

University of Stuttgart

Cluster of Excellence in Data-integrated Simulation Science

Project Coordinator: apl. Prof. Bernd Flemisch Institute for Modelling Hydraulic and Environmental Systems Department of Hydromechanics and Modelling of Hydrosystems Toward a model hierarchy for underground gas storage: A compositional VE model

Beatrix Becker

5-2a

Governing equations

Full multidimensional pressure and transport equation:

$$\frac{\partial \hat{v}}{\partial p}\frac{\partial p}{\partial t} - \sum_{\kappa} \frac{\partial \hat{v}}{\partial c^{\kappa}} \nabla \cdot \left(\sum_{\alpha} X^{\kappa}_{\alpha} \varrho_{\alpha} \boldsymbol{u}_{\alpha}\right) - \sum_{\kappa} \frac{\partial \hat{v}}{\partial c^{\kappa}} q^{\kappa} = \frac{\phi - \hat{v}}{\Delta t}$$

Underground storage of synthetic gas from renewable energy

- Large domains and limited data require efficient models that adapt locally to varying domain/process complexity
- Our adaptive multiphysics model currently couples two models: a full-multidimensional model and a vertical equilibrium (VE) model, both for immiscible two-phase flow
- We extend the two-model hierarchy, e.g., to include compositional models for full multidimensions and vertical equilibrium

Conceptual compositional VE model

$$\frac{\partial c^{\kappa}}{\partial t} = -\nabla \cdot \left(\sum_{\alpha} X^{\kappa}_{\alpha} \varrho_{\alpha} \boldsymbol{u}_{\alpha}\right) - q^{\kappa}$$

with
$$\boldsymbol{u}_{\alpha} = -\boldsymbol{k}\lambda_{\alpha}\left(\nabla p_{\alpha} + \varrho_{\alpha}g\nabla z\right), \qquad \alpha = l, g$$

and total specific volume \hat{v} , total component concentration c^{κ} , mass fraction X^{κ}_{α} , phase density ϱ_{α} , source/sink q^{κ} , porosity ϕ , intrinsic permeability \mathbf{k} , mobility λ_{α} , and graviational acceleration g.

Vertically integrated pressure and transport equation:

$$\begin{split} \frac{\partial \hat{V}}{\partial p} \frac{\partial p}{\partial t} &- \sum_{\kappa} \frac{\partial \hat{V}}{\partial C^{\kappa}} \nabla_{||} \cdot \left(X_{l}^{\kappa,*} \varrho_{l}^{*} \boldsymbol{U}_{l}^{*} + \sum_{\alpha} X_{\alpha}^{\kappa,**} \varrho_{\alpha,**} \boldsymbol{U}_{\alpha}^{**} \right) \\ &- \sum_{\kappa} \frac{\partial \hat{V}}{\partial C^{\kappa}} Q^{\kappa} = \frac{\Phi - \hat{V}}{\Delta t} \\ \frac{\partial C^{\kappa}}{\partial t} &= \nabla_{||} \cdot \left(X_{l}^{\kappa,*} \varrho_{l}^{*} \boldsymbol{U}_{l}^{*} + \sum_{\alpha} X_{\alpha}^{\kappa,**} \varrho_{\alpha,**} \boldsymbol{U}_{\alpha}^{**} \right) - Q^{\kappa} \\ \text{with } \boldsymbol{U}_{\alpha}^{*} &= -\boldsymbol{K}^{*} \Lambda_{\alpha}^{*} \left(\nabla_{||} p_{\alpha,B} + \varrho_{\alpha}^{*} g \nabla \xi_{B} \right) \text{ and} \\ \boldsymbol{U}_{\alpha}^{**} &= -\boldsymbol{K}^{**} \Lambda_{\alpha}^{**} \left(\nabla_{||} p_{\alpha,T} + \varrho_{\alpha}^{**} g \nabla \xi_{T} \right) \\ \text{Capital letters denote integrated variables. Properties below} \end{split}$$

Full equilibrium Equilibrium in plume Transition state

We consider two phases (brine, gas) and two miscible components (water, gas)

Assumed vertical profiles

We neglect the influence of vertical pressure gradient on density and miscibility. Reference pressure is the pressure at the bottom.

plume are denoted with superscript *, inside the plume with superscript **.

VE criteria

VE criteria are based on vertical profiles of parameters β , e.g., saturation or relative permeability.

Preliminary results

Brooks-Corey cap. pressure: $\lambda = 2$, $p_e = 1bar$

the

wetting saturation 0.0e+00 0.2 0.4 0.6 0.8 1.0e+00

Tools & Methods

C++, DuMu^X

References

[1] Gasda, S., Nordbotten, J., and Celia, M. Vertically averaged approaches for CO_2 migration with solubility trapping. Water Resources Research, 47(5), 2011.

[2] Nordbotten, J. M. and Celia, M. A.: Geological Storage of CO₂: Modeling Approaches for Large-Scale Simulation. John Wiley & Sons, 2012.

[3] Nilsen, H. M., Lie, K.-A., and Andersen, O. Robust simulation of sharp-interface models for fast estimation of CO_2 trapping capacity in large-scale aquifer systems. Computational Geosciences, 20(1):93–113, 2016.

Depth: 1000 m Temperature: 53 °C Injection rate: $q^{CH_4} = 552 t/m/a$

Collaboration

• PN 5-2b: Development and analysis of the optimization framework

2p2c VE

- TU Delft: Lab- and field-scale experiments of gas storage
- PN 5-1: Identification and description of global optimization spaces
- PN 1-5: Model hierarchy for porous medium / free flow interfaces

www.simtech.uni-stuttgart.de

