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Abstract Studies of site exploration, data assimilation, or geostatistical inversion
measure parameter uncertainty in order to assess the optimality of a suggested
scheme. This study reviews and discusses measures for parameter uncertainty in spa-
tial estimation. Most measures originate from alphabetic criteria in optimal design
and were transferred to geostatistical estimation. Further rather intuitive measures can
be found in the geostatistical literature, and some new measures will be suggested in
this study. It is shown how these measures relate to the optimality alphabet and to rel-
ative entropy. Issues of physical and statistical significance are addressed whenever
they arise. Computational feasibility and efficient ways to evaluate the above mea-
sures are discussed in this paper, and an illustrative synthetic case study is provided.
A major conclusion is that the mean estimation variance and the averaged conditional
integral scale are a powerful duo for characterizing conditional parameter uncertainty,
with direct correspondence to the well-understood optimality alphabet. This study is
based on cokriging generalized to uncertain mean and trends because it is the most
general representative of linear spatial estimation within the Bayesian framework.
Generalization to kriging and quasi-linear schemes is straightforward. Options for
application to non-Gaussian and non-linear problems are discussed.
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1 Introduction

The importance of rigorous uncertainty assessment in general modeling and deci-
sion making is widely recognized (e.g., Pappenberger and Beven 2006). To this
end, the conditional uncertainty of model parameters or model predictions (i.e.,
the uncertainty after exploiting available data) must be quantified. This may in-
clude the application of scalar measures for parameter or prediction uncertainty.
The very same measures for parameter uncertainty are inseparably connected to the
field of optimal experimental design. An experimental design (or sampling strat-
egy) is a specific choice of measurement types, numbers, locations, and experimen-
tal conditions. Intuitively, it is straightforward to require some sort of maximum
benefit from laborious or expensive experiments. To this end, optimal design tech-
niques define scalar-valued measures of conditional uncertainty, and then minimizes
these measures as criterion for optimality. The most common criteria include A-,
C-, D-, E-, and T -optimality, often subsumed under the term of alphabetic op-
timality (Box 1982). The ubiquitous need for such optimal designs in most sci-
ence and engineering disciplines has triggered a vast series of studies in the sta-
tistical literature, mostly focusing on regression-like problems (e.g., Silvey 1980;
Federov and Hackl 1997; Pukelsheim 2006). Chaloner and Verdinelli (1995) review
the topic within the Bayesian framework. In the typical context of regression-like
data analysis, these measures characterize the conditional covariance matrix of a few
regression parameters. In the geostatistical context, however, the targets of estimation
are random space functions discretized on fine grids (e.g., 104 to 107 cell-wise values,
rising with newly available computer power) rather than a few regression parameters.
Available methods for spatial estimation are kriging, cokriging (e.g., Matheron 1971;
de Marsily 1986) and various techniques of geostatistical inverse modeling (e.g., Kei-
dser and Rosbjerg 1991; Zimmerman et al. 1998). If translated to geostatistical es-
timation, criteria for optimal design and their respective measures of uncertainty are
applied to the conditional covariance matrix of the discretized parameter fields (e.g.,
Müller 2007).

For well-resolved two- or three-dimensional parameter fields, the sheer size of
the conditional covariance matrix of the parameters constitutes a problem of its own
right. It may strictly inhibit explicit storage of the entire matrix, let alone any fur-
ther processing. No matrix operation will lend itself to such large and dense matri-
ces (compare Zimmerman et al. 1998) unless specific attention is paid to exploitable
properties of conditional covariance matrices (Zimmerman 1989). Other than com-
putational aspects, there are more fundamental problems with the physical and statis-
tical significance of the optimality alphabet when used in spatial estimation. Regres-
sion typically features overdetermined problems with more observations than un-
known parameters. Quite contrarily, spatial estimation usually features underdeter-
mined problems with only few observations but with many unknown discrete values
of random space functions. As a matter of fact, it is questionable that measures de-
rived for overdetermined problems maintain their original significance when applied
to a different class of underdetermined problems. More details on these problems are
provided in a later section.
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Within the geostatistical context, there are two primary objectives in measur-
ing conditional uncertainty or looking at optimal designs. First, in theoretical stud-
ies of model reduction, data compression (e.g., reducing transient equations and
time series to temporal moments) or data assimilation, parameter uncertainty it-
self is measured or minimized. The most commonly used criterion is the estima-
tion variance (e.g., Journel and Huijbregts 1978; Kitanidis 1997), and the most
simplistic and intuitive choice for a scalar measure is its spatial average (Diggle
and Ribeiro 2007; Fritz et al. 2009). Other frequently used measures in applied
hydro-geostatistical studies compare synthetic random fields and their estimates
through the L2-norm of their difference (e.g., Li and Yeh 1999; Zhu and Yeh 2005;
Woodbury and Ulrych 2000). The second objective aims at a somewhat optimal pre-
dictive power of stochastic model predictions (e.g., Herrera and Pinder 2005). In such
cases, the definition of optimality depends on the specific prediction purpose (e.g.,
Sun 1994). Possible scenarios may also entail minimization of more complex crite-
ria, such as exploration costs (e.g., Bakr et al. 2003), the overall sum of exploration
and remediation costs (e.g., Cirpka et al. 2004; Feyen and Gorelick 2005), or the risk
of management decisions (e.g., McPhee and Yeh 2006). The cross-reference to pa-
rameter identifiability is given by Sun and Yeh (1990b). For this second objective,
parameter uncertainty is often assessed in some intermediate step, either implicitly
or explicitly, and then propagated onto model predictions. Specified by the individual
context, this is a typically low number of predicted quantities. Seen from the perspec-
tive of optimal design, requiring minimal uncertainty for model predictions is merely
a specific form to define minimum parameter uncertainty. Hence, these two groups
are not distinguished any further in the remainder of this study.

This study reviews scalar measures of parameter uncertainty that have been trans-
ferred from the optimality alphabet to geostatistical estimation, and compares them to
the rather intuitive measures found in hydro-geostatistical applications. Additionally,
several new measures will be introduced. Five main questions will be addressed:

1. What is the physical and statistical significance of the measures transferred from
classical optimal design to spatial estimation? This discussion will disclose which
of the transferred measures lose their intended character.

2. How would the rather intuitive measures from hydro-geostatistical practice be
judged from the well-founded theoretical perspective of optimal design? This dis-
cussion seeks to reconcile hydro-geostatistical practice with optimal design the-
ory.

3. Which measures are computationally feasible for numerical evaluation when ap-
plied to large problem sizes commonly found in spatial estimation? Whenever
possible, efficient ways to evaluate the considered measures even for prohibitively
large problems are presented.

4. Based on the above three questions, new measures will be suggested. The forth
question is then, how do the newly suggested measures perform in theoretical
soundness, physical significance, and computational feasibility? To answer this
question, the current study will clarify their relation to the optimality alphabet
and related fundamental principles such as relative entropy (e.g., Woodbury and
Ulrych 1993).
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5. How easily applicable are these measures when applied to non-Gaussian and non-
linear problems? Issues of physical significance and alternative methods for nu-
merical evaluation will be presented.

For simplicity and generality, this study draws on a simple notation for cokriging with
uncertain mean and trends as introduced in Nowak and Cirpka (2004). It is a spe-
cial case of Bayesian geostatistics, where elements of the geostatistical model itself
(here the spatial function providing the mean value) are uncertain (Kitanidis 1986;
Handcock and Stein 1993). When setting spatial variability to zero within this gen-
eralized framework, the remaining uncertain trend contributions resemble standard
linear regression with prior knowledge. The special cases of kriging or cokriging
with known and unknown mean (e.g., Matheron 1971; Journel and Huijbregts 1978;
de Marsily 1986) or universal kriging (Olea 1974) are obtained easily from this gen-
eral case, just as quasi-linear extensions to weakly non-linear problems (e.g., Kitani-
dis 1996b; Hughson and Yeh 2000). The following two sections summarize cokriging
and alphabetic criteria in the traditional context. Only a minimum of basic definitions
is provided in order to install the notation used in the subsequent discussions. More
details can be found in the literature listed above.

2 Summary of Cokriging with Uncertain Mean and Trends

Consider an n × 1 random space vector s representing an unknown discretized pa-
rameter field. Its distribution is s ∼ N(Xβ,Css), i.e., multi-Gaussian with mean vec-
tor Xβ and covariance matrix Css. X is an n × p matrix containing p deterministic
trend functions and β is the corresponding p × 1 vector of trend coefficients. In
the uncertain mean case, these coefficients are again random variables, distributed
β ∼ N(β∗,Cββ) (e.g., Kitanidis 1986; Handcock and Stein 1993). In the latter dis-
tribution, β∗ defines the uncertain prior value, and Cββ defines the prior uncertainty
about β∗. While s ∼ N(Xβ,Css) holds for known values of β , s for uncertain β fol-
lows the distribution s ∼ N(Xβ∗,Gss) with

Gss = Qss + XCββXT . (1)

Gss is the n × n generalized covariance matrix of s (Matheron 1971; Cressie 1991;
Kitanidis 1993).

Now, consider the m × 1 vector of error-prone observations y related to s via a
linearized transfer function y = Hs + r, where r ∼ N(0,R) is a vector of measure-
ment errors. Measurement error is typically formalized as white noise with zero mean
and the m × m covariance matrix R. Then, for known s, the measurements have the
distribution y|s ∼ N(Hs,R). Linear error propagation yields the distribution of y for
unknown s to be y ∼ N(HXβ∗,Gyy), where

Gyy = HGssHT + R (2)

is the generalized covariance matrix of y. Using Bayes theorem,

p(s|y) = p(y|s)p(s)
p(y)

(3)
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gives the distribution of the parameters s conditional on the measurements y, s|y ∼
N(ŝ,Gss|y). This distribution has a conditional mean ŝ and a conditional covariance
Gss|y given by

ŝ = Xβ∗ + GssHT ξ ,

ξ = G−1
yy (y − HXβ∗),

(4)
Gss|y =

(
G−1

ss + HT R−1H
)−1

= Gss − GssHT G−1
yy HGss.

The latter equality is based on the often helpful identities for inverting partitioned
matrices (e.g., Schweppe 1973). Gss|y is again a generalized covariance because it
accounts for the remaining uncertainty in both the fluctuations about the mean and
the mean itself. This study will focus on measures that characterize the conditional
covariance matrix Gss|y. Mostly, the second form of Gss|y in (4) should be used be-
cause it requires no inversion of large n × n matrices, and because it is also defined
in the special case of R = 0. For highly efficient evaluation of all products involving
Gss and Gss|y in the stationary and several non-stationary cases, we refer to Nowak
et al. (2003) and to Cirpka and Nowak (2004).

When tracing the normalizing factors of the involved probability density functions
through Bayes theorem, one obtains for the determinants of the covariance matrices

det(Gss|y) = det
(
RG−1

yy
)
det(Gss). (5)

Sometimes, the same estimator is also denoted in the form of ŝ = Xβ̂ + CssHT ξ
where β̂ and ξ are obtained by solving an (m + p) × (m + p) block matrix system
(e.g., Kitanidis 1996a; Nowak and Cirpka 2004). The advantage of the generalized
covariance notation introduced here is the formal identity to the known-mean case.
The absence of symbols for estimating the mean Xβ̂ simplifies all subsequent deriva-
tions. In the limiting case of C−1

ββ = 0 (i.e., for entirely unknown mean and trends),
Gss is not defined. Then, one has to revert to block matrix notation, but all statements
based on the generalized notation issued in this study are still valid.

2.1 Transfer to Non-Gaussian and Non-linear Problems

The above equations are equivalent to the dual formulation (Galli et al. 1984) of
universal kriging (Olea 1974), if Cββ = 0 and if H is a sampling matrix that
simply extracts the measurement-parameter cross-covariance from the parameter
auto-covariance. The difference is that kriging does not require the assumption
of multi-Gaussianity. It provides a best estimate (the conditional mean ŝ) and an
estimation variance (the main diagonal of Gss|y) regardless of the actual statisti-
cal distribution. Other than that, the results are identical. If the estimation prob-
lem is indeed linear, all results discussed later in this study will apply to non-
Gaussian distributions without further modification, unless stated otherwise. For non-
linear problems, (4) is only approximate, and various restrictions will apply. In the
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weakly non-linear range (e.g., Mosegaard and Tarantola 2002), quasi-linear meth-
ods may be applied to obtain the conditional covariance (e.g., Kitanidis 1996b;
Hughson and Yeh 2000) without further modifications. If the problem exceeds the
weakly non-linear range, Monte Carlo techniques will mostly be required. Specific
hardships will be highlighted in the discussion. For example, a respective measure
may lose its original physical meaning.

3 Alphabetic Optimality in the Traditional Context

Because optimal design originates from regression-like applications, it seems appro-
priate to temporarily revert from spatial estimation to conventional regression-like
problems. This is done by stripping off the geostatistical part from (1) to (5), i.e.,
by setting Css = 0 and regarding β rather than s as primary unknowns. In the com-
mon notion of experimental design, information is defined by the Fisher information
matrix

F
(
u|H(u),X,R

)
= E

[(
∂

∂β
logp(y|β)

)(
∂

∂β
logp(y|β)

)T ]
, (6)

where u is a chosen design formalized as a set of control or decision variables, H(u)

indicates the dependence of H on the design u, and all of H(u), X and R have to
be known. F quantifies the information on the parameters β obtainable from the de-
sign u. Under the assumptions of normality and linearity made in (1) through (4),
F becomes

F(u, ·) = C−1
ββ + XT HT R−1HX, (7)

where non-Bayesian regression can be recovered by setting C−1
ββ to the zero matrix

and hence disregarding the prior. In the classical regression context, HX is replaced
by an m × 1 version of X because only direct measurements are considered, and it
is X(u) rather than H(u) that depends on the design u. Further, many publications
assume homoscedasticity, substituting R = σ 2

r I.
The Cramer–Rao inequality identifies the inverse of F as a lower bound for the

conditional covariance of the parameters, here denoted as Cββ|y. For linear regression
and normal distributions, the relation is exact. In that case, F is also the precision
matrix (i.e., the inverse of the covariance matrix) for the estimate of β and, at the
same time, the moment matrix of the design specified by HX. Thus, or alternatively
derived from (1) through (4) with Css = 0, Cββ|y is given by

Cββ|y(u, ·) =
(
C−1

ββ + XT HT R−1HX
)−1

= Cββ − CββXT HT G−1
yy HXCββ , (8)

where Gyy = R+HXCββXT HT under the current conditions. After agreeing to max-
imize information in the Fisherian sense, the only remaining question is in what sense
F(u, ·) should be maximized or, alternatively, in what sense Cββ|y(u, ·) should be
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minimized (since matrix inversion preserves matrix ordering). In most derivations,
alphabetic optimality criteria minimize corresponding measures of conditional un-
certainty that are defined by context-specific functionals φ(Cββ|y(u))

A-Optimality requires the quadratic penalty function (β̂ − β true)
T A(β̂ − β true) be-

tween the estimate and the unknown true value to be minimized. This leads to
minimization of the measure

φA = trace[ACββ|y], (9)

where A is a problem-specific non-negative definite matrix. A special case is
A = I, to which we assign the notation AI and φAI for later reference. The
meaning of the A-criterion is not changed when normalizing it by p, which
denotes the number of identified parameters in β .

C-Optimality is based on a (linearly) dependent model prediction z and requires its
prediction variance to be minimal. Given the p × 1 vector c = ∂z/∂β , it mini-
mizes the measure

φC = cT Cββ|yc. (10)

This is a special case of A-optimality with rank(A) = 1, A = ccT . C-optimality
offers an incentive to rewrite the A-criterion for rank(A) > 1 using A =
(∂z/∂β)(∂z/∂β)T for a vector z of quantities to be predicted. To this formu-
lation, we assign the notation AC and φAC for later reference.

D-Optimality minimizes the measure

φD = det[Cββ|y] (11)

and is derived by maximizing the expected gain in information entropy on β .
Its most intuitive significance is that it minimizes the hypervolume within
any confidence hyper-ellipsoid of the parameters. DA- and DS -optimality do
the same for linear combinations (DA) and subsets (DS) of β , hence be-
ing the determinant-based equivalent of the AC criterion. The meaning of the
D-criterion is not changed when taking the pth root. This is the most commonly
used criterion in the statistical literature. If the underlying distributions are not
Gaussian, the connection to entropy and confidence intervals is lost.

E-Optimality minimizes the measure

φE = max
(
eig[Cββ|y]

)
(12)

and is derived from C-optimality with unknown c. The motivation is to al-
low for a yet unknown predictive purpose of the experiment, then choosing
the worst-case c subject to the normalization cT c = 1. The worst-case c is the
eigenvector of Cββ|y that corresponds to the maximum eigenvalue.

T -Optimality minimizes the measure

φT = 1
trace[M] (13)
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in which M = C−1
ββ|y is the precision matrix of the estimator, and the moment

matrix of the design with M = XT HT R−1HX in the non-Bayesian case. A basic
drawback is that redundancy or mutual correlation among the measurements is
not accounted for. Within this study, it is seen as a measure for the signal-to-
noise ratio of measurements, where XT HT [. . .]HX is the squared L2-norm of
the signal and R is the squared L2-norm of noise.

Further criteria (e.g., the B- and G-criteria) are used much less frequently and will
not be considered in this study.

4 Relevant Differences Between Regression and Spatial Estimation

Quite obviously, regression-like problems are usually overdetermined (m > p), while
spatial estimation problems are usually underdetermined (n > m) with very large n.
This simple difference has two consequences which receive a major focus in the
next section. First, the underdetermined character of spatial estimation may affect the
significance of several measures when they are transferred to spatial estimation. The
n × 1 estimate ŝ has only m < n degrees of freedom within the subspace spanned by
GssHT , parametrized by the m × 1 vector ξ (compare Nowak and Cirpka 2004, or
see (4)). Equivalently, the conditional covariance matrix in (4) differs from the prior
only within that very same subspace. The null space of GssHT remains unaffected
by conditioning. Measures of uncertainty that display extreme sensitivity either to
this subspace or to the unaffected null space will have to be handled with care. Three
limiting cases will provide insight into the behavior of questionable measures. First,
completely unresolved variability for no or only uninformative measurements, i.e.,
m → 0 or R & HGssHT . Second, a few but perfect measurements with R = 0. And
third, complete resolution of the parameter field (compare Tarantola 1987, p. 63).

Second, fine resolution in spatial estimation renders some alphabetic criteria com-
putationally intractable. A general problem often encountered in geostatistical esti-
mation is that the sheer size of covariance matrices may overstrain even powerful
computers. For a grid size of 1000 cells along two dimensions, i.e., n = 106, a co-
variance matrix has n2 = 1012 elements and requires 8 TB (terabyte) of memory at
double precision format. Such storage restrictions may become less relevant with fu-
ture technological improvements, but the past has shown that problem sizes grow with
the newly available computing resources. Some advantageous properties can be ex-
ploited though, allowing to handle stationary Css (i.e., intrinsic Gss) on regular grids
via highly efficient methods (Zimmerman 1989). The reduced memory requirements
forced to store only one row of the matrix, i.e., 8 MB instead of 8 TB in the above
example. Extensions to specific non-stationary and conditional covariance matrices
are provided in Cirpka and Nowak (2004). For further extension to irregular grids, see
Pegram (2004) or Fritz et al. (2009). When showing computationally efficient ways
of evaluation, links to respective existing methods will be provided.



Math Geosci

5 Alphabetic Optimality Applied to Spatial Estimation

For geostatistical estimation, the alphabetic measures named above are applied to the
n×n posterior covariance matrix Css|y (e.g., Müller 2007) or, here, to the generalized
version Gss|y. In this section, the relevant differences between regression and spatial
estimation are discussed for each individual alphabetic measure.

5.1 A-Optimality

The A-criterion translates to

φA = 1
n

trace(AGss|y). (14)

Evaluating φA has only moderate computational costs since only the diagonal of Gss|y
needs to be evaluated and summed up. Extremely efficient ways for evaluation are
provided later in the context of the averaged estimation variance. The matrix trace
is invariant under the similarity transform (e.g., Lang 2002, p. 511), and hence is
the sum of all eigenvalues (e.g., Golub and van Loan 1996). This reveals φA to be
the arithmetic mean of the eigenvalues of AGss|y. For the φAI criterion (A = I), this
yields

φAI = mean
(
eig(Gss|y)

)
. (15)

It is bounded between zero and σ 2
s (the prior variance), and assumes no special value

for R = 0.
The A-measure does not change its meaning for non-Gaussian or non-linear prob-

lems. For non-linear problems, the A-criterion must be evaluated via conditional sim-
ulation in a Monte Carlo framework.

5.2 C-Optimality

The C-criterion directly translates to

φC = cT Gss|yc, (16)

with c = ∂z/∂s being the sensitivity of a model prediction z with respect to the esti-
mated parameters, yielding the prediction variance for z. If more than a single quan-
tity z is to be predicted with Hz = ∂z/∂s, the AC -measure applies with

φAC = trace
[
HT

z Gss|yHz
]
= trace

[
HzHT

z Gss|y
]
= trace[AGss|y]. (17)

An efficient method to evaluate φC uses the adjoint-state to obtain c = ∂z/∂s (e.g.,
Sykes et al. 1985; LaVenue and Pickens 1992; Sun and Yeh 1990a) and then evaluates
φC in the following order:

φC = cT d − pT q, (18)
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with d = Gssc, p = Hd and q = G−1
yy p (compare Cirpka et al. 2004; Cirpka and

Nowak 2004). The convolution d = Gssc can be swiftly evaluated using the same
methods based on the Fast Fourier Transform (FFT) as used for GssHT (Cirpka et al.
2004; Nowak et al. 2003). As a special case, setting c = v (an n× 1 vector of unit en-
tries) yields the prediction variance for the global mean value of s. For non-Gaussian
and non-linear problems, the same mild restrictions apply as for the A-measure.

5.3 D-Optimality

D-optimality applied to spatial estimation yields

φD = det(Gss|y)
1
n = prod

(
eig(Gss|y)

) 1
n . (19)

Normalization by the exponent of 1/n manifests the criterion as the geometric mean
of the eigenvalues, while leaving the original properties of the criterion untouched.
For numerical reasons, its logarithm (i.e., the sum of log-eigenvalues) might be con-
sidered for large matrices. The computational costs for φD in highly resolved fields
are unbearable in the general case. Only for the stationary case discretized on a regu-
lar grid, Dietrich and Osborne (1996) offer an efficient method to evaluate the deter-
minant of covariance matrices. When the measurements are uninformative, φD has
a value of det(Gss)

1/n, i.e., φD = σ 2
s for the stationary regular-grid case. It is zero

whenever one or more measurements are exact with det(R) = 0 (see Appendix A).
This extreme sensitivity to the presence of a single highly informative measurement
gives reason to doubt the practical use of this measure. For non-Gaussian or non-
linear problems, the D-measure loses its direct connection to information entropy
and to confidence intervals. For non-linear problems, Monte Carlo evaluation of co-
variance determinants or high-dimensional multivariate entropy has not been reported
in the literature and will be subject of future studies.

5.4 E-Optimality

The measure based on E-optimality becomes

φE = max
(
eig(Gss|y)

)
. (20)

The eigenvalues of stationary covariance matrices are most graphically understood by
their relation to the power spectrum in the Fourier space (e.g., Dietrich and Newsam
1993). Most covariance functions are dominated by the eigenvalues that correspond
to low frequencies. From this perspective, the E-measure will mostly assess whether
large-scale variability has been eliminated. Its practical utility needs to be considered
in the respective context of individual applications. The computational costs of eval-
uating some largest eigenvalues is significantly smaller than those for all eigenvalues.
Still, they will be rather unbearable for very large matrices, if the conditional covari-
ance matrix fits into the computer memory at all. For non-Gaussian and non-linear
cases, see A-criterion.
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5.5 T -Optimality

The measure based on T -optimality is

φT = 1

trace(G−1
ss ) + trace(HT R−1H)

. (21)

Since the first term is a constant, it may as well be defined as

φ∗
T = 1

trace(HT R−1H)
= 1

trace(HHT R−1)
. (22)

This small modification shrinks the size of the matrices to be handled, yielding a
computationally efficient measure. Also, the modification clarifies the character of an
inverse signal-to-noise ratio of the measurements. Just like in the regression-like case,
this measure is insensitive to redundancies or correlation among the measurements.
The resulting inability to optimize measurement spacing is a severe drawback. For
exact measurements with R → 0, this measure is useless due to φT → 0. For non-
Gaussian and non-linear cases, see A-criterion.

5.6 P -Optimality

A generalization of A-, D-, E-, and T -optimality is

φP =
[
sum

(
eig

(
GP

ss|y
))] 1

P , (23)

where the special cases are recovered for P = 1,0,−∞,−1 in the alphabetic order
listed above (compare Pukelsheim 2006, Chap. 6). This general measure seems to
be practically useless for large problems. Explicit computation of all n eigenvalues
of Gss|y is unfeasible, even for the stationary regular-grid case. For application to
non-Gaussian and non-linear problems, see the respective special cases.

5.7 Relative P -Optimality

In order to obtain a measure independent of the magnitude of the prior covariance and
with extremely reduced computational costs, measures relative to the prior covariance
may be desirable. The author suggests to normalize the conditional covariance by the
prior

φP,rel =
[
sum

(
eig

(
GP

ss|yG−P
ss

))] 1
P . (24)

The special cases of P = 1,0,−∞,−1 result in the relative versions of the A-, D-,
E-, and T -measures.

As shown in Appendix A, n−m eigenvalues of the matrix B = Gss|yG−1
ss are unity,

and the m other eigenvalues are those of the small m × m matrix M = Gyy
−1R. For

the product of all eigenvalues, this can immediately be derived from (5). The simple
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behavior of the eigenvalues allows to formulate the relative measure for any P ∈ R
at small computational costs

φP,rel =
[

(n − m) +
m∑

i=1

λP
i (M)

] 1
P

. (25)

For all P ∈ R, it approaches a value of unity when the measurements are uninforma-
tive, i.e., R & HGssHT and hence M → I. Its lower bound for the limit R → 0 is
(n − m)/n and 0 for P = 1 and P = 0, respectively. The case P = −∞ (the relative
E-measure) is mostly useless because φP=1,rel = 1, unless there are m ≥ n measure-
ments. The most interesting case will be P = 0, i.e., the relative D-measure

φD,rel =
m∏

i=1

λi (M). (26)

As a side-product, an interesting related measure solely based on the measurement-
related matrix M = Gyy

−1R is

φ∗
AI,rel = 1

m
sum

(
eig

(
G−1

yy R
))

. (27)

The case φ∗
AI,rel = 1 implies that the measurements are uninformative. R = 0 is suf-

ficient for φ∗
AI,rel = 0, regardless of m and n. It is a measure for the average noise-

to-signal ratio of the measurements. However, in contrast to the T -measure, it does
account for mutual correlation and redundancy of data. For non-Gaussian and non-
linear problems, see the respective special cases for the original P -measure.

6 Other Measures and Their Relation to the Alphabet

6.1 Average Estimation Variance

The estimation variance is the conditional covariance for a separation distance of
zero, defined by diag(Gss|y). A seeming ad-hoc measure for uncertainty is its spatial
average (e.g., Diggle and Ribeiro 2007). Assuming a regular grid of the estimated
parameters, it is

σ̄ 2
est = mean

(
diag(Gss|y)

)
= 1

n
trace(Gss|y) = φAI . (28)

This unmasks σ̄ 2
est as the AI -criterion and hence provides a sound theoretical basis.

Fritz, Nowak and Neuweiler (2009) showed an efficient order of evaluation that leads
to

1
n

trace
(
Gss|y

)
= σ 2

s − 1
n

trace
(
G∗

yyG−1
yy

)
, (29)
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where G∗
yy = HGssGssHT is evaluated just like Gyy, only with a modified covariance

function G∗ = GssGss, and σ 2
s is the prior variance. Intuition may suggest that σ̄ 2

est
has limited information about the entire matrix because it merely represents the zero
separation distance elements on the diagonal. The relation to φAI , however, shows
that σ̄ 2

est is the average of all eigenvalues, and so quantifies the entire conditional
uncertainty. For properties in non-Gaussian and non-linear cases, see the A-measure.

6.2 Empirical Covariance

The empirical covariance Ces between a random synthetic field sr and the corre-
sponding estimated field ŝ is

Ces = Cov[sr , ŝ] = 1
n
(sr − Xβ∗)T (ŝ − Xβ∗). (30)

It is mostly applied graphically in scatter plots rather than by direct numerical evalu-
ation. Various authors used it to assess the asymptotic exactness of data assimilation
techniques in theoretical studies, or to assess the power of design proposals in syn-
thetic test cases (e.g., Li and Yeh 1999; Zhu and Yeh 2005; Woodbury and Ulrych
2000). As shown in Appendix B, it is related to the mean estimation variance through
its expected value

E[Ces] = σ 2
s − σ̄ 2

est = σ 2
s − φAI . (31)

Ces is affected by the actual values used in the realization sr , while the mean es-
timation variance is not. This renders the mean estimation variance the statistically
more significant criterion, unless the domain under consideration is large enough to
be ergodic or the estimate ŝ and Ces are evaluated multiple times for different sr in a
Monte Carlo framework. This measure is entirely unaffected by non-Gaussianity or
non-linearity.

6.3 Empirical L2-Measure

The L2-norm of the difference between a synthetic field and its estimate, used by the
same authors as the empirical covariance, is

L2 = MSE[sr , ŝ] = 1
n
(ŝ − sr )

T (ŝ − sr ). (32)

Its expected value is identical to σ̄ 2
est = φAI because (co-)kriging is a minimum vari-

ance estimator

E[L2] = σ̄ 2
est = φAI . (33)

Therefore, similar to Ces, the same advantages and disadvantages apply.
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6.4 Averaged Conditional Integral Scale

The above measures have quantified the magnitude of the conditional covariance. Be-
sides the magnitude, the character in terms of a characteristic length scale of correla-
tion may also be of interest. For stationary covariance functions Css(h), the integral
scale %s provides a measure for the characteristic length

%s = 1
σ 2

s

∫ ∞

0
Css(h) dh, (34)

where σ 2
s is the field variance. Its significance lies in the effect of variability on flow-

and transport processes through heterogeneous porous media, where the integral scale
often appears in analytical solutions (e.g., Rubin 2003). The current study suggests
applying the same concept to the (non-stationary) conditional covariance, leading to
an averaged conditional integral scale %̄ss|y. The spatial averaging is required to over-
come the non-stationarity induced by conditioning. The idea is similar to using the
spatially averaged conditional variance σ̄ 2

est as a measure. Cirpka and Nowak (2003)
devised the stationary counterpart of the conditional covariance. They achieved sta-
tionarity by averaging the non-stationary conditional covariance matrix along its di-
agonals, i.e., among identical separation vectors. Since the order of summation (re-
placing the integral in (34)) and taking the averages along the diagonals (removing
the non-stationarity) is irrelevant, (34) leads to

%̄ss|y ≈ 1

&Lnσ̄ 2
est

vT Gss|yv ∝ φC, (35)

where v is an n× 1 vector of ones and &L is the length of individual discrete section
of s.
%̄ss|y can be seen as the ratio between off-diagonal and diagonal entries of the

conditional covariance matrix and therefore complements the A-measure which con-
siders only the diagonal entries.

The above expression does not distinguish between fluctuations about the mean
and uncertainty of the mean itself. The most meaningful results are obtained when
not using the generalized covariance in this expression. The resulting value is only
approximate due to geometrical boundary effects. These boundary effects cancel out
when both the initial and the conditional integral scale are evaluated according to this
equation for direct comparison.

In higher dimensional cases, the equation becomes (here: 3D)

%̄3
ss|y ≈ 1

&V nσ̄ 2
est

vT Gss|yv, (36)

and offers a characteristic volume instead of a characteristic length. Apparently, %̄ss|y
is proportional to φC when setting c = v. The same efficient method for evaluation
applies. The identity to φC underpins the new quantity %̄ss|y with a well-known the-
oretical basis to be found in the statistical literature. It also reveals %̄ss|y to be pro-
portional to the variance of predicting the global spatial mean (not to be confused
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with the true population mean). For non-Gaussian and non-linear cases, %̄ss|y is easily
evaluated via the variance of the global spatial mean in a Monte Carlo framework.
The meaning is not affected.

6.5 Entropy and Relative Entropy

Minimizing entropy or maximizing relative entropy (often called the Kullback–
Leiber divergence in the context of optimal design or information theory) has been
used to derive Bayesian D-optimality by some authors (e.g., Chaloner and Verdinelli
1995). Within the subsurface community, the concepts of entropy and relative en-
tropy have received high attention, e.g., to select parametric distributions for hyper-
parameters (Woodbury and Ulrych 1993; Woodbury and Rubin 2000), to characterize
parametric uncertainty de Barros and Rubin 2008, and to quantify the dilution of dis-
solved compounds (Kitanidis 1994). Therefore, the connection between entropy and
the D-measure shall be highlighted. The D-measure represents the entropy of the
conditional distribution p(s|y), which is a well-known result. The logarithm of the
relative D-measure is the entropy difference between p(s) and p(s|y) and the ex-
pected relative entropy of p(s|y) over p(s). The relative and absolute D-measure
yield equivalent design criteria, since they differ only by a constant. The required
proofs are provided in Appendix C. The difference between these two criteria is that
the relative measure is evaluated at speed because it is entirely based on the small
m × m matrix M = Gyy

−1R. The relation between the relative D-measure and rela-
tive entropy supplies a solid theoretical basis and a profound physical meaning. Due
to its equivalence as design criterion, it may replace the computationally much more
costly original D-measure. Still, it shares the same restrictions for non-Gaussian and
non-linear problems as the original D-measure.

7 Illustration

For illustration, four design test cases are provided. The intention is to demonstrate
how the different measures react to elementary changes in geostatistical design. A do-
main sized 1,000 × 1,000 meters is discretized on a regular grid with 500 × 500
cells (n = 250,000). Log-conductivity Y = logK is assumed to be multi-Gaussian,
second-order stationary with isotropic exponential covariance function (variance
σ 2

Y = 1, correlation length λ= 100 m) and uncertain mean (β∗ = log 10−5, σ 2
β = 1).

Synthetic conductivity fields and data sets are generated by random simulation. Avail-
able measurement types are direct measurements of Y with a standard deviation of
measurement error σr = 0.5 (σr = 0 in Case 2), and measurements of hydraulic heads
h with σr = 0.01 m. Hydraulic heads are defined by the confined depth-integrated
groundwater flow equation with no-flow conditions on the north and south bound-
aries and fixed head boundary conditions of h = 1 and h = 0 m on the east and west
boundaries. Conditioning on hydraulic head data is achieved by the quasi-linear geo-
statistical approach (Kitanidis 1995) with known covariance function, adjoint-state
sensitivities (e.g., Sykes et al. 1985), FFT-based computation of cross- and auto-
covariances (Nowak et al. 2003) and stabilized by a modified Levenberg–Marquardt
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Fig. 1 Estimation variances and measurement locations for four test cases. X-marks, measurements of
log-conductivity Y ; circles, measurements of hydraulic heads; squares, position of unknown hydraulic
head used to define the C-measure. Case 2 features exact measurements of Y , while Case 1 features
uncertain measurements

algorithm (Nowak and Cirpka 2004). Figure 1 shows the four different designs. Each
design is evaluated using several of the measures featured in the current study. Ta-
ble 1 provides the resulting values. The CPU times using the suggested methods for
efficient computation are also provided. The D-, E- and P -measures are not con-
sidered because the involved n × n = 250,000 × 250,000 covariance matrices would
require 500 GB of memory, preventing the computation of eigenvalues within a feasi-
ble time frame (estimated CPU time on the reference computer would be one month
to compute the determinant). The empirical covariance and L2 norm are not included
because they react to changes in the design just like the A-measure. Depending on
actual data values and the respective synthetic parameter field, a significant discus-
sion of the covariance and the L2 norm would have to consider their average values
over many realizations and synthetic data sets.

The A-measure reacts to the four different design setups as desired, more pre-
cise measurements (Case 2) yield a smaller value than less precise ones (Case 1).
An areal better coverage of the domain with less correlated measurements lead to
a smaller parameter uncertainty (Case 3), and adding hydraulic head measurements
as additional information leads to a further reduction of parameter uncertainty. The
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Table 1 Values of diverse measures for the test cases show in Fig. 1. Values for φA , φC and %̄ss|y are
normalized by their values at the prior stage (in absence of all measurements). CPU time (milliseconds)
evaluated in MATLAB 2006b on a Dual Core Machine at 2 GHz

Case # φA φC φT φD,rel %̄ss|y

1 0.4987 0.6133 0.1963 0.9999 0.9095

2 0.4826 0.5591 0 0 0.9075

3 0.4283 0.4874 0.1963 0.9998 0.8051

4 0.3345 0.0526 0.1847 0.9997 1.0297

CPU [ms] 200 0.1 100 10 500

direct connection to the estimation variances plotted in Fig. 1 allows an intuitive un-
derstanding of this measure. The C-measure is more application-specific than the
A-measure. Here, it is defined as the prediction variance of the hydraulic head value
in the center of the domain. Hydraulic heads have a domain-wide dipole-like sen-
sitivity function and cross-covariance to conductivity. Due to the global (sometimes
called non-local) character, it reacts similarly to the A-measure in Cases 1 through 3.
The strongest reduction of its value is achieved when measuring similar quantities
(here neighboring head values) because similar measurements restrict the variance
of similar components of the parameter field. The inadequacy of the T -measure is
clearly demonstrated in the four cases. Different measurement spacing (Case 1 and
Case 3) do not lead to a different value, although less correlated measurements con-
vey more information. Perfect measurements with R = 0 (Case 2) lead to a value of
zero, although the system is not fully determined.

The relative D-measure does reflect the correlation between measurements and
the amount of information they contain (Cases 1, 3 and 4). Its value hardly changes
because out of n = 250,000 dimensions of the parameter space only m = 16 (Case 1
and 3) or m = 32 (Case 4) are restricted by the measurements. For precise mea-
surements (Case 2), the measure assumes a value of zero. This is because the D-
measure is the product of variances in the individual subspaces, and a single pre-
cise measurement overrules all remaining uncertainty. This harsh reaction to pre-
cise measurements is out of proportion to the remaining uncertainty. In presence of
precise measurements, all alternative designs are D-equivalent and cannot be dis-
tinguished. The averaged conditional integral scale %̄ss|y is a complementary mea-
sure to characterize the scale of remaining uncertainty. The most intuitive cases
are Cases 1 and 3, in which sampling on a coarser mesh clearly suppresses un-
certainties in longer-range components, leading to a smaller integral scale. The in-
creased integral scale in Case 4 is non-trivial and cannot be understood intuitively.
This behavior results from an interference between the dipole-character of hydraulic
heads and the spectrum of the exponential covariance function. In general, mea-
surements with a large support volume (i.e., with wide-range sensitivities) will lead
to less uncertainty in large-scale components of the parameter field, and hence to
smaller integral scales. Examples are hydraulic tomography (e.g., Yeh and Liu 2000;
Li et al. 2005) or tracer tests (e.g., Nowak and Cirpka 2006).
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8 Summary and Conclusions

This study reviewed measures for parameter uncertainty in spatial estimation which
are taken from optimal design criteria. Their properties were illustrated in a synthetic
case study. As a representative method for spatial estimation, cokriging in the gener-
alized case of uncertain mean and trends was chosen. The design criteria were taken
from the alphabetic optimality (the A-, C-, D-, E-, T -, and P -criteria). A specific
peculiarity of conditional covariance matrices in geostatistical estimation is that they
differ from the prior covariance matrix only in a subspace with rank limited to the
number of measurements. This property is the key to swift and efficient evaluation
of eigenvalues and helps drastically speed up some computations. Unfortunately, it
also gives rise to some adverse properties of the reviewed measures that required
further attention. When applying the optimality alphabet to geostatistical estimation,
the computational effort of evaluating the associated measures of uncertainty plays
a crucial role. Ways of swift evaluation for the A-, C- and T -measures were pre-
sented. The D- and generalized P -measure (and the E-measure to a lesser extent)
were found to be not applicable in finely resolved cases. Discussion of their properties
in the geostatistical context revealed that the D-measure is overly sensitive to single
exact measurements. The E-measure is sensitive only to the largest contribution in
the power spectrum of the prior covariance. The T -measure is insensitive to redun-
dancy or correlation among the data. Similar measures relative to the prior covariance
matrix have been defined in this study. It was shown that the involved eigenvalues are
related to much smaller matrices and hence can be evaluated at speed. These relative
measures are computationally much more efficient than their original versions, but
mostly lack theoretical support from existing statistical literature.

While the original D-measure receives most attention outside the geostatistical
area, computational costs rule it out for application to geostatistical problems. The
current study suggests using the new relative D-measure instead, which can be com-
puted in virtually no time. It was also shown to differ from the original D-criterion
by only a constant. Its coincidence with relative entropy provides a sound theoret-
ical basis and profound physical meaning. As a downside, the D-measure loses its
attractive connection to information entropy in non-Gaussian or non-linear cases, as
inherited from the original D-measure. Several rather intuitive measures of spatial
uncertainty have also been reviewed. They find more frequent application in the sub-
surface, but less in the statistical community. These intuitive measures include the
averaged estimation variance, and the empirical L2-norm or covariance between syn-
thetic fields and their corresponding estimates. Their evaluation is bare of significant
computational effort. For non-linear problems, they are easily evaluated from Monte
Carlo simulations. They maintain their original significance for non-Gaussian and
non-linear problems. Most importantly, the averaged estimation variance is identical
to the well-founded A-measure. L2-norm and covariance are directly linked to the
A-measure. The averaged conditional integral scale is a new measure complimentary
to these intuitive measures. It quantifies how the character of uncertainty changes un-
der conditioning. It is theoretically supported by its identity to a specific case of the
C-measure, and holds for both non-linear and non-Gaussian cases.

The results of this study recommend the use of spatial average of the estimation
variance as an all-purpose measure (i.e., unless the design task at hand suggests using
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a different context-specific criterion). This is due to its intuitive understanding, its
identity to the A-criterion and the associated theoretical support, due to its computa-
tional efficiency, and its validity for non-Gaussian and non-linear problems. Being the
arithmetic mean of all eigenvalues of the conditional covariance matrix, it subsumes
more information than an intuitive understanding of the zero-separation estimation
variance distance may suggest. If desired, it can be escorted by the averaged con-
ditional integral scale in order to characterize the changing character of uncertainty
under conditioning. The averaged conditional integral scale shares the latter list of ad-
vantages. The above recommendation contradicts the fact that statistical studies com-
monly use the D-criterion. However, the new relative D-measure offers an attractive
alternative since it represents relative entropy, differs from the original D-criterion
only by a constant, and is evaluated at speed.

Acknowledgements This study is funded by the Deutsche Forschungsgemeinschaft (DFG) under grant
No. 805-1/1. The author is indebted to Wolfgang Hein for his contributions to Appendix A, to Felipe de
Barros and Olaf Cirpka for their productive comments on the manuscript, and to the anonymous reviewers.

Appendix A

Proposition 1 The matrix B = Gss|yG−1
ss has n−m eigenvalues of unity and m eigen-

values given by those of the m×m matrix M = Gyy
−1R for any non-negative finite R.

Proof Set U = GssHT , V = G−1
yy H, Q = UV, and S = VU, where U is n × m and V

is m × n. It is easily checked that

B = I − Q,
(37)

M = I − S,

and that QU = US and SV = VQ. For given ranks rank(H) = mh ≤ m, rank(Gss) =
n and rank(G−1

yy ) = m, it follows that rank(U) = rank(V) ≤ m and rank(Q) ≤ m,
so that the nullity of Q is µ(Q) = n − rank(Q) ≥ n − m, and thus the multiplicity
of the unit eigenvalue for B = I − Q is dim(eig1(B)) ≥ n − m with equality for
rank(H) = m.

Now let x be an eigenvector of Q with corresponding eigenvalue λ -= 0. Due to
SV = VQ, the same λ is an eigenvalue of S with eigenvector Vx:

Qx = λx .⇒ VQx = SVx = λVx, (38)

where, at the same time, Vx -= 0 because Vx = 0 ⇒ UVx = 0 ⇒ Qx = 0 was ex-
cluded by choosing λ -= 0. Since (38) holds for all λ -= 0 from the spectrum λ(Q),
each non-zero eigenvalue of S is also an eigenvalue of Q. Due to (37), each non-unit
eigenvalue of B = I − Q is also an eigenvalue of M = I − S, which completes the
proof. !

Remark 1 For the special case R = 0, Q is idempotent with Qk = Q ∀k, i.e., a projec-
tion matrix, and V is a reflexive generalized inverse of U as expected for a minimum-
norm solution of (4). For the general case of R -= 0, Q is what might be called an
incomplete projection matrix with general equation Qk = US(k−1)V.
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Remark 2 For R = 0 it follows that M = G−1
yy R = 0, so that matrix B has n − m

eigenvalues of unity and m eigenvalues of zero. For R & HGssHT it follows that
S → 0, and hence from (37) that M → I, so that all eigenvalues of B are unity.

Appendix B

Proposition 2 Ces, as given by (30), has an expected value according to (31).

Proof Decompose the random vector s into

s = z + Xβ∗,
(39)

E[z] = 0, Cov[z] = Gss

and formulate the measurements in terms of this decomposition:

y = Hs + r = Hz + HXβ∗ + r. (40)

Since Ces is a scalar, it is identical to its trace. The trace is invariant for cyclic permu-
tations, so that

Ces = 1
n

Trace
[
(sr − Xβ∗)(ŝ − Xβ∗)T

]
. (41)

Next, we apply the expected value operator inside the trace, use (4), (39) and (40)
and simplify to obtain

E[Ces] = 1
n

Trace
[
E

[
(sr − Xβ∗)(ŝ − Xβ∗)T

]]

= 1
n

Trace
[
E

[
zzT

]
HT Gyy

−1HGss
]

= 1
n

Trace
[
GssHT Gyy

−1HGss
]
. (42)

Comparison to (28) and Gss|y in (4) completes the proof. !

Appendix C

1. The entropy of a random variable s with distribution p(s) is defined as

h(s) = −
∫ +∞

−∞
p(s) log

(
p(s)

)
ds. (43)

For the Gaussian distributions at hand, this yields

h(s) = n

2
+ n

2
log(2π) + log

(
det(Gss)

)
,

(44)
h(s|y) = n

2
+ n

2
log(2π) + log

(
det(Gss|y)

)
.
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Requiring minimum entropy h(s|y) (or maximum information) leads to minimiz-
ing φD .

2. (a) The difference of entropy &h = h(s|y) − h(s) simplifies to the log of the rela-
tive D-measure (26):

&h(s|y, s) = log
(
det

(
Gss|yG−1

ss
))

= logφD,rel. (45)

(b) The relative entropy of a distribution q(s) over p(s) is defined as

hrel(q,p) = −
∫ +∞

−∞
q(s) log

(
q(s)
p(s)

)
ds. (46)

Applying this to posterior p(s|y) over p(s) requires some rearrangement before
reaching the expression

hrel(s|y, s) = &h(s|y, s) − 1
2

trace
(
GssHT

(
G−1

yy − ξξT
)
H

)
, (47)

where ξ contains the cokriging weights. This is still a function of the actual
data values in y via ξ . Taking its expected value over the distribution p(y) with
E[ξξT ] = G−1

yy again leads to the relative D-measure:

E
[
hrel(s|y, s)

]
=&h(s|y, s) = logφD,rel. (48)

3. Since h(s) is a constant for a given prior, the relative and the absolute D-measure
yield equivalent design criteria. This follows directly from comparison of (45)
and (47) and the fact that h(s) is a constant for a given problem.
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