ¼ 0.7d, 1.7d, 17d and the pa-
rameter set given in Table 2. The perturbation expansion
assumes "1=2 << 1; "¼ �L=L0. The characteristic length
of the system L0 is the distance between the wetting front
and the point where the concentrations start to break
through. This is different from the perturbation expansions
derived for the single-phase case, where the characteristic
length is the distance traveled by the solute front [Gelhar
and Collins, 1971; Dagan, 1971; Eldor and Dagan,
1972; Nachabe et al., 1995; Wilson and Gelhar, 1981,
1974]. Figure 8 shows the comparison for spontaneous
imbibition and the parameter set given in Table 3 for
times t ¼ 2d, 17d, 34d. In this case, the connate wetting
saturation is smaller than the ones in the previous two
examples, and consequently the retardation between the
wetting front and the point where the solutes start to break
through is smaller. At time t ¼ 2d, the distance traveled
by the solute front is already longer than for t ¼ 0.7d for
the case shown in Figure 7. However, the perturbation
expansion for the case shown in Figure 8 overestimates
the dispersion for this time, and predicts that the compo-
nents disperse ahead of the solute front. This is physically
impossible since qw ¼ 0 there and shows that the charac-
teristic length for the two-phase system is not the distance
traveled by the solute front, but rather the distance
between the wetting front and the point where the solutes
start to break through. For later times, this distance
increases, yielding declining values for " and a good
agreement between the numerical and the analytical solu-
tion is achieved.

Figure 4. Residual saturations Swr and Snr and corresponding relative permeability functions.
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5.2. Buckley-Leverett Problem
[58] For the Buckley-Leverett problem with constant

inflow rate qt, and boundary conditions for Sw and C as speci-
fied in (11) and (10), respectively, equation (48) becomes

Cðx; tÞ ¼ C0

2
erfc

R x
0 �Swd
 � qt � t

2S�w½��LqtfwðS�wÞ � t�
1=2

 !
;

�ðtÞ ¼ 2
��l

�

� �
� qtfwðS�wÞt

� �1=2

:

ð53Þ

[59] We note that for the Buckley-Leverett problem, the
dispersive zone grows with order Oðt1=2Þ compared to order
Oðt1=4Þ for the McWhorter-Sunada problem. This is
because of the specific inflow conditions of the former, and
not because of capillary forces. To evaluate the influence of
capillary forces on �ðtÞ, we have to consider the Buckley-
Leverett problem with the inflow condition qt ¼ ~At�1=2 for
some positive constant ~A. This leads to �ðtÞ as in equation
(52) with ~A substituting for A and f(Sw) substituting for
F(Sw) for the cocurrent case, i.e., R ¼ 1. Hence, for the case

Figure 5. Capillary pressure function for the Brooks-Corey parametrization for �BC ¼ 3.

Figure 6. Dispersion approximation for cocurrent imbibition with �L ¼ 0:01 m at times t ¼ 0.7, 1.5,
and 2.5 days and the parameters given in (1) and the corresponding " ¼ 0:4; 0:3; 0:14.
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~A ¼ A, the difference in growth over time for the problem
with and without capillarity is quantified through the differ-
ence between F and f at their respective values for S�w,
where the same boundary and initial conditions for Sw have
been chosen.

[60] As we have seen above, the boundary condition q0
¼ At1/2 for the countercurrent case agrees with the one
obtained from equation (4) for qt ¼ 0 and thus is redundant.
Consequently, for the countercurrent case, �ðtÞ as specified
in equation (52) describes the growth rate for the standard
situation of both a laboratory setting of spontaneous imbibi-
tion and the situation in the field where spontaneous, coun-
tercurrent imbibition is the dominant process (e.g., for the
exchange between high- and low-permeability regions). In
this case, the growth rate, and thus the rate of dispersive
mixing, is smaller than that for the viscous case by a factor
of (1/2). Consequently, for cases where the transport of
components is considered, the mixing of which triggers
reactions, the amount of reactants available is much smaller
than for viscous-dominated processes.

[61] Figure 9 shows the comparison between numerical
solutions and the analytical solution for times t ¼ 5d, 8d,

14d and the parameter set given in Table 4. The characteris-
tic lengths are such that the condition "1=2 << 1 is satisfied,
and an excellent agreement between the numerical solution
and the analytical solution of this paper is achieved.

6. Summary and Conclusions
[62] The first known set of semianalytical solutions for

solute transport in immiscible two-phase, one-dimensional
systems that describe all physical mechanisms, i.e.,
advection because of capillary and viscous forces and the
movement because of the time- and space-dependent
hydrodynamic dispersion, have been derived. These new
solutions can be used both as a tool for the verification of
new numerical methods and as a building block for numeri-
cal algorithms, e.g., streamline simulations. Furthermore,
our solutions describe the standard situation of core-flood
experiments where both flow rates and tracer data are avail-
able and thus can be employed for an improved method of
determining constitutive relationships, such as relative
permeabilities and capillary pressure curves, from given
measurements. The exact solution for the advective part

Table 1. Parameter Set for Cocurrent Flow Shown in Figure 6

Parameter Units Value

Si 0.22
S0 0.81
Swr 0.22
Snr 0.15
�BC 3.0
pd Pa 1.5 	 103

�L m 0.01
� 0.25
�w Pa s 1.0 	 10�3

�n Pa s 0.5 	 10�3

Figure 7. Dispersion approximation for spontaneous imbibition and the parameter set in Table 2 with
�L ¼ 0:02 m at times t ¼ 0.7, 1.7, and 17 days and the corresponding " ¼ 0:4; 0:3; 0:1.

Table 2. Parameter Set for Countercurrent, Spontaneous Imbibi-
tion Shown in Figure 7

Parameter Units Value

Si 0.25
S0 0.85
Swr 0.22
Snr 0.15
�BC 3.0
pd Pa 1.5 	 103

�L m 0.02
� 0.25
�w Pa s 1.0 	 10�3

�n Pa s 0.5 	 10�3

W02550 SCHMID ET AL.: SOLUTIONS FOR IMBIBITION AND DISPERSION OF SOLUTES W02550

12 of 16



was obtained by first combining a known integral solution
for immiscible two-phase flow with a coordinate transfor-
mation and the physical notion that, for pure advection, the
solutes are a function of saturation distribution only. By the
method of characteristics, we then showed that for the dis-
persion-free limit and certain boundary conditions, the so-
lution can be represented graphically by a modified Welge
tangent. The effect of time- and space-dependent dispersion
was solved for by a singular-perturbation technique. The
approximate solutions obtained can be used in connection
with any flow and saturation field known either from nu-
merical or analytical techniques. They provided the basis
for analytical expressions for the growth of dispersive
zones. The order of magnitude of the growth rate for the
case of spontaneous, countercurrent imbibition is smaller
than that for viscous-dominated processes by a factor of
(1/2). Consequently, the amount of mixing and thus, if
reactive solutes are considered, the amount of reactants are

far smaller than for the viscous case. If the dispersion coef-
ficient is small compared to the distance between the wet-
ting front and the point where the solutes break through,
the analytical approximations are in excellent agreement
with numerical solutions for the cases of cocurrent flow,
countercurrent spontaneous imbibition, and the case of the
capillary-free limit, i.e., the Buckley-Leverett problem.

Appendix A
[63] The main work of this paper builds upon the solutions

derived by McWhorter and Sunada [1990] to obtain analyti-
cal expressions for transport of solutes in two-phase flow.
Therefore, for convenience, we repeat them here, and fur-
thermore show that the inflow boundary condition for the
countercurrent case, i.e., R ¼ 0, becomes redundant and the
situation is that of spontaneous, countercurrent imbibition.
McWhorter and Sunada [1990] derive exact integral solu-
tions for two-phase flow without transport for horizontal,
unsteady displacement that can either be cocurrent or coun-
tercurrent. They fully consider the influence of the capillary
drive for arbitrary capillary-hydraulic properties. The authors
consider the situation in which, at the left boundary, an
inflow rate proportional to t�1/2 is present. The proportional-
ity factor A depends on the capillary-hydraulic properties,
and the saturation at the inlet. Their solutions are derived
through a self-similarity transformation. The obtained
saturation profile for the wetting front is monotonically
decreasing, and any arbitrary, but fixed, saturation level is
propagated into the medium with time dependence t1/2. They
also show that, for the case where the inflow rate becomes
large and capillary forces become negligible, their solutions

Figure 8. Dispersion approximation for spontaneous imbibition and the parameter set in Table 3 with
�L ¼ 0:02 m at times t ¼ 2, 17, and 34 days. At time t ¼ 2 days, the distance between the solute and the
wetting front is zero, which yields "1 ¼ 1, and thus, the condition " << 1 is violated. Consequently,
the dispersion is overestimated, and a dispersion of the components ahead of the solute front is wrongly
predicted. For t2 ¼ 17 days and t3 ¼ 34 days, "2 ¼ 0:43 and "3 ¼ 0:2, and the comparisons show good
agreement.

Table 3. Parameter set for Countercurrent, Spontaneous Imbibi-
tion Shown in Figure 8

Parameter Units Value

Si 0.11
S0 0.85
Swr 0.1
Snr 0.15
�BC 3.0
pd Pa 1.5 	 103

�L m 0.02
� 0.25
�w Pa s 1.0 	 10�3

�n Pa s 0.5 	 10�3
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approximate the classical Buckley-Leverett solution [Buck-
ley and Leverett, 1942]. The exact solution for equations (1)
together with (11) is [McWhorter and Sunada, 1990]

xðSw; tÞ ¼ 2Að1� fiRÞ
’

F 0ðSwÞt1=2; ðA1Þ

where A, F(Sw), and F0(Sw) ¼ dF(Sw)/dSw satisfy the equa-
tions

A ¼ � D
ð1� fiRÞðF � fnÞ

� �
dSw

d�

¼ �

2ð1� fiRÞ2
Z S0

Si

ðSw � SiÞD
F � fn

dSw

 !1=2

;

ðA2aÞ

FðSwÞ ¼ 1

�
Z S0

Sw

ð� � SwÞDð�Þ
Fð�Þ � fnð�Þ

d�
� � Z S0

Si

ð� � SiÞDð�Þ
Fð�Þ � fnð�Þ

d�
� ��1

;

ðA2bÞ

F 0ðSwÞ ¼
Z S0

Sw

Dð�Þ
Fð�Þ � fnð�Þ

d�

� � Z S0

Si

ð� � SiÞDð�Þ
Fð�Þ � fnð�Þ

d�
� ��1

;

ðA2cÞ

F 00ðSwÞ ¼ �
�

2A2 1� fiRð Þ2
D

F � fn
: ðA2dÞ

[64] For the case of countercurrent flow, qt ¼ 0 and thus
the analytical solution directly follows from setting R ¼ 0 in
the expressions given above. For this case, McWhorter and
Sunada worked with the boundary conditions as given in (11)
as well. The physical interpretation of this equation is that,
aside from prescribing a saturation level at the inlet, addition-
ally a certain inflow rate is imposed. The situation for coun-
tercurrent flow that is far more common in the subsurface,
however, is the one where a wetting fluid spontaneously
imbibes into a porous medium because of the saturation gra-
dients and the resulting gradients in capillary pressure only.
We show that, for R¼ 0, the condition for q0 becomes redun-
dant, and the situation is that of spontaneous countercurrent
imbibition. This follows from fn ¼ 0, F(S0) ¼ 1, and

q0 ¼ qwðx ¼ 0; tÞ¼4 �KDðS0Þ
dSw

d�
j�¼0

� �
t�1=2 ðA3aÞ

¼ At�1=2: ðA3bÞ

Appendix B
[65] The values for the saturation S�w at which the advec-

tive front travels as determined by our physically motivated
approach and by the method of characteristics agree. For
determining S�w from the method of characteristics, we have

Figure 9. Dispersion approximation for the viscous limit (Buckley-Leverett problem) for
�L ¼ 0:00488 m at times t ¼ 5, 8, and 14 days and the parameters given in Table 4 and the correspond-
ing " ¼ 0:51; 0:06; 0:02.

Table 4. Parameter Set for the Viscous Limit (Buckley-Leverett
Problem) Shown in Figure 9

Parameter Units Value

Si 0.22
S0 0.85
Swr 0.22
Snr 0.15
�BC 3.0
�L m 0.00488
qt m/s 2.1 	10�7

� 0.25
�w Pa s 1.0 	 10�3

�n Pa s 0.5 	 10�3

W02550 SCHMID ET AL.: SOLUTIONS FOR IMBIBITION AND DISPERSION OF SOLUTES W02550

14 of 16

karen schmid
Sticky Note
...typo: tatsaechlich: 
qo=qw(x=0,t)=(-D(S0)dsw/dlamda) t^(-1/2)

karen schmid
Sticky Note
from equation (13)



	¼! 0,
Z Sw

S0

’

@x
@


d
¼!
Z t

0
qwð0; �Þd�; ðB1Þ

where, for qw ¼ (0, t) ¼ At�1/2, the right-hand side becomes
�ðtÞ ¼ 2At1=2. The left-hand side becomes

Z Sw

S0

�

@x
@


d
 ¼ðA1Þ
t1=2
Z Sw

S0

�

2Að1� fiRÞ

�
F 00ð
Þd


¼ðA2dÞ
t1=2
Z Sw

S0

�

2Að1� fiRÞ

�
� �

2A2ð1� fiRÞ2
D

F� fn

" #
d


¼
Z Sw

S0

�

�Dð
Þ

Að1� fiRÞðFð
Þ� fnÞ
d
:

ðB2Þ

[66] Taking the expression for the right-hand side � and
the left-hand side �, we thus obtain that Sw needs to be such
that

2A2ð1� fiRÞ
’

¼!
Z S0

Sw

�
Dð�Þ

ðFð�Þ� fnÞ
d�: ðB3Þ

[67] The left-hand side of (B3) contains the constant A
as determined by the analytical solution derived by
McWhorter and Sunada (see Appendix A). Successively
inserting explicit expressions for A, F, and F0 as given in
Appendix A shows that equation (B3) is satisfied. In detail,
these steps are as follows:

2A2ð1� fiRÞ
�

¼ðA2aÞ 1
ð1� fiRÞ

Z S0

Si

ð
�SiÞDð
Þ
ðF� fnÞ

d


¼ðA2bÞ 1
ð1� fiRÞ

FðSwÞ �
Z S0

Si

ð��SiÞDð�Þ
Fð�Þ� fn

d�þ
Z S0

Sw

ð��SwÞDð�Þ
ðFð�Þ� fnÞ

d�
� �

¼ð20Þ 1
ð1� fiRÞ

SwF 0ðSwÞ
Z S0

Si

ð��SiÞDð�Þ
ðFð�Þ� fnÞ

d�
� �

þ
�

Z S0

Sw

ð��SwÞDð�Þ
ðFð�Þ� fnÞ

d�� 1
ð1� fiRÞ

fiR
Z S0

Si

ð��SiÞDð�Þ
ðFð�Þ� fnÞ

d�
�

¼ðA2cÞ 1
ð1� fiRÞ

Z S0

Sw

SwD
F� fn

d�þ
Z S0

Sw

ð��SwÞD
ðF� fnÞ

d�
�

� 1
ð1� fiRÞ

fiR
Z S0

Si

ð��SiÞDð�Þ
ðFð�Þ� fnÞ

d�
�

¼ 1
ð1� fiRÞ

Z S0

Sw

�D
ðF� fnÞd�

� fiR
ð1� fiRÞ

Z S0

Si

ð��SiÞD
ðF� fnÞ

d�
� �

:

ðB4Þ

[68] Thus, for the case Swi ¼ Swr, fi ¼ 0, equation (B1) is
satisfied if Sw satisfies (21), which yields the mathematical
rigorous justification for the assumption C ¼ C(Sw) for the
advective case made initially. Since the assumption C ¼
C(Sw) stays valid for fi = 0, we obtain (20).
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