Motschmann, A., Teutsch, C., Huggel, C., Seidel, J., León, C. D., Muñoz, R., Sienel, J., Drenkhan, F., & Weimer-Jehle, W. (2022). Current and future water balance for coupled human-natural systems – Insights from a glacierized catchment in Peru.
Journal of Hydrology: Regional Studies,
41, 101063.
https://doi.org/10.1016/j.ejrh.2022.101063
BibTeX
Müller, T., Schüller, A., Kieß, T., Seidel, J., & Sienel, J. (2021). Aufbau eines Hochwasser-, Starkregen- und Betriebspunktemonitorings im Einzugsgebiet der Echaz und in weiteren Gewässersystemen.
Korrespondenz Wasserwirtschaft,
14(7), 434–441.
https://doi.org/10.3243/kwe2021.07.004
BibTeX
Graf, M., El Hachem, A., Eisele, M., Seidel, J., Chwala, C., Kunstmann, H., & Bárdossy, A. (2021). Rainfall estimates from opportunistic sensors in Germany across spatio-temporal scales.
Journal of Hydrology: Regional Studies,
37, 100883.
https://doi.org/10.1016/j.ejrh.2021.100883
Abstract
Study region: The study region is Germany and two sub-regions in Germany, i.e. the state of Rhineland-Palatinate and the city of Reutlingen. Study focus: Opportunistic rainfall sensors, namely personal weather stations and commercial microwave links, together with rain gauge data from the German Weather Service, were used in different combinations to derive rainfall maps with a geostatistical interpolation framework for Germany. This kriging type framework considered the uncertainty of opportunistic sensors and the line structure of commercial microwave links. The resulting rainfall maps were compared to two gauge-adjusted radar products and evaluated to three reference gauge datasets in the respective study regions on both daily and hourly basis. New Hydrological Insights for the Region: The interpolated rainfall products from opportunistic sensors provided good agreement to the reference rain gauges. The dataset combinations including information from the opportunistic sensors performed best. The addition of rain gauges from the German Weather Service did not consistently lead to an improvement of the interpolated rainfall maps. On the country-wide, daily scale the interpolated rainfall maps performed well, but the gauge-adjusted radar products were closer to the reference. For the regional and local scale in Rhineland-Palatinate and Reutlingen with an hourly resolution, the interpolated rainfall maps outperformed the interpolated product from DWD rain gauges and showed a similar agreement to the reference as the radar products.BibTeX
Bárdossy, A., Seidel, J., & El Hachem, A. (2021). The use of personal weather station observations to improve precipitation estimation and interpolation.
HESS,
25, 583–601.
https://doi.org/10.5194/hess-25-583-2021
Abstract
In this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.BibTeX
Bárdossy, A., Anwar, F., & Seidel, J. (2020). Hydrological Modelling in Data Sparse Environment: Inverse Modelling of a Historical Flood Event.
Water,
12(11), 3242.
https://doi.org/10.3390/w12113242
BibTeX
Tarasova, L., Merz, R., Kiss, A., Basso, S., Blöschl, G., Merz, B., Viglione, A., Plötner, S., Guse, B., Schumann, A., Fischer, S., Ahrens, B., Anwar, F., Bárdossy, A., Bühler, P., Haberlandt, U., Kreibich, H., Krug, A., Lun, D., … Wietzke, L. (2019). Causative classification of river flood events.
Wiley Interdisciplinary Reviews: Water,
6(4), e1353.
https://doi.org/10.1002/wat2.1353
Abstract
Abstract A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large-scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph-based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space–time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods. This article is categorized under: Science of Water > Water Extremes Science of Water > Hydrological Processes Science of Water > MethodsBibTeX
Seidel, J., Trachte, K., Orellana-Alvear, J., Figueroa, R., Célleri, R., Bendix, J., Fernandez, C., & Huggel, C. (2019). Precipitation Characteristics at Two Locations in the Tropical Andes by Means of Vertically Pointing Micro-Rain Radar Observations.
Remote Sensing,
11(24), 2985.
https://doi.org/10.3390/rs11242985
BibTeX
Schütze, M., Seidel, J., Chamorro, A., & León, C. (2019). Integrated modelling of a megacity water system – The application of a transdisciplinary approach to the Lima metropolitan area.
Journal of Hydrology,
573, 983–993.
https://doi.org/10.1016/j.jhydrol.2018.03.045
Abstract
The rapidly growing urban centres throughout the world are facing serious problems due to the fast-changing developments in all of their environmental spheres (nature, society, politics, culture and economics). Therefore, strategic planning becomes even more important in order to develop strategies that allow cities to adapt to new challenges and to prevent or to mitigate negative trends. This paper presents a transdisciplinary approach to water management, which combines adaptation and application of methods from hydrology, social sciences, water engineering and modelling; furthermore, this approach also involves stakeholders in this process. This methodology assists cities in addressing risks by elaborating solutions, which are characterised by ownership and acceptance of the stakeholders involved. The presented methodology proposed here has been applied to the water system of the desert megacity of Lima/Peru. As a city of almost 10 million inhabitants and with an annual rainfall of about 10 mm per year, Lima presents a unique case with particular challenges regarding water supply. In order to assess the changes in precipitation and temperature for the next decades, two global circulation models and three scenarios have been used. Changes in discharge was addressed using the conceptual rainfall-runoff model HBV applied in both the Atlantic and Pacific catchments relevant to the capital city Lima in terms of water supply. A scenario methodology, combining qualitative and quantitative elements, based on the Cross-Impact Balance Analysis, has been developed and applied. From the millions of theoretically possible combinations of future developments of “descriptors” (driving forces) of the water system, four have been identified as the (only) consistent potential developments of the future. Local stakeholders, stemming from a wide range of institutions have been actively involved in the definition of these driving forces and the set of scenarios. The evaluation of these scenarios and potential options to adapt the water system to future developments was carried out by modelling and simulation, using a purpose-built, yet general, simulator which represents the entire water and wastewater system and includes the important inherent feedback loops (e.g. water demand by irrigation, reuse of treated and untreated wastewaters). The setup of the simulator and the implemented models was done in a way that the simulator formed an integral element in the design of strategies and measures, derived by this innovative combination of qualitative scenario building, quantitative modelling and stakeholder participation. As a core result of this process, the Action Plan “Lima 2040” has been developed and adopted, in which the signatories (the main institutions and organisations responsible for the water sector of Lima) commit themselves to specific actions to be implemented over the years to come.BibTeX
Bliefernicht, J., Waongo, M., Salack, S., Seidel, J., Laux, P., & Kunstmann, H. (2019). Quality and Value of Seasonal Precipitation Forecasts Issued by the West African Regional Climate Outlook Forum.
Journal of Applied Meteorology and Climatology,
58(3), 621–642.
https://doi.org/10.1175/JAMC-D-18-0066.1
Abstract
AbstractSeasonal climate forecasts for an early warning of climate anomalies are produced by regional climate outlook forums (RCOF) worldwide. This study presents a verification of one of the earliest RCOF products, the precipitation outlook for the West African monsoon peak period (July–September). The basis of this outlook is countrywide precipitation forecasts from various statistical (downscaling) models, which are subjectively reinterpreted by experts on the basis of information from observed SST pattern analysis and global forecasts. The forecast quality was analyzed from 1998 to 2013 using a novel database of rain gauge measurements established for several West African countries, among other references. The analysis indicated skill for above normal and below normal on different spatial scales but also showed typical limitations of seasonal forecasting such as lack of sharpness and poor skill for near normal. A specific feature of the RCOF product is a strong overforecasting of near normal, very likely a result of the risk aversion of experts. To better illustrate the usefulness of the outlooks, they were evaluated with respect to a binary warning system by determining the maximum economic value Vmax. This verification indicated moderate valuable precipitation warnings for dry (Vmax = 0.39) and wet (Vmax = 0.34) years for four climatological zones (Sahel, Sudan–Sahel, Sudan, and Guinean) and five river basins (Volta, Senegal, and three Niger subbasins) but with strong regional differences (0.14 < Vmax < 0.54). The bootstrap analysis illustrated large uncertainties, indicating the relevance of uncertainty margins when seasonal forecast products with small sample sizes like RCOF outlooks are evaluated.BibTeX
Auer, H., Bliefernicht, J., Seidel, J., Kunstmann, H., & Demuth, N. (2019). Evaluierung hochaufgelöster Ensemble-Nieder- schlagsvorhersagen für die Hochwasserfrühwar- nung in kleinräumigen Flussgebieten am Beispiel der Starkregenperiode 2016 in Deutschland.
Hydrologie Und Wasserbewirtschaftung,
63(3), 130–146.
https://doi.org/10.5675/HyWa_2019.3_1
Abstract
In den letzten Jahren werden vermehrt ensemble-basierte Niederschlagsvorhersagen von numerischen Wettervorhersagemodellen als
Antrieb für die operationelle Hochwasserwarnung in Deutschland eingesetzt. Allerdings sind Studien zur Qualität ensemble-basierter
Niederschlagsvorhersagen für Indikatoren der Hochwasserfrühwarnung wie den Gebietsniederschlag relativ selten. In dieser Studie
wurde daher eine Evaluierung von COSMO-DE-EPS Niederschlagsvorhersagen für den Gebietsniederschlag und dessen räumliche Variabilität
von elf kleinräumigen Flussgebieten (42 km² bis 746 km²) in Rheinland-Pfalz durchgeführt. Als Untersuchungszeitraum diente
die Starkregen- und Hochwasserperiode im Frühsommer 2016. Für kürzere Vorhersagereichweiten (< 15 h) zeigte sich selbst für den
stündlichen Gebietsniederschlag eine verhältnismäßig gute zeitliche Übereinstimmung der Vorhersagen im Vergleich zu Radar- und interpolierten
Stationsbeobachtungen als Referenz. Es wurden somit relativ zuverlässige Niederschlagsvorhersagen von COSMO-DE-EPS
während dieser Starkregenperiode für die Untersuchungsgebiete bereitgestellt. Allerdings offenbarte die Untersuchung auch mehrere
Schwächen des Vorhersagesystems, die in zukünftigen Studien näher untersucht werden sollten. Die Genauigkeit der Vorhersagen
wurde mit kürzer werdender Reichweite kaum besser, obwohl die Ensemblestreuung deutlich abnahm. Des Weiteren tendierten
alle Ensemblemitglieder in den meisten Situationen dazu unterhalb der Beobachtungen (negativer Bias) zu liegen, auch bei hohen
Reichweiten. Diese Unterschätzung ist als besonders kritisch anzusehen, da ein Extremereignis zu spät oder gar nicht erkannt werden
könnte. Eine Untersuchung der räumlichen Niederschlagsvariabilität ergab, dass die Ensemblemitglieder die beobachtete Variabilität
der Niederschlagsfelder in den Flussgebieten deutlich besser reproduzieren konnten als der Ensemblemittelwert. Dies ist auch zu erwarten,
da durch die Mittelung eine Glättung des Niederschlagsfeldes erfolgt, die sich besonders bei hohen Reichweiten aufgrund der
größer werdenden Ensemblestreuung stark auswirkt. Ein Hochwasservorhersagesystem sollte daher nicht auf den Ensemblemittelwert
der Vorhersagen basieren, sondern das gesamte Niederschlagsensemble bei der Weiterverarbeitung in hydrologischen Vorhersagen
berücksichtigen.BibTeX
Trachte, K., Seidel, J., Figueroa, R., Otto, M., & Bendix, J. (2018). Cross-Scale Precipitation Variability in a Semiarid Catchment Area on the Western Slopes of the Central Andes. Journal of Applied Meteorology and Climatology, 57(3).
BibTeX
Bui, M. T., Kuzovlev, V. V., Zhenikov, Y. N., Füreder, L., Seidel, J., & Schletterer, M. (2018). Water temperatures in the headwaters of the Volga River: Trend analyses, possible future changes, and implications for a pan-European perspective. River Research and Applications, 34(6).
BibTeX
Müller, T., Mosthaf, T., Gunzenhauser, S., Seidel, J., & Bárdossy, A. (2017).
Grundlagenbericht Niederschlags-Simulator NiedSim (Vol. 255). Eigenverlag des Instituts für Wasserbau, Universität Stuttgart.
https://doi.org/10.18419/opus-9347
BibTeX
Bartels, J., Bliefernicht, J., Seidel, J., Bárdossy, A., Kunstmann, H., Johst, M., & Demuth, N. (2017). Bewertung von Ensemble-Abflussvorhersagen für die operationelle Hochwasserwarnung.
Hydrologie Und Wasserbewirtschaftung,
61.
https://doi.org/10.5675/HyWa_2017,5_1
BibTeX
Seidel, J., Ketzler, G., Bechtel, B., Thies, B., Philipp, A., Böhner, J., Egli, S., Eisele, M., Herma, F., Langkamp, T., Petersen, E., Sachsen, T., Schlabing, D., & Schneider, C. (2016). Mobile measurement techniques for local and micro-scale studies in urban and topo-climatology. Die Erde, 147,No.1.
BibTeX
van der Heijden, S., Haberlandt, U., Callau Poduje, A., Müller, H., Müller, T., Mosthaf, T., Seidel, J., Bárdossy, A., Lorenz, M., Wagner, A., Wagner, S., Kunstmann, H., Rohde, S., Großkopf, K.-I., Kuchenbecker, A., Hennings, G., Schroeder, K., Schäller, A., Sympher, K.-J., & Maßmann, S. (2015). Synthetische Niederschlagszeitreihen für die optimale Planung und den Betrieb von Stadtentwässerungssystemen - Das Projekt SYNOPSE. Aqua Urbanica 2015, 225, Article 225.
BibTeX
Rohde, S., Schroeder, K., Maßmann, S., van der Heijden, S., Großkopf, K.-I., Kuchenbecker, A., Hennings, G., Schäller, A., Sympher, K.-J., Krämer, S., Schönfeld, M., Callau Poduje, A., Müller, H., Haberlandt, U., Müller, T., Mosthaf, T., Seidel, J., Bárdossy, A., Lorenz, M., & Wagner, A. (2015). SYNOPSE - Synthetische Niederschlagszeitreihen für die optimale Planung und den Betrieb von Stadtentwässerungssystemen. In 14. Regenwassertage.
BibTeX
Drenkhan, F., Carey, M., Huggel, C., Seidel, J., & Oré, M. T. (2015). The changing water cycle: climatic and socioeconomic drivers of water-related changes in the Andes of Peru.
WIREs Water.
https://doi.org/10.1002/wat2.1105
BibTeX
Beck, F., Bárdossy, A., Seidel, J., Müller, T., Fernandez Sanchis, E., & Hauser, A. (2015). Statistical analysis of sub-daily precipitation extremes in Singapore. Journal of Hydrology: Regional Studies, 3.
BibTeX
Pfaff, T., Engelbrecht, A., & Seidel, J. (2014). Detection of the bright band with a vertically pointing k-band radar.
Meteorologische Zeitschrift,
23(5), Article 5.
https://doi.org/10.1127/metz/2014/0605
BibTeX
BibTeX
Seidel, J., Dostal, P., Bürger, K., Imbery, F., & Barriendos, M. (2011). Analysis and Reconstruction of the Flood Catastrophe along the River Neckar (SW-Germany) in October 1824. In T. Myllyntaus (Ed.), Thinking Through the Environment: Green Approaches to Global History. The White Horse Press.
BibTeX
Dostal, P., Imbery, F., Bürger, K., & Seidel, J. (2011). Regional determination of historical heavy rain for reconstruction of extreme flood events. In J. P. Kropp & H. J. Schellnhuber (Eds.), In Extremis - Extremes, Trends and Correlations in Hydrology and Climate. Springer-Verlag.
BibTeX
Seidel, J., & Bárdossy, A. (2010). Berücksichtigung von historischen Extremereignissen in der Extremwertstatistik. Geographische Rundschau, 40238.
BibTeX
Seidel, J., Imbery, F., Dostal, P., Sudhaus, D., & Bürger, K. (2009). Potential of historical meteorological and hydrological data for the reconstruction of historical flood events - the example of the 1882 flood in southwest Germany. Natural Hazards and Earth System Sciences, 9.
BibTeX
Sudhaus, D., Seidel, J., Bürger, K., Dostal, P., Imbery, F., Mayer, H., Glaser, R., & Konold, W. (2008). Discharges of past flood events based on historical river profiles. Hydrology and Earth System Sciences (HESS), 12.
BibTeX
Sudhaus, D., Bürger, K., Dostal, P., Imbery, F., Seidel, J., Konold, W., Mayer, H., & Glaser, R. (2008). Rekonstruktion historischer Hochwasserabflüsse anhand meteorologischer und hydrologischer Daten. Hydrologie Und Wasserbewirtschaftung, 52.2008,H.4, Article 52.2008,H.4.
BibTeX
Götzinger, J., Bárdossy, A., Seidel, J., & Balint, G. (2008). Untersuchung simultaner Hochwasserereignisse an mehreren Pegeln. In U. Haberlandt, B. Riemeier, M. Billib, H.-R. Verworn, & H.-B. Kleeberg (Eds.), Hochwasser, Wassermangel, Gewässerverschmutzung - Problemlösung mit modernen hydrologischen Methoden. Beiträge zum Tag der Hydrologie 2008, 27.03.2008 - 28.03.2008, Leibniz Universität Hannover (23_08; Issue 23_08). Forum für Hydrologie und Wasserbewirtschaftung.
BibTeX