M.Sc.

Timo Koch

Doctoral Student
Institute for Modelling Hydraulic and Environmental Systems
Department of Hydromechanics and Modelling of Hydrosystems

Contact

+49 711 685-64676
+49 711 685-60430

Business card (VCF)

Pfaffenwaldring 61
70569 Stuttgart
Germany
Room: 1.007

Studium
Umweltschutztechnik
since November 2014
Institute for Modelling Hydraulic and Environmental Systems, Universität Stuttgart

 

publications

  1. article

    1. Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2019). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. ArXiv E-Prints, arXiv:1905.03346.
    2. Koch, T., Heck, K., Schröder, N., Class, H., & Helmig, R. (2018). A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport. Vadose Zone Journal. https://doi.org/10.2136/vzj2017.12.0210
    3. Koch, T., Flemisch, B., Helmig, R., Obrist, D., & Wiest, R. (2018). A multi-scale sub-voxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. BioRxiv Preprints. https://doi.org/10.1101/507103
    4. Vidotto, E., Koch, T., Köppl, T., Helmig, R., & Wohlmuth, B. I. (2018). Hybrid models for simulating blood flow in microvascular networks. Eprint ArXiv:1811.10373. Retrieved from https://arxiv.org/abs/1811.10373
    5. Sander, O., Koch, T., Schröder, N., & Flemisch, B. (2017). The Dune FoamGrid implementation for surface and network grids. Archive of Numerical Software, 5. Retrieved from https://dx.doi.org/10.11588/ans.2017.1.28490
    6. Kempf, D., & Koch, T. (2017). System testing in scientific numerical software frameworks using the example of DUNE. Archive of Numerical Software, 5. Retrieved from https://dx.doi.org/10.11588/ans.2017.1.27447
  2. mastersthesis

    1. Koch, T. (2014). Coupling a vascular graph model and the surrounding tissue to simulate flow processes in vascular networks.

posters

  1. 2015

    1. N. Schröder, B. Flemisch, T. Koch, J. Vanderborght, and R. Helmig, “Soil-Root Interaction Simulation with DuMux,” NUPUS annual meeting 2015 , 08.09.2015 - 12.09.2015, Freudenstadt. Sep-2015.

talks

  1. 2017

    1. T. Koch, D. Kempf, B. Flemisch, R. Helmig, and P. Bastian, “Qualitätssicherung von Forschungssoftware,” Sitzung des erweiterten Beirats Netwerk Wasserforschung 2017, 24.02.2017, Freiburg im Breisgau. Feb-2017.
  2. 2016

    1. T. Koch, D. Kempf, B. Flemisch, and P. Bastian, “Automated system testing in scientific numerical software frameworks (using the example of Dune / dune-pdelab / DuMuX),” Computational Methods in Water Resources (CMWR) XXI, 21.06.2016 - 24.06.2016, Toronto, Ontario, Canada. Jun-2016.
    2. T. Koch, K. Heck, B. Flemisch, and R. Helmig, “Embedded multidimension models for biological problems,” SIMAI 2016, 13.09.2016 - 16.09.2016, Milan, Italy. Sep-2016.
  3. 2015

    1. T. Koch, B. Flemisch, and R. Helmig, “Iterative coupling method for modeling flow and transport processes in vascularized tissue,” VI International Conference on Computational Bioengineering (ICCB), 14.09.2015 - 16.09.2015, Barcelona, Spain. Sep-2015.
    2. T. Koch, B. Flemisch, and R. Helmig, “A Coupling Method for Modelling Flow and Transport Processes in Vascularized Biological Tissue using a Finite Volume Scheme,” X-DMS 2015 eXtended Discretization MethodS, 09.09.2015 - 11.09.2015, Ferrara, Italy. Sep-2015.
    3. T. Koch, “dune-foamgrid: A new implementation of the DUNE grid interface,” 3rd DUNE User Meeting, 28.09.2015, Heidelberg. Sep-2015.

supervised student assignements

  1. Convergence analysis of two-phase flow systems in porous media: Comparison of implicit hybrid upwinding and phase potential upwinding. (2017). (Bachelorarbeit). Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.
  2. Simulation of Blood Flow through a Bifurcation at capillary level by 3D and 1D models. (2017). (Bachelorarbeit). Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.
  3. Modelling of intra- and extracellular flow and transport processes. (2017).
  4. Modeling the espresso brewing process using a non-isothermal, compositional two-phase approach with dissolution kinetics. (2016).