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Abstract

Time-related advection-based well-head protection zones are commonly used

to manage the contamination risk of drinking water wells. According to cur-

rent Water Safety Plans, catchment managers and stakeholders need more

information for advanced risk management to better control and monitor all

possible hazards within catchments. The goal of this work is to cast the four

advective-dispersive intrinsic well vulnerability criteria by Frind et al. [1] into

a framework of probabilistic risk assessment. These criteria are the (i) arrival

time and (ii) level of peak concentration, (iii) time until first arrival of critical

concentrations and (iv) exposure time. Our probabilistic framework yields

catchment-wide maps that show the probability to exceed critical values for

each of these criteria. This provides indispensable information for catchment

managers and stakeholders to perform probabilistic exposure risk assessment

and so improves the basis for risk-informed well-head management.
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We separate the uncertainty of plume location and actual dilution by re-

solving heterogeneity with high-resolution Monte Carlo simulations. To keep

computational costs low, we adopt a reverse transport formulation, and com-

bine it with the temporal moment approach for model reduction. We recover

the time-dependent breakthrough curves and well vulnerability criteria from

the temporal moments by Maximum Entropy reconstruction in log-time.

Our method is independent of dimensionality, boundary conditions and can

account for arbitrary sources of uncertainty. It can be coupled with any

method for conditioning on available data. For simplicity, we demonstrate

the concept on a 2D example, using the Bayesian version of the General-

ized Likelihood Uncertainty Estimator (GLUE) for conditioning on synthetic

data.

Keywords: well catchment delineation, groundwater protection, well

vulnerability, risk assessment, uncertainty, Bayesian GLUE
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1. Introduction1

The increasing demand on safe drinking water and the risks posed by2

groundwater contamination lead to a conflict between interests of economics3

and the goal to maintain high standards in water quality. As early as in 1975,4

the US Nuclear Regulatory Commission [2] required to perform probabilistic5

risk assessment (PRA) for nuclear power plants. A decade later, the US Envi-6

ronmental Protection Agency (EPA) started to give risk assessment guidance7

for Superfund sites in groundwater engineering [3]. In 2004, the World Health8

Organization (WHO) [4] stated within their drinking water guideline, that9

“Drinking-water quality is an issue of concern for human health in developing10

and developed countries world-wide”. They recommend using groundwater11

protection management schemes in order to ensure clean and safe drinking12

water via implementing Water Safety Plans (WSP) [5] into legislation. The13

fully applied Water Safety Plans aim to know (1) what kind of hazards exist14

within the water catchment, (2) how these hazards can be controlled and (3)15

knowing that they are controlled. The WSP will most probably be part of the16

upcoming revision of the European Council Directive 98/83/EC [6], forcing17

water managers to perform risk management and to take risk-based decisions18

for pumping safe drinking water.19

A classical approach for risk control is to delineate time-related well-head20

protection areas by calculating hypothetical travel-time zones in a determin-21

istic fashion, as suggested by the US EPA [7]. Evers and Lerner [8] pointed22

out the importance of asking the question: How uncertain is our estimate of23

well-head protection zones? Unfortunately, each model is just an idealiza-24

tion of the real world, taking a set of assumptions and approximations for25
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modeling a physical subsystem. These assumptions include, among others,26

initial and boundary conditions, discretization schemes, or even simplistic27

mathematical descriptions of the observed or unobserved physical behavior.28

This inevitably invokes the problem of model uncertainty, leading engineers29

and scientists to ask the question which model alternative represents reality30

best (e.g., Neuman [9], Hoeting et al. [10] and Park et al. [11]). Additionally,31

the lack of knowledge about the subsurface, heterogeneity and the scarcity32

of data lead to uncertainty in material properties. These uncertainties affect33

physical subsurface processes such as dilution and spreading of contaminant34

plumes to a large extent (e.g., Rubin [12]).35

Aven [13] states that “uncertainty analysis constitutes an integral aspect of36

the risk analysis”. It is therefore indispensable to cast the question of well37

safety and related risks into a probabilistic framework, admit and quantify38

uncertainty, perform probabilistic risk analysis, and finally seek for condi-39

tioning or data assimilation tools to reduce epistemic uncertainty as far as40

possible (e.g., Feyen et al. [14]).41

Varljen and Shafer [15] were the first to use random space functions for42

the hydraulic conductivity K in order to delineate well capture zones prob-43

abilistically, performing conditional Monte Carlo simulations. Other early44

work in this field was done, for example, by Franzetti and Guadagnini [16]45

and by van Leeuwen et al. [17]. Many more studies followed, such as Ja-46

cobson et al. [18] using analytical, Stauffer et al. [19] using semi-analytical47

and Vassolo et al. [20], Feyen et al. [14] and Moutsopoulos et al. [21] using48

numerical approaches to delineate well capture zones while considering un-49

certainty. The uncertainty in delineating well-head protections areas is, of50
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course, expressed by probability density functions. Cole and Silliman [22]51

expressed the uncertainty in capture zone location by “percentile capture52

contours”, whereas Guadagnini and Franzetti [23] introduced the concept of53

“probabilistic isochrones”.54

Delineating well capture zones most commonly relies on purely advective55

transport considerations, e.g., based on forward or backward particle tracking56

(Pollock [24], Moutsopoulos et al. [21]). We see several disadvantages with57

purely advective approaches: (1) hydromechanical dispersion is neglected,58

although it leads to dilution of peak concentrations and natural attenuation,59

and allows contaminants to move across the bounding streamlines. Therefore,60

purely advective approaches form only a poor basis for risk assessment. (2)61

The computational effort when using large particle numbers to finely resolve62

the capture zone outline (e.g., Tosco et al. [25]) is substantial and may become63

prohibitive for large catchments.64

In view of these limitations, Frind et al. [1] introduced four well vulner-65

ability criteria, based on advective and dispersive transport considerations.66

These criteria consider the dilution of potential spill events due to dispersive67

mechanisms. They also deliver additional information for well catchment68

managers and stakeholders, such as mean breakthrough or peak arrival time,69

peak concentration levels or well down time (see Section 2.2 for more details).70

To account for the effects of heterogeneity in solute transport, Frind et al.71

[1] used a macrodispersion approach (e.g., Gelhar and Axness [26], Dagan72

[27]). One disadvantage of macrodispersion is that it cannot distinguish be-73

tween the uncertainty in plume location and the actual dilution of the plume.74

Under non-ergodic transport conditions, the macrodispersion approach fails75

5
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to capture peak concentrations (e.g., Andricevic and Cvetkovic [28]) and thus76

will not accurately reflect the risk of well contamination. This is due to spatial77

integration over irregular plume outlines (spreading) and ensemble averaging78

over uncertain plume positions. The only exceptions are at the limits of large79

plumes at late travel times (e.g., Dagan [27], Dentz et al. [29]). In the con-80

text of intrinsic well vulnerabilities, dilution is a key factor. It represents the81

decrease of peak concentrations as mass is distributed over larger volumes82

(e.g., Kitanidis [30]). This process is primarily influenced by local-scale (hy-83

drodynamic) dispersion and pore-scale diffusion. Therefore, we argue that84

it is necessary to separate dilution from spreading and from the uncertainty85

of the plume location in probabilistic well exposure risk assessment, and will86

do so within our approach (see Section 2).87

In risk management, the risk of failure of not to meet the risk objective88

(here: pumping safe drinking water) is characterized by the magnitude of the89

adverse effects (e.g., contaminant levels) and the corresponding likelihood of90

occurrence. In this study, we address the uncertainty of intrinsic well vul-91

nerability criteria (see Section 3.3) via vulnerability isopercentiles (VIPs).92

We will characterize the latter by the probability to exceed critical values93

of well vulnerability criteria, leading to VIP maps within the entire catch-94

ment. Therefore, the necessary information for probabilistic exposure risk95

assessment can easily be derived from our VIPs.96

Considering human health risk also requires toxicity assessment, taking all97

possible pathways of ingestion, dermal contact, etc. into account (e.g., Oberg98

and Bergback [31], Cushman et al. [32], US EPA [3]). The resulting health99

risk is always specific to individual contaminants and would be, of course, also100
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uncertain. Considering uncertainty in health related parameters is discussed,101

e.g., by de Barros and Rubin [33], de Barros et al. [34] and de Barros et al.102

[35]. In contrast, vulnerability criteria such as the ones by Frind et al. [1] are103

called intrinsic because they do not include contaminant-specific sorption,104

degradation and toxicity factors, but solely focus on the aquifer’s general105

transport properties between contaminant spill location and the pumping106

well. They can easily be embedded into the multi-barrier context, where they107

would stand for the transport segment within the aquifer (see Frind et al.108

[1]). They also provide the basic (conservative) transport information that109

is for all possible contaminants under consideration, which can be used to110

reconstruct specific reactive and retarded transport information with smart111

and relatively simply approaches (e.g., Cirpka and Valocchi [36]). Thus, if112

cast into an adequate probabilistic framework, the four criteria fully account113

for the key questions posed by the Water Safety Plans, which are needed114

by drinking water managers and stakeholders for risk-based decisions within115

the catchment. This makes our proposed VIPs the fundamental and most116

essential basis for exposure risk assessment in actively managed well-head117

protection areas.118

2. Approach119

2.1. Goals and Approach120

The goal of this study is to cast the intrinsic well vulnerability criteria121

by Frind et al. [1] into a probabilistic framework, while separating between122

actual dilution and uncertainty in plume spreading and location. The pre-123

sented work is a combination of Frind et al. [1], Neupauer and Wilson [37],124
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Harvey and Gorelick [38] and Feyen et al. [39]. The novel combination of125

these building blocks (see Fig. 1) will be explained in the following. The126

corresponding equations are provided in Section 3.127

In order to distinguish between the uncertainty in plume location and128

actual dilution, we use Monte Carlo simulations that resolve spatial hetero-129

geneity while using local-scale dispersivities. In block (1a) of Fig. 1, Monte130

Carlo methods lead to cumulative distribution functions instead of just sta-131

tistical moments. This is also the reason why the US EPA [40] proposes their132

use in probabilistic risk assessment. This enables us to calculate maps of vul-133

nerability isopercentiles, i.e., each point in the catchment will be assigned a134

probability that a given critical level of vulnerability is exceeded.135

In order to reduce uncertainty, one can couple Monte Carlo simulations136

with any kind of conditioning schemes in block (1b) of Fig. 1, such as the137

Bayesian GLUE (e.g., Feyen et al. [41]), Ensemble Kalman Filters for param-138

eter estimation (e.g., Nowak et al. [42]), Markov-Chain-Monte Carlo meth-139

ods (e.g., Zanini and Kitanidis [43]), the Quasi-linear geostatistical approach140

(e.g., Kitanidis [44]) and upgrades (e.g., Nowak and Cirpka [45]) or many141

other methods (e.g., Alcolea et al. [46], Franssen et al. [47]). Because there142

are many possibilities, each with specific advantages and disadvantages (see,143

e.g., Franssen et al. [48]), we kept our probabilistic well vulnerability concept144

independent of the actual choice for the conditioning method. In the illus-145

trative synthetic example provided in Section 4, we will choose the Bayesian146

version of the GLUE (e.g., Feyen et al. [39]) due to its large flexibility.147

Computational costs are the major disadvantage of Monte Carlo. To reduce148

the computational effort, we will invoke a model reduction based on temporal149

8
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moments in combination with the reverse formulation of advective-dispersive150

transport after Neupauer and Wilson [37] (block (2) in Fig. 1). The reverse151

formulation can calculate capture zones in a most efficient way in situations152

where contaminant spills could occur anywhere within the domain. The rea-153

son is that it delivers the required information about solute transport from all154

possible spill locations in a single transport simulation. Instead of releasing155

a solute tracer at each location xi within the domain and then solving many156

separate transport simulations within the same flow field, it reverses the di-157

rection of flow and injects a virtual tracer into the groundwater well that is158

now pumping into the aquifer. The reverse modeling approach is formally159

based on the adjoint-state solution of solute transport and is conceptually160

similar to backward particle tracking (e.g., Uffink [49], Frind et al. [1]).161

Harvey and Gorelick [38] showed that it is possible to simulate temporal162

characteristics of transport with moment generating equations (see Fig. 2).163

Here we apply their method to the reverse formulation. Information on the164

physical meaning of temporal moments is provided by Cirpka and Kitanidis165

[50]. The major advantage of using temporal moments is the dramatic gain166

in computational efficiency in comparison to transient transport calculations.167

As a drawback, steady state velocity has to be assumed. However, according168

to Reilly and Pollock [51], this is only a small disadvantage, because seasonal169

variations are of minor importance for catchment delineation.170

In order to evaluate intrinsic well vulnerability criteria, the full time behavior171

of breakthrough curves (BTC) has to be reconstructed from their temporal172

moments (block (3) in Fig. 1). Harvey and Gorelick [38] proposed the use173

of the method of Maximum Entropy in log-time to reconstruct breakthrough174

9
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curves from moments. Among all reconstruction options, the maximum en-175

tropy principle assumes as little as possible and is therefore the least subjec-176

tive way of reconstruction (e.g., Jaynes [52], Woodbury and Ulrych [53]).177

The major advantage of our overall approach is that it is conceptually178

simple. It only needs minimal code development, and it is fully compatible179

with commercial simulation software, where no source codes can be intruded180

or modified. Furthermore, it can be applied to arbitrarily complex problems181

that include any kind of model uncertainty, uncertainty in boundary condi-182

tions, geostatistical assumptions, non-stationarity, and all other sources of183

uncertainty that might be important to consider in PRA (e.g., Oberg and184

Bergback [31]).185

2.2. Well Vulnerability Criteria in a Risk Context186

The four intrinsic well vulnerability criteria defined by Frind et al. [1] (see187

Fig. 2) are:188

1. The time between a spill event and arrival at the well, where Frind189

et al. [1] used bulk arrival time t50 and we will use peak arrival time190

tpeak instead (see discussion in Section 5.2);191

2. The level of peak concentration cpeak relative to the spill concentration192

cspill;193

3. The time tcrit to breach a given threshold concentration ccrit (e.g., a194

drinking-water standard); and195

4. The time of exposure texp during which the threshold concentration is196

exceeded.197

10
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We will now reconsider these criteria within the new probabilistic context.198

The first criterion tpeak represents the most common time-related capture de-199

lineation scheme. For example, German guidelines [54] state, that the critical200

travel time to ensure microbiological safety of drinking water is t = 50 days.201

By original definition, the capture zone is delineated according to the arrival202

of bulk concentration, often denoted as t50. Here we consider the arrival203

time of the peak instead, because the often observed tailing of breakthrough204

curves typically leads to earlier peak arrival tpeak than bulk arrival t50 in het-205

erogeneous media (see later discussion Section 5). Therefore, we believe that206

tpeak is the more conservative and relevant criterion. Knowing the probability207

distribution of tpeak delivers the information necessary to assess the risk of208

not meeting the legal regulation about time-related delineation. This allows209

to rationally choose larger catchment outlines for safety reasons.210

The second criterion, peak concentration cpeak, accounts for dilution of211

peak concentrations by pore-scale dispersion, heterogeneity and direct dilu-212

tion within the pumping well. As discussed in the introduction, assessing this213

criterion excludes all macrodispersive approaches, because they fail to reflect214

actual levels and arrival times of peak concentrations. Knowing the statistics215

of cpeak forms the basis for human health risk assessment for acute doses, and216

allows to judge the compliance with legal threshold concentrations.217

In environmental or human health risk assessment, not only the arrival218

and level of peak concentration itself is of interest, but also whether, at which219

time and how long a given maximum allowable concentration limit ccrit (e.g.220

a drinking water standard) is breached. The third criterion tcrit tells water221

managers the time available to react before critical contaminant levels are222

11



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

breached at the well. This is the most important information to design early-223

alert sensor or monitoring systems, and to plan emergency measures, even224

for worst-case most early arrival on any desirable confidence level.225

The fourth criterion, the time texp above a certain critical concentration226

level, is equivalent to well down time. It can serve as a measure for damage227

in economic risk analysis, that a catchment manager lest the water supply228

company has to cope with. The time out of operation can then easily be229

expressed monetarily, and the expected financial loss can be compared to the230

costs of alternative risk treatment methods (see ISO/IEC: 31010 [55]) within231

risk-informed management decisions. If a spill remains undetected, texp is232

also an important impact factor to chronic health risk types.233

3. Mathematical Formulation234

3.1. Governing Equations235

The groundwater flow equation at steady state is236

−∇ · (K∇φ) = qs in Ω (1)

with hydraulic conductivity K(x), hydraulic head φ, the source and sink237

term qs (including wells) and the domain Ω. A general set of boundary238

conditions for Eq. (1) is:239

− (K∇φ) · n = q̂ on Γ1, (2)

φ = φ̂ on Γ2

Here q̂, and φ̂ are prescribed fluxes and heads on the defined boundaries240

Γ = Γ1 ∪ Γ2 of the domain Ω, respectively, and n is the normal vector241

12
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pointing outward of the domain.242

Considering a conservative tracer for intrinsic conditions, transport is243

governed by:244

∂c

∂t
+∇ · (vc−D∇c) = 0 inΩ (3)

Here c is concentration, t is time, D is the hydrodynamic dispersion tensor245

according to Scheidegger [56], velocity v = q/ne, q = −K▽φ is the Darcy246

velocity, and ne is the effective porosity. Boundary conditions regarding247

Eq. (3) are248

−n · vc+ n · (D∇c) = 0 on Γ \ Γ2

c = ĉ on Γ2 (4)

−n · vc+ n · (D∇c) = −n · vĉspillδ(t0) on Γx0

with ĉ being the prescribed concentrations, here ĉ = 0, on Γ2. ĉspillδ(t0) is an249

instantaneous contaminant release at time t0 with concentration ĉspill, here250

localized to a small element inside the domain Ω at the location x0, enclosed251

by the internal boundary Γx0
. For generality, we use a unitless normalized252

spill concentration of unity. No-flow conditions on all boundaries except253

Γ \ Γ2 ∪ Γx0
have been assumed here for simplicity of notation.254

Instead of solving Eq. (3) and Eq.(4) for many potential spill locations x0,255

we consider a reverse flow field −v and introduce an instantaneous contam-256

inant injection at the well. The transport is subsequently solved reversely,257

using258

13
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∂c

∂t
= ∇ · (vc+D · ∇c) inΩ (5)

and the boundary conditions change to259

n · vc+ n · (D∇c) = 0 on Γ \ Γ2

c = ĉ on Γ2 (6)

n · vc+ n · (D∇c) = n · vĉspillδ(t0) on Γwell

where Γwell is an internal boundary that encloses the well, and n ·v is the260

velocity perpendicular to Γwell. More explanation for the backward transport261

approach is given, e.g., by Uffink [49] and by Neupauer and Wilson [57].262

3.2. Temporal Moment Approach263

The k-th temporal moment mk of a breakthrough curve c(x, t) at location264

x is defined as:265

mk(x) =

∫
∞

0

tk · c(x, t) dt (7)

The zeroth moment m0 represents the accumulated mass over time that266

passes by a location x. The normalized first temporal moment m1/m0 repre-267

sents the mean arrival time of a solute at location x. The normalized second268

central temporal moment m2c/m0 can be interpreted as local dilution. The269

physical meaning of several lower-order temporal moments is discussed in270

more detail by Cirpka and Kitanidis [50]. Higher order temporal moments271

describe characteristics such as skewness, peakedness, and more complex272

characteristics of the temporal breakthrough curve’s time behavior that are273
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also known from statistics (Wackerly et al. [58]). These characteristics are274

illustrated in Fig. 2.275

Moment generating equations can be derived from Eq. (3) or Eq. (5) and276

their respective boundary conditions by multiplying the equations with tk277

and then integrating over time as in Eq. (7) (Cirpka and Kitanidis [50]). For278

Eq. (5), partial integration leads to:279

∇ · (vm0 +D∇m0) = 0 for k = 0 (8)

∇ · (vmk +D∇mk) = k ·mk−1 ∀ k > 0

with the boundary conditions:280

n · vmk + n · (D∇mk) = 0 on Γ \ Γ2

mk = m̂k on Γ2 (9)

n · vmk + n · (D∇mk) = n · vm̂k,well on Γwell, ∀ k ≥ 0

Here, m̂k is the kth-raw temporal moment of ĉ on the boundaries Γ2281

and Γwell. Because the contaminant release at the well on boundary Γwell282

is instantaneous at time t0 = 0 and with unit spill concentration, m̂k,well283

is one for k = 0 and zero for all k ≥ 1. Eq. (8) is formally identical to a284

steady state partial differential transport equation, which eliminates the need285

of numerical time integration and directly yields temporal characteristics at286

very low computational costs.287

Using the Maximum Entropy method (e.g., Jaynes [59]) in log-time (e.g., Har-288

vey and Gorelick [38]) to recover the full concentration profile yields for a289

breakthrough curve at any given location:290
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c(t) =
1

t
exp

(
−

nℓ∑

ℓ=0

λℓ · ln tℓ

)
, (10)

where λℓ = [λ0, . . . , λnℓ
] are Lagrangian parameters which are obtained291

by solving:292

mk =

∫
+∞

−∞

tk ·
1

t
exp

[
−

nℓ∑

ℓ=0

λℓ · ln tℓ

]
dt, (11)

and nℓ is the highest order of moments considered and must be an even293

number. This non-linear optimization problem Eq. (11) can be solved by the294

standard Newton method (Mohammad-Djafari [60]). We suggest to evaluate295

the integral in Eq. (11) by Gauss-Hermite integration (e.g., Abramowitz and296

Stegun [61]) after transforming to s = ln t.297

3.3. Probabilistic well vulnerability criteria298

To account for spatial variability and parameter uncertainty, we treat299

hydraulic conductivity K as a random space function (e.g., Delhomme [62]).300

K is the most sensitive parameter to assess well-head location (e.g., Feyen301

et al. [39]). We also allow the geostatistical model to be uncertain within the302

framework of Bayesian geostatistics (e.g., Kitanidis [63]), by using uncertain303

mean, trend, covariance parameters and shape (e.g., Nowak et al. [42] and304

Feyen et al. [39], see Section 3.4). We do so, because uncertain covariances305

add substantially to the uncertainty of transport (e.g., Riva and Willmann306

[64]). Further parameters that may be assumed uncertain include recharge307

qr and porosity ne. The latter usually has a smaller influence due to its308

narrow range in aquifers. Due to the Monte Carlo approach, any other kind309
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of additional uncertainties would be easy to implement, such as uncertain310

boundary conditions (e.g. Kitanidis [44]), and so forth.311

With the equations from Section 3, the four intrinsic well vulnerability312

criteria from Section 2.2 are calculated for each Monte Carlo realization at313

all points xi in the domain Ω. As a result, we obtain the full probability314

distributions of the corresponding well vulnerability criteria (here illustrated315

on the first criterion):316

P (t ≥ t0 |x = xi) =
1

nr

nr∑

j=1

Ij(xi), (12)

with nr being the total number of Monte Carlo simulations. Ij(xi) is317

an indicator function that assumes a value of unity, if the value t of the318

respective criterion exceeds the critical value t0 in realization j at location319

xi, and zero else. The results of Eq. (12) may be visualized as maps of320

vulnerability isopercentiles (VIPs) given a critical value t0 = τcrit.321

3.4. Bayesian geostatistical formulation322

Hydraulic conductivity is assumed to be a random space function. Now323

let s be a ns × 1 random space vector s = Xβ + ǫs where the mean vector324

E[s] = Xβ represents the trend model, and ǫs denotes zero-mean fluctua-325

tions. The distribution of s follows s ∼ N (Xβ,Css), i.e. is multi-Gaussian326

with covariance matrix Css. Thanks to the flexibility of Monte Carlo sim-327

ulation and the GLUE as conditioning method (see Section 5.3), arbitrar-328

ily complex non-multi-Gaussian models could be employed as well. X is a329

ns × p matrix with p deterministic trend functions, and β is the correspond-330

ing p × 1 vector of trend coefficients. For spatially constant mean of s, X331

is a ns × 1 vector with unit entries, and β is the actual mean value. In our332
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specific case, the uncertain trend coefficients will follow a normal distribution333

β ∼ N (β∗,Cββ) with the expected value vector β∗ and the p×p covariance334

matrix Cββ (e.g., Kitanidis [63]). The distribution of the fluctuations ǫs are335

defined by the vector of structural parameters θ, containing, for example,336

variance and scale parameters of the covariance function. Subsequently, ǫs337

has a covariance matrix Css = C(θ).338

3.5. Uncertainty reduction by conditioning339

If catchment-specific data are available from past or current characteriza-340

tion campaigns, it is desirable to condition the probabilistic well vulnerability341

criteria to a given data set arranged in the m×1 vector do. The data set may342

comprise direct or indirect data, such as conductivity data from grain size343

analysis or permeameter tests, drawdown data from well testing, hydraulic344

tomography or past production data of the drinking water well, temperature345

or tracer data.346

Generally speaking, do is related to s by some model d = f(s)+ǫr. Here, f(s)347

is a model that relates observable variables (e.g., conductivity measurements,348

head observations, well concentrations) to s. The m × 1 measurement error349

vector ǫr follows an error model, here, with the distribution of ǫr ∼ N(0,R),350

i.e., with zero mean and m×m error covariance matrix R, that characterizes351

the magnitude of measurement error. Then, for known s, the measurements352

have the distribution d|s ∼ N(f(s),R). According to Bayes theorem, the353

distribution of s conditioned on a given data set do and known β and θ is:354

p(s|β, θ,do) =
p (do|s) p (s|β, θ)

p (do)
(13)

The Bayesian distribution (marked by a tilde) for uncertain β and θ is355
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obtained by marginalization (e.g., Kitanidis [63]):356

p̃ (s|do) =

∫

β

∫

θ

p(s|β, θ,do) p (β, θ|do) dθdβ (14)

In this procedure, the entire joint distribution of s,β and θ is jointly condi-357

tioned on do (e.g., Woodbury and Ulrych [65], Pardo-Iguzquiza [66]). Using358

the Bayesian GLUE (e.g., Feyen et al. [39]), conditioning the probabilistic359

well vulnerability criteria is achieved by360

p̃(t ≥ t0 |xi, do) =
1

nr

·
nr∑

j=1

wj · Ij (15)

with the weights wj =
Lj∑n
j=1

Lj
, representing the likelihood L of realization361

j given do:362

L (sj, θj ,βj|do)j =

(
1

2π · ||R||

)m/2

exp

[
−
1

2
(do − dsim(sj))

T
R−1 (do − dsim(sj))

]
,

where dsim(sj) = f(s) is the corresponding simulated data set of realiza-363

tion j.364

For reasons of computational efficiency, it is beneficial to process direct365

point-scale measurements of parameters with extremely fast kriging-like con-366

ditional simulation techniques (e.g., Fritz et al. [67]) in combination with367

conditional sampling to represent the weights wj of covariance parameters368

(e.g., Pardo-Iguzquiza [66]). The uncertain mean and trend coefficients may369

be directly included in the kriging procedure (e.g., Kitanidis [63] and Fritz370

et al. [67]). By applying rejection sampling (proportional to Lj) in the con-371

ditioning of θ on direct data and of s, β, θ on indirect data, all considered372

realizations are finally equally likely.373
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4. Illustrative Example374

4.1. Model Set up375

We illustrate the methodology on a rectangular 2D example with domain376

size 300m ×300m (see Fig. 3). This example only serves for illustrative pur-377

poses, as the method is independent of dimensionality, complex geometries378

and boundary conditions. A hydraulic background gradient from west to east379

with ∇φ = 0.005 is assumed with appropriate fixed head conditions on all380

boundaries. Within the reverse approach, a Dirac-pulse with concentration381

ĉspill is introduced at a single well at x = 225m and y = 150m with a pump-382

ing rate of Q = 1×10e−4m3s−1. The aquifer is assumed to be leaky confined383

with an uncertain normally distributed and spatially constant recharge rate384

of qrg = 120mma−1 and standard deviation σrg = 10mma−1.385

The discretization of the domain equals dx = dy = 1m with assumed386

subgrid-scale dispersivities of αL = 2.5m and αT = 0.25m. The total number387

of nodes to solve are ntot = 96.301. As covariance model for log-transmissivity388

Y = ln(T ), we choose the Matérn correlation function (e.g., Handcock and389

Stein [68]) because it has an additional shape parameter κ. Treating κ as390

uncertain resembles Bayesian model averaging over a continuous spectrum391

of covariance shapes (e.g., Nowak et al. [42]). The parameters of the struc-392

tural model are θ = (µ, σ2, κ, λx, λy), where µ is the mean value of log-393

transmissivity Y = ln(T ) (with T in units of m2s−1) , σ2 is the variance,394

κ is the shape parameter, and λx, λy are the length scales. At the prior395

stage, we assume them to follow uniform distributions with lower and upper396

bounds, µ = [−7.5 − 5.5], σ2 = [1 3], κ = [0.5 5], λx = [10 25]m and397

λy = [5 15]m.398
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Unconditional transmissivity fields are generated and flow and trans-399

port simulations are performed with the same numerical implementation as400

in Nowak et al. [69]. The simulations were run on a dual core processor401

@2.8GHz with 4GB Ram. The computational time for n = 500 unconditional402

realizations is 22h and, in the conditional case, 24h. In order to demonstrate403

the impact of data through conditioning, we generate a “synthetic truth”404

random realization. From this we draw five artificial measurements of head405

φo and ten measurements of log-transmissivity Y (see Fig. 3), perturbed406

with random measurement error that has standard deviation of σY = 1 and407

σφ = 0.25m, respectively. The structural parameters used to generate the408

synthetic random field are µo = −6.83, σ2
o = 1.91, κo = 0.49, λx,o = 9.11m409

and λy,o = 5.17m. For conditional simulation, we use the methods discussed410

in Section 3.5.411

4.2. Unconditional Results412

Fig. 4 displays the four intrinsic well vulnerability criteria with isoper-413

centiles of [0.1, 0.5, 0.9], based on the illustrative example for unconditional414

realizations. Fig 4 (a) represents the German well-head protection area with415

τcrit = 50d [54], but here evaluated for the arrival time of peak concentration416

instead of bulk arrival time. The second vulnerability criterion is given in417

Fig. 4 (b), showing the area within which a contamination is being diluted by418

less than a factor of ζcrit = 1×10−7. Fig. 4 (c) shows the probabilistic extent419

of the capture zone, in which a critical reaction time τcrit = 50d is exceeded,420

thus indicating the confidence in the reaction time for a water manager until421

the contamination breaches the given threshold level χcrit = 1 × 10−7. The422

fourth criterion is shown in Fig. 4 (d), indicating the potential area for spills423
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where the well is exposed to contamination above the threshold for more than424

τexp = 2d. The choice of the critical levels for the second to fourth well vul-425

nerability criteria substantially influence shape and size of the corresponding426

vulnerability maps. If the critical peak level ζcrit for the second vulnerability427

criterion (see (b) in Fig. 4), Fig. 5 and Fig. 6) equals the threshold level χcrit428

for the third and fourth vulnerability criterion (see (c) and (d) in Fig. 4),429

Fig. 5 and Fig. 6), the isopercentiles of the reaction time can be at most as430

wide as the isopercentiles of peak level. For large critical values of reaction431

time τcrit and ζcrit = χcrit, the isopercentiles of the third well vulnerability432

criterion becomes equal to the isopercentiles of the second criterion, because433

the third criterion will degenerate to the information that any reaction time434

is necessary. The same effect occurs for the fourth vulnerability criterion for435

small values of the critical exposure levels τexp, because non-zero exposure436

times appear where-ever the critical threshold level χcrit is breached.437

4.3. Conditional Results438

The actual outlines for the critical values that apply in the synthetic439

“real” realization are shown in Fig. 5. For comparison purposes, we will440

discuss location A, marked with a plus sign. Location A has peak ar-441

rival time tpeak,obs = 68d, dilution of peak concentration by the factor of442

cpeak,obs = 1.04 × 10−7, time to react tcrit,obs = 64d and exposure time443

texp,obs = 8d. Fig. 6 shows the corresponding results for the conditional Monte444

Carlo simulations using the synthetic data set, obtained from the synthetic445

truth shown in Fig. 5.446

447
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5. Discussion448

5.1. VIP maps449

For any risk assessment study it is important to determine both the ex-450

posure level to the hazardous contamination and the likelihood of its occur-451

rence. Considering the two given examples (unconditional and conditional452

realizations), both risk-based information types are contained within the VIP453

maps, showing for each location the existing intrinsic well vulnerability of the454

drinking water well and its exceedance probability. The ensemble-averaged455

vulnerability criteria plotted in the background of Fig. 4, Fig. 5 and Fig. 6 are,456

per definition, equivalent to solutions based on macrodispersion approaches.457

Therefore, their spatial distribution and features are discussed in Frind et al.458

[1]. For discussion of the new probabilistic context, let us assume a spill459

event (i.e. virologically or microbially loaded water) at location A, marked460

in Fig. 4, Fig. 5 and Fig. 6 by a plus sign.461

The ensemble average peak arrival time from A to the well is estimated (en-462

semble mean) for the unconditional case with tA,uncond = 57d (see Fig. 4(a))463

and for the conditioned example tA,cond = 76d (see Fig. (a)). In a conventional464

approach, the stakeholder would assume that there will be no exposure risk465

for the drinking water well by the spill event at A in both cases, as microbial466

safety is defined in Germany by transport times larger than τcrit = 50d. Tak-467

ing the new probabilistic information into account, the vulnerability maps for468

peak arrival show exceedance probabilities P̃ (t > τcrit)A,uncond = 59.5% and469

P̃ (t > τcrit)A,cond = 28.5%. This is indeed a substantial risk, and would be470

invisible within conventional deterministic approaches. The actual choice of471

the delineated area will depend on the desired confidence level of the stake-472
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holders (see Section 5.3).473

The second well vulnerability criterion directly shows the relevance of dis-474

tinguishing between dilution and the uncertainty of plume location. The475

expected maximum concentration at the well is, on average, diluted by the476

factor of cpeak,uncond = 1.25×10−7 and cpeak,cond = 9.68×10−8 until it reaches477

the well, if a contamination occurred at location A. Single realizations can478

yield higher and lower dilution factors, as shown in Fig. 7. In a macrodis-479

persion approach, one would directly obtain the ensemble-averaged break-480

through curve. The statistical information of what peak concentrations oc-481

cur with what probability would not be accessible. Much worse, the average482

over strongly peaked distributions with peaks at different peak arrival times483

leads to a much smaller peak level of the macrodispersive (implicitly ensem-484

ble averaged) breakthrough curves (see Fig. 7). This illustrates best, why485

macrodispersive approaches are not adequate for probabilistic risk assess-486

ment, if transport is non-ergodic (e.g. Hassan et al. [70]). Not just arrival487

time of the peak or bulk is primarily of interest for catchment managers488

(see Section 5.2), but also the time until a given threshold value in the well is489

breached after a spill within the catchment. By taking the third vulnerability490

criterion into account, water managers can know the time to react before the491

well has to be shut down. In our example, the average values for location A492

are tcrit,uncond = 28d and tcrit,cond = 44d, which is substantially smaller than493

the numbers for peak arrival time. All realizations, which do not breach the494

threshold level χcrit = 1×10−7, are not considered within the ensemble aver-495

aging as no reaction time is required at all. The 10th− percentile of available496

reaction time at location A is as low as 12d (uncond) and 22d (cond), in-497
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dicating how fast early alert systems and emergency management decisions498

would have to be, such that well safety can still be guaranteed in adverse499

cases.500

Finally, the fourth vulnerability criterion gives the necessary information501

about the well down time to be expected after contamination by a spill event502

within the catchment. The average exposure time related to a spill at loca-503

tion A is texp,uncond = 7d and texp,cond = 7d, showing exceedance probability504

of P̃ (t > τexp)A,uncond = 45.8% and P̃ (t > τexp)A,uncond = 37.4%. This indi-505

cates the time frame and the associated uncertainty that the well will be out506

of operation. If desired, even histograms about the exposure time to spills507

at location A could be plotted. Together, the third (time to react) and the508

fourth vulnerability criterion (well down time) provide the necessary infor-509

mation for financial optimization of risk treatment alternatives, while criteria510

one and two yield the essential information for toxicity assessment in human511

health risk assessment.512

5.2. Peak versus bulk arrival time513

The typically positively skewed breakthrough curves of transport in het-514

erogeneous formations yield earlier arrival time for peak concentrations tpeak515

than for the arrival of bulk mass t50 at the well [71]. Fig. 9 illustrates this with516

a scatter plot between tpeak and t50. In our example, tpeak,uncond (tpeak,cond) is517

on average 17% (13%) smaller than t50, leading to 7% (5%) larger catchment518

delineation on average, as shown in Fig. 8. The size difference depends on519

the degree of heterogeneity, and will be more drastic for high variability cases520

or fractured media. In risk analysis, the underestimation of protection zones521

when using bulk arrival time can have crucial liability issues in risk-based522
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decisions. The advantage of our first vulnerability criterion over the tradi-523

tional bulk-related assessment is that it takes the more conservative peak524

time instead of the bulk arrival time into account, which we deem the more525

relevant aspect of contaminant arrival in this context.526

5.3. Area enclosed by the VIP lines and the effect of conditioning527

The uncertainty in actual location of Acrit can easily overwhelm the un-528

certainty in its size, leading to much larger well-head delineation under uncer-529

tainty. The actual choice of the delineated area will depend on the desired530

confidence level of the stakeholders, i.e., which isopercentile to choose for531

delineation. A possible measure for the effect of uncertainty on the areal532

demand of delineation is the area between the 10th− and 90th−percentile533

contours of the well vulnerability criteria, normalized by the area within the534

50th−percentile contour:535

U =
A90 − A10

A50

(16)

U is a measure for the area a planner has to sacrifice due to uncertainty.536

The corresponding unconditional and conditional values of U for all four537

vulnerability criteria in our illustrative example are provided in Table 1.538

Conditioning reduces the uncertainty and leads to vulnerability maps539

with larger information content, moving closer to reality. The distances be-540

tween the single isopercentiles decline, leading to a more distinct delineation541

of the well-head protection area. Clearly, it is worth to spend money on542

site investigation because it reduces the areal demand of uncertainty (com-543

pare Feyen et al. [39]). For example, conditioning on ten transmissivity and544

five head measurements has the areal demand of uncertainty U by 17.9% in545

our example for the well-head protection area based on VIP one.546
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VIP “critical value” unconditional uncertainty Uuc conditional uncertainty Uc

tpeak τcrit = 50d 43.1% 25.2%

cpeak ζcrit = 1× 10−7[−] 14.6% 10.4%

tcrit τcrit = 50d 14.6% 10.4%

texp τexp = 2d 14.5% 10.3%

Table 1: Showing the fractional area [%] of delineated catchments according to the four

VIP maps that is sacrificed to uncertainty for the conditioned and the unconditioned case.

In comparison to macrodispersive approaches, i.e., without separation of547

dilution and uncertainty in position, no VIP maps, but only one line could be548

shown (e.g., Frind et al. [1]). In that case, uncertainty in size and position is549

lumped together within an implicitly averaged transport equation, blurring550

the overall picture.551

The quantity and quality of data required to reduce the uncertainty within552

a probabilistic assessment process to an acceptable level can be determined553

in a rational manner when considering the worth of data through optimal554

design techniques (e.g., Nowak et al. [42], Feyen et al. [39]). Such techniques555

can also answer the question, which types of data should be collected where,556

in order to achieve the largest reduction of sacrificed area for a given limited557

investigation budget. Overall, the economic benefit of more confident and yet558

smaller delineation could thus be optimized versus the costs of data collec-559

tion and alternative risk management options such as remediation, enhanced560

water treatment and so forth.561
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6. Summary and Conclusions562

In this paper, we cast the four intrinsic well vulnerability criteria by Frind563

et al. [1] into a probabilistic framework. For illustration and discussion, we564

applied them to a synthetic example with a 2D semi-confined heterogeneous565

aquifer with a single pumping well. Via Monte Carlo simulation, we calculate566

maps of vulnerability isopercentiles (VIP maps), showing the probability that567

a given critical level of vulnerability is exceeded anywhere in the domain. To568

discuss the impact of conditioning on data, we used a synthetic data set with569

head and transmissivity values, and compared conditional and unconditional570

VIP maps.571

As the four vulnerability criteria are sensitive to the conceptual difference572

between uncertainty in plume location and actual dilution, we solved the flow573

and transport problem via finely resolved Monte Carlo simulations, where we574

resolve aquifer heterogeneity on and above the grid-scale in each realization.575

Therefore, the probability of peak concentration levels and the uncertainty in576

position and extent of protection zones can be assessed separately. Compared577

to purely advective or non-probabilistic approaches, our concept provides578

valuable additional probabilistic and advective-dispersive information, such579

as580

1. The probability distribution of peak arrival travel time from a potential581

spill location to the well;582

2. The possible levels of peak concentration arriving at the well, while583

accounting for dilution effects through diffusion and dispersion;584

3. The probability distribution of the time window available to react after585

a spill event until a critical concentration level is exceeded in the well586
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(e.g., a drinking water standard); and587

4. The probability that the well has to be shut down for more than a588

given duration, which is the information required to estimate econom-589

ical damage and consider alternative risk treatment measures.590

Our vulnerability isopercentile maps are easy to understand, such as showing591

the level of exposure risk for all locations within the well catchment. By vi-592

sualizing zones of higher and lower vulnerability probabilities, they allow to593

prioritize remediation of contaminated sites and location of protection zones.594

Although our approach uses Monte Carlo to resolve heterogeneity even at595

small scales, the computational costs are kept moderate by combining the596

reverse formulation of advective-dispersive transport and the concept of tem-597

poral moments. Despite the (small) loss of information due to the temporal598

moment approach, the gain in computational efficiency and the resulting ac-599

cessibility of probabilistic information are more valuable in our opinion.600

The suggested approach can account for arbitrary sources of uncertainty, and601

is independent of the chosen geostatistical conditioning scheme. It can be602

used as an add-on to almost any commercial software, because it does not603

require intrusion into the code. Furthermore, the concept is independent604

of dimensionality, boundary conditions and employed simulation software.605

These properties make the approach flexible for any type of drinking water606

catchments and a wide range of applications.607

When this approach is coupled with specific toxicity parameters for individ-608

ual groups of contaminants, human health risk assessment can be performed609

as a last step in probabilistic risk assessment over all risk scales. The given610

exposure time and level is then depending not only on the intrinsic aquifer611
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behavior, but also on the studied exposure route defined by the reference612

concentration (RfC) or reference dose (RfD) (e.g., US EPA [3], Cushman613

et al. [32]). The resulting exposure profile with its exposure duration gives614

a precise and more reliable input variable for human health risk assessment,615

as all information on amount, duration and frequency with its associated616

uncertainties are available.617

In conclusion, our VIP maps display probabilistic information in a way that is618

easy to understand. We believe that our concept provides all the fundamental619

basis for probabilistic risk assessment in actively managed well catchments,620

and can provide stakeholders with the necessary information and tools to621

develop complete risk management schemes as recommended by the Water622

Safety Plans.623

In addition, to further reduce the uncertainty towards better risk man-624

agement, a combination with optimal design of investigation strategies is625

straightforward. Even an overall rational optimization between the areal de-626

mand of delineation, costs for data acquisition and alternative risk treatment627

methods is possible.628
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Figure 1: Methodology to determine probabilistic intrinsic well vulnerability criteria

Figure 2: Illustrative sketch showing the four intrinsic well vulnerability criteria and tem-

poral moments characterizing the concentration breakthrough curve c(t)

Figure 3: Illustrative Example, showing location of measurements

Figure 4: Probabilistic isopercentiles [0.1, 0.5, 0.9] for the four intrinsic well vulnerabil-

ity criteria (a)-(d) from n = 500 unconditioned simulations. Grey-scale maps show the

ensemble mean of the respective well vulnerability criteria (a)-(d)

Figure 5: Outlines and criteria values of the “real” realization

Figure 6: Probabilistic isopercentiles [0.1, 0.5, 0.9] for the four intrinsic well vulnerability

criteria (a)-(d) from n = 500 conditioned simulations. Grey-scale maps show the ensemble

mean of the respective well vulnerability criteria

Figure 7: Breakthrough curves (BTC) of all realizations and the average breakthrough

curve (bold) of n = 500 unconditional realizations at the drinking water well, if a hazardous

spill occurred at location A

Figure 8: Showing the size of the time-related well-head protection zones, depending on

tpeak and t50 for different isopercentile levels in the unconditional (left) and conditional

(right) case

Figure 9: Scatter plot of mean peak arrival tpeak versus mean bulk arrival time t50
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