SFB 1313, A02: Modellkonzepte für gekoppelte freie Strömungen mit Strömungen in porösen Medien

Lehrstuhl für Hydromechanik und Hydrosystemmodellierung

Forschungsprojekt A02 im Rahmen des Sonderforschungsbereichs 1313 "Grenzflächengetriebene Mehrfeldprozesse in porösen Medien – Strömung, Transport und Deformation" gefördet durch Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 327154368

Projektbeschreibung

Austauschprozesse an der Grenzfläche zwischen freien Strömungen und Strömungen in porösen Medien treten in vielfältiger Weise bei umweltrelevanten, technischen und biomechanischen Systemen auf. Die primären Ziele dieses Projekts sind (i) eine umfangreiche Analyse zur Verbesse­rung des theoretischen Verständnisses, (ii) die Entwicklung von Lösungsansätzen, die Mehrphasen­strömungs- und Transportvorgänge einschließen, und (iii) die Untersuchung des Einflusses der grenzflächenbedingten Vorgänge sowohl auf die Strömungen im porösen Medium als auch auf die freie Strömung für unterschiedliche Applikationen.

Weitere Informationen zum Forschungsprojekt

Leiter

Prof. Dr.-Ing. Rainer Helmig
Prof. Dr.-Ing. Weigand, Bernhard
Dr.-Ing. Martin Schneider

Bearbeiter

Johannes Müller (M.Sc.)
Hanchuan Wu (M.Sc.)
Dr.–Ing. Maziar Veyskarami

Abteilungen

LH2 und ITLR

Zeitraum

01/2018 - 12/2025

Finanzierung

Projektbezogene Veröffentlichungen

  1. (Zeitschriften-) Aufsätze

    1. Veyskarami, M., Bringedal, C., & Helmig, R. (2024). Modeling and Analysis of Droplet Evaporation at the Interface of a Coupled Free-Flow--Porous Medium System. Transport in Porous Media. https://doi.org/10.1007/s11242-024-02123-7
    2. Wu, H., Veyskarami, M., Schneider, M., & Helmig, R. (2023). A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies. Transport in Porous Media. https://doi.org/10.1007/s11242-023-02031-2
    3. Veyskarami, M., Michalkowski, C., Bringedal, C., & Helmig, R. (2023). Droplet Formation, Growth and Detachment at the Interface of a Coupled Free-FLow--Porous Medium System: A New Model Development and Comparison. Transport in Porous Media, 149, 389–419. https://doi.org/10.1007/s11242-023-01944-2
    4. Bringedal, C., Schollenberger, T., Pieters, G. J. M., van Duijn, C. J., & Helmig, R. (2022). Evaporation-Driven Density Instabilities in Saturated Porous Media. Transport in Porous Media, 143(2), Article 2. https://doi.org/10.1007/s11242-022-01772-w
    5. Koch, T., Wu, H., & Schneider, M. (2022). Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake. Journal of Computational Physics, 450, 110823. https://doi.org/10.1016/j.jcp.2021.110823
    6. Koch, T., Weishaupt, K., Müller, J., Weigand, B., & Helmig, R. (2021). A (Dual) Network Model for Heat Transfer in Porous Media. Transport in Porous Media, 140(1), Article 1. https://doi.org/10.1007/s11242-021-01602-5
    7. Weishaupt, K., Koch, T., & Helmig, R. (2021). A fully implicit coupled pore-network/free-flow model for the pore-scale simulation of drying processes. Drying Technology, 0(0), Article 0. https://doi.org/10.1080/07373937.2021.1955706

Kontakt

Dieses Bild zeigt Rainer Helmig

Rainer Helmig

Prof. Dr.-Ing. Dr.-Ing. h.c.

Professor Emeritus

Dieses Bild zeigt Martin Schneider

Martin Schneider

Dr.-Ing.

wissenschaftlicher Mitarbeiter

Dieses Bild zeigt Hanchuan Wu

Hanchuan Wu

M. Sc.

wissenschaftlicher Mitarbeiter

Zum Seitenanfang