Coupled porous-medium and free flow under turbulent and rough conditions

International Research Training Group nupus

Thomas Fetzer^{*}, Kathleen Smits[–], Christoph Grüninger*, and Rainer Helmig* * IWS, University of Stuttgart ^D CESEP, Colorado School of Mines

Gordon Research Conference, 6th - 11th July 2014

Motivation

This project focuses on understanding and modeling the relevant processes of evaporation. Evaporation is strongly influenced by the interaction of different physical processes:

- in the free flow
- at the interface

Cooperations

Analysis

- wind tunnel experiments: CESEP, Colorado School of Mines
- DNS: IRMB, TU Braunschweig

Roughness

• velocity boundary layer [2]

• inside the porous medium

The main goal is to describe these processes and to simulate porousmedium flow with an adjacent free flow. The developed concept can be

Figure 1: Relevant processes for modeling evaporation from bare soil.

used for improving soil salinization simulations, analyzing water balance relations or technical applications, like fuel cells or drying and cooling processes.

Model Concept

Porous Medium Model

Free Flow Model

- REV concept
- Darcy's law
- two fluid phases (gas, liquid)
- two components (air, water)
- non-isothermal
- laminar/ turbulent [4]
- Reynolds-Averaged-Navier-Stokes

 flow/ turbulence in porous medium

sand plate

2

porous medium

Surface Water Content

- roughness as $f(S_w)$
- effect on mass/ heat transfer [3]
- integration in REV scale models

Boundary Layers

- effects of evaporation on velocity boundary layer
- interactions between different boundary layers

Soil Structures

- evaporation
- upscaling
- atmospheric influences

REV scale

- single fluid phase (gas)
 - two component (air, water)
 - non-isothermal

Coupling Concept

Discretizations

1p2c

.5 m/s

 \mathbf{C}

 \boldsymbol{n}

- local thermodynamic equilibrium
- continuity of fluxes
- extension of [1] to turbulent conditions

Outlook

Short-Term

- evaluation of experimental results
- DNS experiments
- implementation of low-Re models
- implementation of new coupling concept
- free flow: staggered grid
- porous medium: cell centered
- time: implicit Euler
- one matrix

Long-Term

- compositional/ non-isothermal flow
- gravitation
- analysis of pore scale effects
- reduction of model complexity

Literature

macroscale roughness

Wind Tunnel Evaporation Experiments

- turbulent (algebraic) – experiment – laminar

Preliminary Results

[1] Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., and Wohlmuth, B. (2011). A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resources Research, 47.

[2] Schlichting, H. and Gersten, K. (1997). *Grenzschicht-Theorie*. Springer, Berlin, 9. edition. [3] Suzuki, S. and Maeda, S. (1968). On the mechanism of drying of granular bed. Journal of Chemical Engineering of Japan, 1:26–31.

[4] Wilcox, D. C. (1998). Turbulence Modeling for CFD. DCW Industries, La Cañada, California, 2. edition.

Simulations are performed using the open-source simulator DuMu^x.

MUSIS

Support of the German Research Foundation is gratefully acknowledged.

This study is done in cooperation with the research unit MUSIS.

