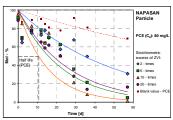


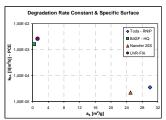
Chemical Reduction of PCE by Zero Valent Iron Colloids - Batch and Column Experiments

www.napasan.de

Christoph Hennlich, André Matheis, Cjestmir de Boer, Norbert Klaas, Jürgen Braun University of Stuttgart - Institute for Modelling Hydraulic and Environmental Systems - VEGAS Contact: andre.matheis@iws.uni-stuttgart.de, christoph.hennlich@iws.uni-stuttgart.de

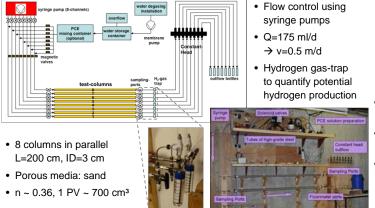
Motivation


- · Permeable reactive walls using iron filings state of the art for plume
- Injectable nano-scaled zero valent iron particles (nZVI) have potential advantages:
 - Reactivity of nZVI much higher than iron filings (specific surface)
 - Economical application also in greater depth and underneath buildings
 - Applicable to large range of contaminants (chlorinated hydrocarbons, heavy metals, pesticides etc.)


Goals

- · Assessment of chemical reactivity of different nZVI particles towards degradation of PCE as model contaminant
- Investigation of degradation potential of nZVI particles in column tests: experimental simulation of plume vs. source remediation
- · Transfer of results for planned field application

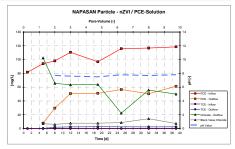
Batch-Tests


· Facilitates comparison of different nZVI particles

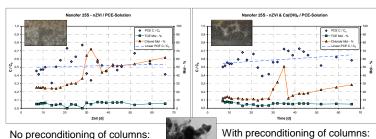
 In batch the pH quickly increases due to corrosion → self inhibition → Column Tests necessary!

Experimental Setup – Columns

Column-Tests: Plume Remediation


NAPASAN-Particle

Flakes

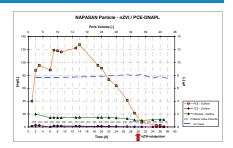

 $D_{50} = 900 \text{ nm}$

 $a_S = 1.3 \text{ m}^2/\text{g}$

Thickness ~ 70 nm

- Undesired side reaction between nZVI and water: anaerobic corrosion
- → Loss of nZVI and production of H₂

No preconditioning of columns:


→ reactive for more than 60 days

→ less reactive, but more stable

H₂-gas production in long term column experiments was significantly reduced by adding solid Ca(OH)₂ (pH increase to 11) to the iron suspension

Column-Tests: Source Remediation

- Simulation of a PCE source remediation
- · PCE-saturation in source zone: S_{PCE} = 6 %
- · Injection of nZVI at 2-fold stoichiometric excess for efficient PCE-degradation
- · Reinjection of nZVI after 30 davs

- PCE-degradation from a maximum concentration of 120 mg/l to less than 0.5 mg/l
 - Significant increase of pH after Ca(OH)2 injection
 - nZVI-reinjection induced recovery of PCE-degradation (increase of chloride concentration)

Conclusion / Outlook

- Chemical behavior in batch experiments differs significantly from column experiments. Hence, column experiments necessary to predict field application
- Column experiments showed proper degradation results for both plume and source remediation
- Conclusions for field application:
 - Control of anaerobic corrosion necessary (pre-conditioning of aquifer)
 - Further investigations of source treatment by nZVI necessary

Partners

