Universität Stuttgart SimTech **Cluster of Excellence**

Multi-Scale Multi-Physics Numerical Models for Flow and Transport in Porous Media

Markus Wolff, Rainer Helmig, Bernd Flemisch, Jennifer Niessner Department of Hydromechanics and Modelling of Hydrosystems, IWS, University of Stuttgart

Motivation

heterogeneities << km

Multi-phase flow and transport phenomena in the subsurface are the governing processes in many natural and industrial systems, e.g. a subsurface system contaminated by a light non-aqueous phase liquid (LNAPL).

These systems are characterised by

- heterogeneities, existing (in general) on all spatial scales, and
- the predominance of **different** physical processes on different scales and in different sub domains.

Take the advantages of the combination of upscaling and multi-physics modeling

Get a framework to calculate real systems efficiently and accurately

Multi-Scale Methods: Upscaling

- Upscaling of model parameters: Use of effective large scale parameters with existing model equations.
- **Upscaling of equations:** Upscaling of existing fine scale model equations into new large scale equations.
- **Upscaling within the discretisation method:**

Demands on the Upscaling Method

- Ability to account for important small scale effects on the large scale: Capillary pressure effects and gravity effects.
- **Possibility to reconstruct fine scale quantities** (downscaling) if necessary: Coupling of sub domains of different dominating scales.

Multi-Scale Finite-Volume/Finite-Element Methods.

Fine Scale Equations

- Equations are well known and tested.
- Describe **multiphase flow** on the REV-scale, or **on the scale of the** finest resolved heterogeneities.
- **Different** kinds of model formulations possible.

Multi-Physics – Model Coupling

- In different subdomains of a system a different number of phases could be present (1-phase, 2-phase, multi-phase), different composition of phases and different kinds of fluids could occure (miscible/immiscible – 1-phase-multi-component, multi-phase-multi-component), isothermal or non-isothermal processes could dominate, etc.
- Idea: Use for every subdomain the simplest model, which sufficiently describes the dominant physical processes occuring in this domain.

Applicability within the simulation framework DUMUX [2].

Coarse Scale Equations

- Development of coarse scale equations in a phenomenological approach.
- **Simple equations**, motivated by complex and rigorously upscaled coarse scale equations (see e.g. Quintard and Whitaker [3], Efendiev and Durlofsky [1]), which sufficiently describe the physics of a heterogeneous system.

Demands on Multi-Physics Methods

- Coupling of different subdomains:
- Coupling of physical models.
- **Coupling of numerical** methods.
- **Up- or downscaling** might be necessary.

First Upscaling Results

Saturation of a wetting phase infiltrating into a domain saturated with a non-wetting phase

Next Steps

- Further development of the upscaling method.
- **Implementation** and **investigation** of different possibilities to

include capillary pressure and gravity effects.

Long-Term Perspective

Combination of Multi-Physics and Upscaling approaches to

a Multi-Scale-Multi-Physics framework.

Simulation of a real szenario.

Literature

- [1] Y. Efendiev and L. Durlofsky. A generalized convection-diffusion model for subgrid transport in porous media. SIAM MMS, vol. 1(3), pp. 504-526, 2003.
- [2] B. Flemisch et al. DUMUX: a multi-scale multi-physics toolbox for flow and transport processes in porous media. In A. Ibrahimbegovic et al. (eds.), ECCOMAS Thematic Conference on Multi-scale Computational Methods for Solids and Fluids, Cachan, France, November 28-30, pp. 82-87, 2007.
- [3] M. Quintard and S. Whitaker. Two-phase flow in heterogeneous porous media: The method of large-scale averaging. Transport in Porous Media, vol. 3 pp. 357-413, 1988.