This image showsKilian Weishaupt

Dr.-Ing.

Kilian Weishaupt

Academic Staff
Institute for Modelling Hydraulic and Environmental Systems
Department of Hydromechanics and Modelling of Hydrosystems

Contact

+49 711 685-60461
+49 711 685-60430

Business card (VCF)

Pfaffenwaldring 61
70569 Stuttgart
Germany
Room: U1.950

Office Hours

By appointment only

 

C++-Kurs für SimTech lecture

Academic Degrees

2012: Bachelor of Science in Environmental Engineering, University of Stuttgart
2015: Master of Science in Environmental Engineering, University of Stuttgart
2020: Doctoral Degree (Dr.-Ing.), University of Stuttgart

Academic Career

2015 - 2020: Research Associate (doctoral student), Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart
since April 2020: Research Associate (postdoctoral researcher), Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart

2013/2014: Deutschlandstipendium
2017: InterPore Rosette, International Society for Porous Media

  • Organization of Teaching
  • ERASMUS-Coordinator

Publications

  1. (Journal-) Articles

    1. Koch, T., Weishaupt, K., Müller, J., Weigand, B., & Helmig, R. (2021). A (Dual) Network Model for Heat Transfer in Porous Media. Transport in Porous Media. https://doi.org/10.1007/s11242-021-01602-5
    2. Weishaupt, K., Koch, T., & Helmig, R. (2021). A fully implicit coupled pore-network/free-flow model for the pore-scale simulation of drying processes. Drying Technology, 0(0), 1--22. https://doi.org/10.1080/07373937.2021.1955706
    3. Weishaupt, K., Terzis, A., Zarikos, I., Yang, G., Flemisch, B., de Winter, D. A. M., & Helmig, R. (2020). A Hybrid-Dimensional Coupled Pore-Network/Free-Flow Model Including Pore-Scale Slip and Its Application to a Micromodel Experiment. Transport in Porous Media, 135(1), 243--270. https://doi.org/10.1007/s11242-020-01477-y
    4. de Winter, M., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, M., & Helmig, R. (2020). The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01515-9
    5. Class, H., Weishaupt, K., & Trötschler, O. (2020). Experimental and Simulation Study on Validating a Numerical Model for CO2 Density-Driven Dissolution in Water. Water, 12(3), 738. https://doi.org/10.3390/w12030738
    6. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    7. Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401. https://doi.org/10.1016/j.jcp.2019.109012
    8. Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (2019). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31(4), 042001. https://doi.org/10.1063/1.5092169
    9. Weishaupt, K., Joekar-Niasar, V., & Helmig, R. (2019). An efficient coupling of free flow and porous media flow using the pore-network modeling approach. Journal of Computational Physics: X, 1, 100011. https://doi.org/10.1016/j.jcpx.2019.100011
    10. Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., & Weigand, B. (2019). On the Beavers-Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01255-5
    11. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Fetzer, T., Flemisch, B., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Schneider, M., Seitz, G., … Weinhardt, F. (2018). DuMuX 3.0.0. https://doi.org/10.5281/zenodo.2479595
    12. Yang, G., Weigand, B., Terzis, A., Weishaupt, K., & Helmig, R. (2017). Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures. Transport in Porous Media, 120. https://doi.org/10.1007/s11242-017-0995-9
    13. Terzis, A., Roumeli, E., Weishaupt, K., Brack, S., Aslannejad, H., Groß, J., Hassanizadeh, S. M., Helmig, R., & Weigand, B. (2017). Heat release at the wetting front during capillary filling of cellulosic micro-substrates. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2017.06.027
    14. Weishaupt, K., Bordenave, A., Atteia, O., & Class, H. (2016). Numerical Investigation on the Benefits of Preheating for an Increased Thermal Radius of Influence During Steam Injection in Saturated Soil. Transport in Porous Media. https://doi.org/10.1007/s11242-016-0624-z
    15. Lindner, F., Nuske, P., Weishaupt, K., Helmig, R., Mundt, C., & Pfitzner, M. (2016). Transpiration cooling with local thermal nonequilibrium: Model comparison in multiphase flow in porous media. Journal of Porous Media, 19. https://doi.org/10.1615/JPorMedia.v19.i2.30
  2. Theses

    1. Weishaupt, K. (2015). Numerical modeling of steam chamber build-up guided by hot-water pre-injection [Masterthesis].
  3. PhDs

    1. Weishaupt, K. (2020). Model concepts for coupling free flow with porous medium flow at the pore-network scale : from single-phase flow to compositional non-isothermal two-phase flow [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. In Mitteilungen / Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart (Vol. 273). https://doi.org/10.18419/opus-10932

Talks

  1. Weishaupt, K. (2020). Model concepts for coupling free flow with porous medium flow at the pore-network scale : from single-phase flow to compositional non-isothermal two-phase flow [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. In Mitteilungen / Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart (Vol. 273). https://doi.org/10.18419/opus-10932
  2. Weishaupt, K., Koch, T., Joekar-Niasar, V., Hassanizadeh, S. M., & Helmig, R. (2019). Complex Interfaces Between Free Flow and Porous Media Flow. https://www.siam.org/conferences/cm/conference/gs19
  3. Weishaupt, K., Koch, T., Joekar-Niasar, V., Hassanizadeh, S. M., & Helmig, R. (2019). Complex Interfaces Between Free Flow and Porous Media Flow / SFB1313.
  4. Weishaupt, K., & Helmig, R. (2019). Including pore-scale slip velocities at the interface between free flow and a pore-network model: Recalculation of micromodel experiments.
  5. Weishaupt, K., Koch, T., Joekar-Niasar, V., Hassanizadeh, S. M., & Helmig, R. (2018). Coupling free flow and porous-media systems using a pore-network model. https://www6.inrae.fr/gdr-sciences-du-bois/content/download/6456/63436/version/1/file/PHYSICS+OF+DRYING+Conference.pdf
  6. Heck, K., & Weishaupt, K. (2018). Coupling free and porous medium flow.
  7. Weishaupt, K., Koch, T., Gläser, D., Helmig, R., Hassanizadeh, S. M., & Weigand, B. (2017). Coupling free flow and porous-media systems using a pore-network model.

Posters

  1. 2020

    1. K. Weishaupt and R. Helmig, “Coupling of free flow and porous medium flow at the pore-network scale.” 2020.
  2. 2019

    1. K. Weishaupt, T. Koch, V. Joekar-Niasar, S. M. Hassanizadeh, and R. Helmig, “A pore-scale approach to couple mass, momentum and energy at the interface between free flow and porous-medium flow.” May 2019. [Online]. Available: https://events.interpore.org/event/12/
    2. K. Weishaupt, T. Koch, A. Seeland, S. Hermann, D. Böhringer, and B. Flemisch, “Sustainable infrastructure for the improved usability and archivability of research software on the example of Dumux.” Jun. 2019. [Online]. Available: https://de-rse.org/en/conf2019/
  3. 2018

    1. K. Weishaupt et al., “Using a pore-network model to couple mass, momentum and energy at the    interface between free flow and porous media flow.” Mar. 2018. [Online]. Available: https://conference.simtech.uni-stuttgart.de/event/1/
    2. M. Lipp, R. Helmig, K. Weishaupt, and M. Schneider, “Adaptive Staggered 2D Grids for DuMuX - Plans/Ideas,” 2nd International Conference on Simulation Technology (SimTech 2018), 26.03.2018 - 28.03.2018, Stuttgart. Mar. 2018. [Online]. Available: https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2017/Plakat_NUPUS2017_MelanieLipp.pdf
  4. 2017

    1. K. Weishaupt et al., “Pore-network modeling within the framework of DuMux and DUNE: A flexible, fully implicit approach with the possibility of coupling to other models.” May 2017. [Online]. Available: https://www.new.interpore.org/interpore-rotterdam-2017
    2. K. Weishaupt, A. Terzis, I. Zarikos, G. Yang, R. Helmig, and S. M. Hassanizadeh, “Using a pore-network model to couple mass, momentum and energy at the interface between free flow and porous media flow.” May 2017. [Online]. Available: https://www.new.interpore.org/interpore-rotterdam-2017
    3. K. Weishaupt et al., “Using a pore-network model to couple mass, momentum and energy at the interface between free flow and porous media flow.” 2017.
    4. M. Lipp, R. Helmig, K. Weishaupt, and M. Schneider, “Adaptive Staggered 2D Grids for DuMuX - Plans/Ideas,” 2nd SRP NUPUS Meeting, 09.10.2017 - 11.10.2017, Mühlhausen im Täle. Oct. 2017. [Online]. Available: https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2017/Plakat_NUPUS2017_MelanieLipp.pdf
  5. 2016

    1. K. Weishaupt, T. Koch, and R. Helmig, “Coupling of Mass, Momentum and Energy at the Interface between Free Flow and Porous Media Flow.” May 2016. [Online]. Available: https://www.interpore.org/events/interpore2016-8th-international-conference-on-porous-media-annual-meeting/
    2. K. Weishaupt, T. Koch, K. Heck, T. Fetzer, S. M. Hassanizadeh, and R. Helmig, “Coupling of Mass, Momentum and Energy at the Interface between Free Flow and Porous Media Flow / GRC.” Jul. 2016. [Online]. Available: https://www.grc.org/flow-and-transport-in-permeable-media-grs-conference/2016/
    3. K. Weishaupt et al., “Using a pore-network model to couple mass, momentum and energy at the interface between free flow and porous media flow.” 2016.
  6. 2015

    1. K. Weishaupt, T. Koch, R. Helmig, B. Weigand, S. M. Hassanizadeh, and D. Or, “Coupling of Mass, Momentum and Energy at the Interface between Free Flow and Porous Media Flow.” 2015.

Supervised student assignements

  1. Investigation of linear solvers and preconditioners for sparse systems resulting from free-flow applications. (2021). (Masterarbeit). Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung.
  2. Modeling calcite dissolution due to density-induced fingering of CO2-enriched water. (2021). (Master’s Thesis).
  3. A dual pore-network model for fluid and energy transport in soils considering thermal non-equilibrium. (2019). (Masterarbeit). Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung.
  4. Numerische Simulation von Konvektion durch in Wasser gelöstes CO2. (2019). (Bachelorarbeit). Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung.
  5. Comparative study of a fully-implicit and a sequential solution strategy for dynamic two-phase flow pore-network models. (2019). (mastersthesis).
  6. Modelling hydrodynamic dispersion under two-phase flow conditions. (2018). (Masterarbeit). Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung.
  7. Dichtegetriebene Strömung durch Einlösen von CO2 in Wasser. (2018). (Bachelorarbeit). Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.
  8. Investigation of different coupling schemes for hybrid-dimensional models. (2018). (Masterthesis).
  9. Kopplung zwischen freier Strömung und Strömung im porösen Medium: Modellierung des Transportes von Metallen und Kolloiden in der hyporheischen Zone. (2018). (Bachelorarbeit). Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.
  10. Modelling of salt precipitation and comparison with experimental results. (2018). (Masterthesis).
  11. Parameterstudie zur Charakterisierung verschiedener Bodenarten für Poren-Netzwerk-Modelle. (2017). (Bachelorarbeit). Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.
  12. Modellierung des Strömungsübergangs am porösen Medium für Filterelemente. (2016). (Masterthesis).

Current research projects

To the top of the page