

University of Stuttgart

Institute for Modelling Hydraulic and Environmental Systems

Department of Hydromechanics and Modelling of Hydrosystems

Coupling Free Flow and Porous-Medium Flow: Comparison of Non-Refined, Globally-Refined and Locally-Refined Axiparallel Free-Flow Grids

Melanie Lipp, Martin Schneider, Rainer Helmig

Physical problem

Motivation

Complex Flow Field

Free-Flow Regime Porous-Medium-Flow Regime

B 1313

[Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (2020). Transport in Porous Media, 134(2), 275--301.]

Free Flow – Navier Stokes Equations

Mass Balance

$$\frac{\partial \varrho}{\partial t} + \nabla \cdot (\varrho \boldsymbol{u}) - q_{\rm p} = 0$$

Momentum Balance

$$\frac{\partial(\boldsymbol{\varrho}\boldsymbol{u})}{\partial t} + \nabla \cdot (\boldsymbol{\varrho}\boldsymbol{u}\boldsymbol{u}^{\mathrm{T}}) - \nabla \cdot (\boldsymbol{\mu}(\nabla\boldsymbol{u} + \nabla\boldsymbol{u}^{\mathrm{T}})) + \nabla p - \boldsymbol{\varrho}\boldsymbol{g} - q_{\mathrm{u}} = 0$$

Finite-Volume Staggered Grid Discretization

Refinement Types

Degrees of freedom

Control volumes

Continuity equation, Momentum equation x-component, Momentum equation y-component

Stencils

• Momentum Equation, x-component

Local Refinement: Stencil - Interpolations

Lipp, M. and R. Helmig. A locally-refined locally-conservative quadtree finite-volume staggered-grid scheme. In G. Lamanna, S. Tonini, G.E. Cossali, and B. Weigand, editors, Droplet Interactions and Spray Processes, volume 121 of Fluid Mechanics and Its Applications, pages 149–159. Springer, 2020. ISBN 978-3-030-33337-9.

Example A: Free-Flow Only: Supergaussian Peak

Numerical solution

L2 Error Results

	Local				Global		
	#dofs	р	u	V	р	u	V
Without	6165	3.65	9.22	9.22	1.02	5.32	2.60
Refinement		e-02	e-03	e-03	e-03	e-05	e-05
With	6120	1.45	5.48	5.48	6.83	3.44	1.75
Refinement		e-02	e-03	e-03	e-04	e-05	e-05

In this example better results with refinement ©

Example B: Coupling to Porous Medium (Representative Elementary Volume Scale)

Setup

Manufatured

solution

[Schneider, Martin, et al. "Coupling staggeredgrid and MPFA finite volume methods for free flow/porousmedium flow problems." *Journal of Computational Physics* 401 (2020): 109012.]

Grids Uniform

FB 1313

Results

For this example – errors for the freeflow solution:

	L2(p),abs	L2(p),rel	L2(vx),abs	L2(vx),rel	L2(vy),abs	L2(vy,rel)
uniform	5,08E-01	3,33E-01	4,72E-03	3,09E-03	9,01E-03	8,34E-03
globally	4,32E-01	2,83E-01	4,25E-03	2,78E-03	8,67E-03	8,02E-03
	Better Than Uniform					
locally	4,92E-01	3,23E-01	4,79E-03	3,14E-03	7,95E-03	7,35E-03
	Better Than Uniform					
	Worse Than Grading		Worse Than All		Better Than All	

Example C: Coupling to Porous Medium (Pore Network)

Setup

Freeflow:

- Stationary
- Laminar Stokes flow

$$(Re = 0.1)$$

- 2D
- Single Phase (Gas)
- 1 component
- Isothermal
- no gravity
- Constant density (1e3)/

Kinematic viscosity(1e-6)

Globally Refined Grid

Locally Refined Grid

X Axis

0.012 0.014 0.016 0.018

0.002 0.004 0.006 0.008 0.01

-0.01

0.03

-0.008 -0.005 -0.004 -0.002 0

Results

Sum over Pore Bodies
$$\sqrt{\sum_{i=0}^{N} (p_{i,\text{this grid}} - p_{i,120 \times 40 \text{ grid}})^2}$$

	CC Dofs	Face Dofs	Deviation from 120x40 free- flow grid
Uniform 30x10	300	640	2.89e-6
Globally refined	300	640	3.01e-6
Locally refined	299	712	4.81e-6

1

Effects Not Covered by Local Truncation Error Analysis

- Global refinement: Superconvergence!
- Local refinement: Superconvergence disturbed?

Effects Not Covered by Local Truncation Error Order

Global+Local Refinement: Stencil Distortion Affects Local Truncation Errors

Effects Not Covered by Local Truncation Error Order

Global+Local Refinement: Stencil Distortion Affects Local Truncation Errors

See also [van der Plas, P. (2017). Local grid refinement for free-surface flow simulations. [Groningen]: Rijksuniversiteit Groningen.]

Occasionally Graded Grid Needed

Pore-Network Model – Free-Flow

Summary

Created by Bold Yellow from Noun Project

Ω.

University of Stuttgart

Institute for Modelling Hydraulic and Environmental Systems

Department of Hydromechanics and Modelling of Hydrosystems

Thank you!

Melanie Lipp

e-mail melanie.lipp@iws.uni-stuttgart.de phone +49 (0) 711 685-64736 www.lws.uni-stuttgart.de/lh2/

University of Stuttgart Institute for Modelling Hydraulic and Environmental Systems

Pfaffenwaldring 61, 70569 Stuttgart, Germany

We thank the German Research Foundation (DFG) for supporting this work by funding SFB 1313, Project Number 327154368.

