Forensische Methoden in der Altlastenbearbeitung - von den wissenschaftlichen Grundlagen zur praktischen Anwendung

Hans-Peter Koschitzky

Versuchseinrichtung zur Grundwasser- und Altlastensanierung Institut für Wasserbau, Universität Stuttgart, Deutschland vegas@iws.uni-stuttgart.de; www.vegas.uni-stuttgart.de

Seminar 01/2011

Forensische Methoden in der Altlastenbearbeitung
Heidelberg 20. Januar 2010

Veranlassung

Arbeitskreis Innovative Erkundungs-, Sanierungs- und Überwachungsmethoden

Forensische Verfahren in der Altlastenbearbeitung

Definitionen - Begriffe

Forensik

Methoden, mit denen systematisch kriminelle Handlungen identifiziert bzw. ausgeschlossen sowie analysiert oder rekonstruiert werden.

Forensische Umweltwissenschaft

Suche nach dem Zeitpunkt der Entstehung und der räumlichen bzw. stofflichen Herkunft einer Verunreinigung und damit die "Ermittlung" des Verursachers.

Zusätzlich: Quantifizierung des natürlichen Abbaus organischer Schadstoffe → MNA Förderschwerpunkt (2004-2008)

VEGAS

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

Definitionen - Begriffe

Forensik in der Altlastenbearbeitung

- interdisziplinäres Arbeitsgebiet
- Physiker, Chemiker, Biologen, Geologen, Ingenieure bis hin zu Juristen und Verwaltungsleute
- verschiedene "Einzelmethoden" erzeugen / liefern Untersuchungsergebnissen / Einzelbefunde
- Gesamtheit / Gesamtbild schaffen
- Erzeugen nützlicher und belastbarer Aussage

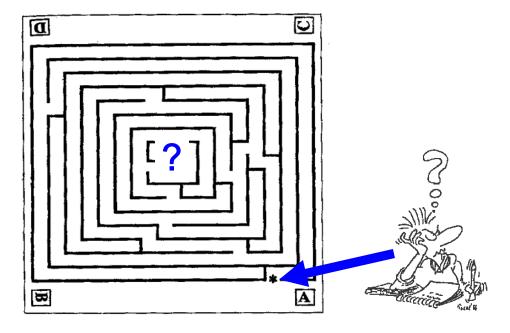
Gefährdungsabschätzung

Blick in die Zukunft in Raum und Zeit

- Basis: Ist-Situation "Altlastenerkundung"
- Kenntnis über Schadstoffe
 - · physikalische und chemische Eigenschaften
 - Umwandlungsmöglichkeiten
 - Transportverhalten
 - Abbauverhalten

bei den jeweiligen Untergrundverhältnissen am Standort

© VEGAS


Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

BW

Definitionen - Begriffe

Gefährdungsabschätzung

Definitionen - Begriffe

Forensik

Blick in die Vergangenheit

Basis: Ist-Situation "Altlastenerkundung"

- Kenntnis über Schadstoffe
 - physikalische und chemische Eigenschaften
 - Umwandlungsmöglichkeiten
 - Transportverhalten
 - Abbauverhalten

bei den jeweiligen Untergrundverhältnissen am Standort

woher? von wem? seit wann? wie lange schon?

© VEGAS

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

_

Weitere Anwendungsbereiche Forensik

✓ Landwirtschaft

zur Ermittlung der Quellen und des Zeitpunkts des Eintrags von Nitrat oder Pestiziden ins Grundwasser

✓ Lebensmittelindustrie

zur Identifikation der räumlichen Herkunft von Lebensmitteln oder Lebensmittelzusätzen und Bestandteilen

Luftschadstoffe

zur Identifikation von diffusen Einträgen in Boden und Grundwasser

✓ Gewässerschutz

zur Identifikation von diffusen Einträgen von Arzneimitteln bzw. Arzneimittelrückständen ins Grundwasser

Fragestellungen forensischer Methoden

- Zeitpunkt (Zeitraum) des Schadstoffeintrags
- × Räumliche Herkunft / Ort des Schadstoffeintrags
- × Stoffliche Herkunft Einzel- / Ausgangssubstanz
- × Möglicher natürlicher Abbau (NA)
- nicht alle Fragen können für die verschiedenen altlastenrelevanten Schadstoffe mit den Methoden geklärt werden

© VEGAS

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

Anwendungsmöglichkeiten forensischer Methoden

	MKW/ AKW	PAK	LHKW	Schwer- metalle	MTBE
Alter	+	Δ	0	0	-
räumliche Herkunft	+	Δ	+	+	0
stoffliche Herkunft	+	+	-	+	-
Abbau (NA)	+	+	+	-	+

+ Anwendung möglich

Anwendung nicht möglich

O in Einzelfällen

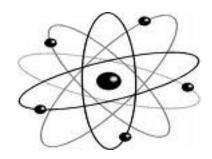
Δ nicht relevant

Heft 14, Schriftenreihe Altlastenforum Baden-Württemberg e.V. (2009)

Nutzbare Prozesse für forensische Methoden

- Transportprozesse im Boden und Grundwasser
- Verdünnung
- Mikrobiologische Transformation / Abbau
- Chemische/physikalische Transformation
- → Kenntnis/Erforschung im Untergrund ablaufender Prozesse → Entwicklung forensischer Methoden
- Methoden ermöglichen Analyse zur Entstehung durch "Rekonstruktion der Prozesse

© VEGAS


Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

Die wichtigsten forensischen Methoden

GC- und GC-MS Analytik zum Fingerprinting mineralölbürtiger Kohlenwasserstoffe

Isotopenanalytik (Kohlenstoff, Wasserstoff, Stickstoff)

GC- und GC-MS Analytik zum Fingerprinting mineralölbürtiger Kohlenwasserstoffe

Fingerprinting zur Identifikation der Herkunft und der Alterung von MKW in Böden, Stefan Stegmaier, Dr. Jörg Müller

© VEGAS

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

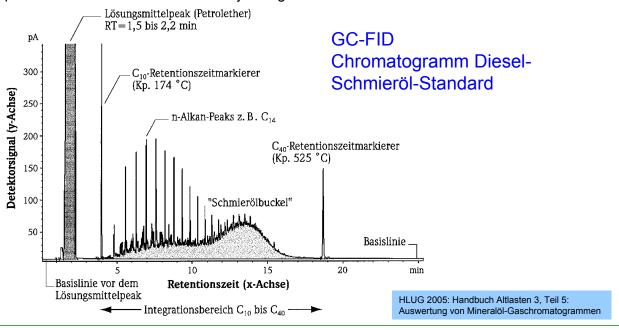
13

GC und GC-MS Analytik zum Fingerprinting

Rohöldestillation

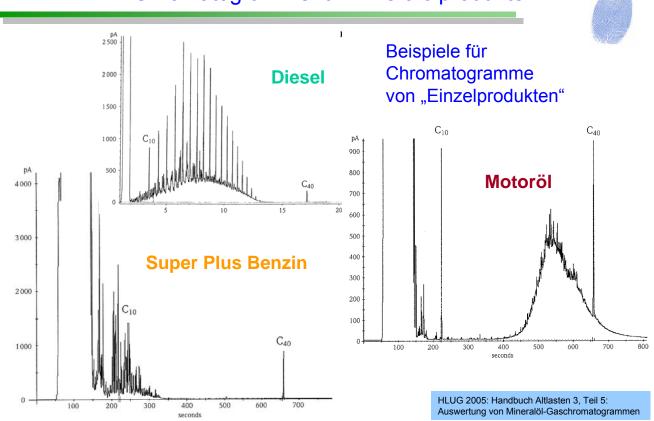
→ Fraktionierung von Mineralölprodukten nach Siedepunkten

Zahl der C-Atome	Siedepunkt [°C]	
5	36	♦ Benzin
8	126	ca. C ₅ bis C ₁₂
9	151	Siedebereich 35 bis 210 °C
10	174	
11	196	♦
12	216	' Kerosin
13	235	ca. C ₉ bis C ₁₆ Siedebereich 150 bis 280
14	253	J. Caronicia 100 bis 200
15	271	
16	287	
17	302	Diesel, Heizöl
18	317	ca. C ₉ bis C ₂₄
20	344	Siedebereich 160 bis 390 °C
22	369	
24	391	🔻
25	402	
29	441	Schmieröl
30	450	>C ₁₇
35	491	Siedebereich > 300 °C
40	525	
44	548	


HLUG 2005: Handbuch Altlasten 3, Teil 5: Auswertung von Mineralöl-Gaschromatogrammen

Gas-Chromatographie fürs Fingerprinting

Injizierte flüssige Probe im GC verdampft → Trennung der Moleküle in einer Kapillarsäule durch unterschiedliche Dauer Übergang flüssig → gasförmig → Aufenthaltsdauer in der Kapillarsäule und damit Detektion des jeweiligen Peak-Maximums = Retentionszeit



Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

15

Chromatogramme für Mineralölprodukte

GC-MS zum Fingerprinting

Kopplung mit Massenspektronomie (MS)

Kopplung von GC und MS ermöglicht weitergehende Zuordnung des chemischen Musters → Fingerprinting

GC-MS erfasst die Kohlenwasserstoffe gruppenweise über charakteristische Molekülmassen

Molekülmassen unterschiedlicher wichtiger Stoffgruppen

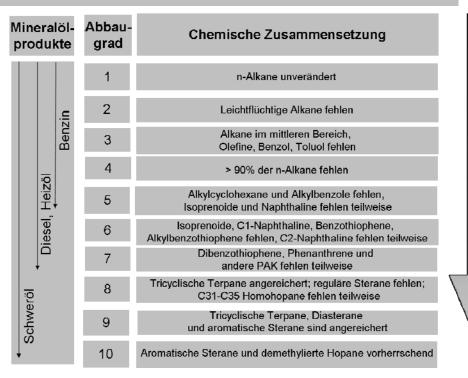
- n-Alkane (Masse 85)
- Alkylcyclohexane (Masse 83)
- Isoprenoide (mehrfach verzweigte Alkane, Masse 113)
- Alkylbenzole (Masse 134)
- Sterane und Terpane (Massen 191, 217 und 231)
- Pyrogene PAK (Masse 252)
- Vielzahl weitere PAK, HET und Alkyl-PAK mit 2-5 Ringen

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

Prozesse im Untergrund

GC-MS-Fingerprinting


Identifizierung von Verunreinigungen des Untergrundes mit Mineralölerzeugnissen anhand charakteristischer Verteilungsmuster der Ausgangsprodukte

ABER

- Durch Aufenthalt und Transport der Stoffe im Untergrund unterliegen Mineralölerzeugnisse vielfältigen physikalisch-chemischen und biologischen Prozessen (Verdampfung, Lösung / Verdünnung, NA)
- Prozesse vermindert die Gehalte im Boden und Grundwasser und verändert chemische Zusammensetzung
- Chromatogramme verändern sich
- Anhand der charakteristischen Verteilungsmuster kann eine Klassifizierung des Abbaus von Mineralölprodukten erfolgen
- ➤ Frische PAK-Verunreinigung → PAK-Probe mit mikrobiol. Abbau

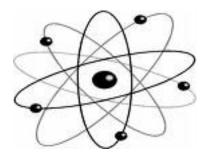
Abbauschema Mineralölprodukte für Fingerprinting

zunehmender Abbau

Heft 14, Schriftenreihe Altlastenforum Baden-Württemberg e.V. (2009)

Abbauschema für typischen Mineralölprodukte

© VEGAS

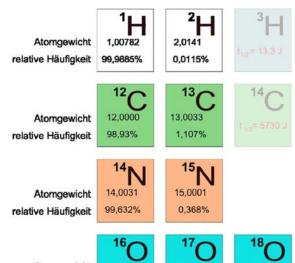

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

19

Isotopenanalytik

Isotopenanalytik (Kohlenstoff, Wasserstoff, Stickstoff)



Ursachenanalyse bei LCKW Schadensfällen mit Hilfe von C-Isotopen, Dr. Siegmund Ertl

Stabile Isotopen

Isotop (stabile)

Atom eines Elements
mit unterschiedlicher Anzahl
Protonen und Neutronen
→ unterschiedliche Masse

Kompetenzzentrum Stabile Isotope

Universität Göttingen 2011

© VEGAS

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

21

Isotopenverhältnis

Isotopenverhältnis (Isotopensignatur oder Isotopenwert)

- Verhältnis von einem schweren und einem leichten Isotop eines Elements (z. B. ¹³C / ¹²C)
- Angabe als δ-Notation → Unterschied (in Tausendstel)
 zum Isotopenverhältnis einer weltweit definierten
 Referenzsubstanz
 (V-PDB, Vienna-Pee Dee Belemnite, fossiles Kalkgestein
 am Pee Dee River, South Carolina, USA)

$$\delta^{13}C$$
 [‰] = $((^{13}C/^{12}C)_{Probe} / (^{13}C/^{12}C)_{Standard} - 1) \times 1000$

Isotopenanalytik - Begriffe

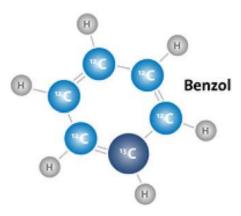
- Ausgangsisotopenverhältnis eines Schadstoffes zum Zeitpunkt eines Kontaminationsereignisses
 - → Primärisotopensignatur
- Quellisotopensignatur = analytisch bestimmtes Isotopenverhältnis im Schadensherd (unbeeinflusst = Primärisotopensignatur)
- Durch biologische Abbau verändert sich das Isotopenverhältnis → wird "isotopisch schwerer"
- Veränderung des Isotopenverhältnisses
 - → Isotopenfraktionierung

© VEGAS

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

23


Isotopensignaturen

Isotopensignaturen aller Elemente einer chemischen Verbindung oder eines Substanzgemisches werden als "isotopischer Fingerabdruck" bezeichnet.

(z. B. für Benzol 13 C/ 12 C und 2 H/ 1 H).

Die schwerere Isotope (¹³C) sind stärker im Molekül gebunden als Leichtere (¹²C)

Schema eines Benzolmoleküls mit einem "schweren" ¹³C-Isotop. Da ca. 1 % aller C-Atome aus ¹³C bestehen, enthält etwa jedes 17. Benzolmolekül ein ¹³C-Isotop

Abbildung: Eisenmann, Heinrich und Fischer, Anko (2010) Isotopenuntersuchungen in der Altlastenbewertung. HdA, 60. Auflage 2010

Isotopensignaturen

Mögliche primäre ■■ und abbaubedingte (—) Isotopensignaturen von Schadstoffen. PAK mit mehr als 11 C-Atomen →Isotopenfraktionierung in der Regel nicht erfassbar. DCE und VC haben als Metaboliten im Grundwasser keine primären Isotopensignaturen

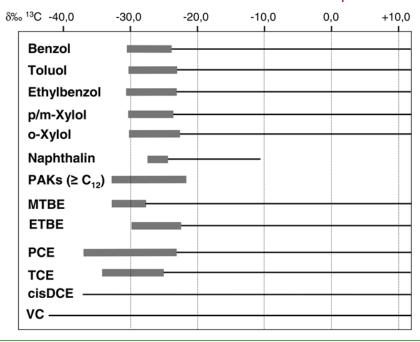
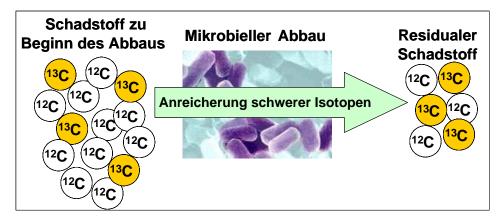


Abbildung: Eisenmann, Heinrich und Fischer, Anko (2010) Isotopenuntersuchungen in der Altlastenbewertung. HdA, 60. Auflage 2010

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

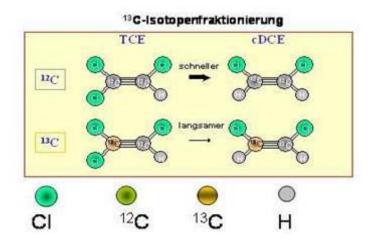

25

Isotopenanalytik BTEX und PAK

Mikrobieller In-situ-Abbau von BTEX und PAK

Mikroorganismen verwerten die leichten Isotopen schneller als die schweren → Isotopenverhältnis ändert sich

Bestimmung der Isotopenverhältnisse von BTEX und PAK erfordert eine hochpräzise, komponenten-spezifische Analysetechnik (Kopplung Gaschromatograph (GC) mit Isotopenverhältnis-Massenspektrometer (IRMS)) _{VEGAS}



Isotopenanalytik CKW

Mikrobieller In-situ-Abbau von CKW

Durch mikrobiellen CKW Abbau findet eine Isotopefraktionierung statt

Bestimmung der Isotopenverhältnisse mit GC-IRMS

© VEGAS

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

27

Stand der Isotopenanalytik

- Entwickelt und in der Forschung angewandt seit 50er Jahre
- Isotopenverhältnisse werden heute mithilfe hochpräziser Isotopenverhältnis-Massenspektrometer (IRMS) gemessen
- Früher: mit herkömmlichen Massenspektrometern Heute: genauere Messungen, geringere Probenmengen
- Ziele: Wissenschaftliche Untersuchungen: Kohlenstoffkreislauf, Photosynthese, Bodenbildung, Interpretation von Radiokohlenstoffdatierungen (¹⁴C-Datierung von Holz (Archäologie), Grundwasser....
- Isotopenfraktionierung in der Altlastenbearbeitung Nachweis zur Umsetzbarkeit von MNA – Konzepten Etabliert erst durch KORA Förderschwerpunkt Ständige Weiterentwicklung auch für den Umweltbereich

Weitere Methoden

- Isotopenverhältnisse von Reinsubstanzen zur Differenzierung von Schadstoffquellen und Eintragspfaden
- Stickstoff- und Chlorisotope zur Unterscheidung natürlicher und anthropogener Quellen
- Tracer und Spurenstoffe zur Altersdatierung und Herkunftsbestimmung
- Schadstoffverteilungsmuster
- × Dendroökologie

© VEGAS

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

v 1 20

Fazit Möglichkeiten und Konsequenzen

- Verursacherermittlung (Sanierungspflichtiger)
- Zuordnung eines Schadens zu mehreren Verursachern (gerechte Kostenaufteilung)
- Aufklärung mikrobiologische Abbauvorgänge und Auswahl eines optimalen, kostengünstigen Sanierungsverfahrens oder MNA Konzept
- zusätzlicher Aufwand (Zeit, Kosten)
- gestuftes Vorgehen
- > spezielles Know-How und Erfahrung erforderlich
- kombinierte Auswertung mit allen Informationen aus der Altlastenbearbeitung
- multiple Beweisführung

Zusammenfassung

- Zuerst Machbarkeitstest an Hand verfügbarer Standortinformationen, dann Forensisches Untersuchungsprogramm (vermeidet Fehlschläge)
- Nie auf eine einzige Methode verlassen
- Multiple-Methoden-Strategie, viele Indizien aus unterschiedlichen, unabhängigen Methoden erhöhen die Beweiskraft
- Immer die Grenzen der Methoden benennen, die Aussagestärke bewerten
- Bisher war die Anwendung forensischer Methoden in Deutschland eine "exotische" Nischenanwendung
- International anerkannter als in Deutschland (NICOLE Workshop 25-27- Mai 2011 in Copenhagen)
- "Schub" erhalten durch af Statusbericht, KORA und Seminare des fortbildungsverbunds boden und altlasten
 © VEGAS

Forensische Methoden in der Altlastenbearbeitung – von den wissenschaftlichen Grundlagen zur praktischen Anwendung

fortbildungsverbund BW Heidelberg, 20. Januar 2011

Zum Schluss

Danke für Ihre Aufmerksamkeit und Ihr Interesse

hans-peter.koschitzky@iws.uni-stuttgart.de

http://www.vegas.uni-stuttgart.de

Dr.-Ing. Hans-Peter Koschitzky, Technischer Leiter *VEGAS*, Versuchseinrichtung zur Grundwasserund Altlastensanierung, Universität Stuttgart Pfaffenwaldring 61, 70569 Stuttgart Tel.: 0711 685-64716, Fax: 0711 685-67020

