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Abstract. Growing dimensionality of data calls for beyond-pairwise interac-
tions quanti�cation. Measures of multidimensional interactions quanti�cation
are hindered, among others, by two issues: 1. Interpretation di�culties, 2.
the curse of dimensionality. We propose to deal with interactions via subject-
matter speci�c interaction manifestations. Interactions manifestations do not
necessarily help to build a model. Hence, we provide (still another) rationale to
consider joint cumulants as interactions measures or parameters. We exhibit
how joint cumulants are connected to some illustrative interaction manifesta-
tions. We then suggest that joint cumulants can work as building blocks for low
dimensional model building that considers interactions of high order. The ap-
proach resembles that of probability inversion in the area of expert knowledge
based risk assessment, where a discrimination is made between �elicitation�
variables, familiar to the experts, and �target� (or model) variables, consisting
of the more abstract parameters of a mathematical model.

Introduction

Technological innovation has lead to a world full of data of an increasingly grow-
ing dimension. These data in turn contain important information, the extraction
of which is an important task of Statistics (c.f. Lindsay et al. (2004)). An im-
portant type of information is the kind of interdependence among variables being
represented by data. This calls for statistical means of extracting, quantifying and,
if possible, modeling such interdependence.

The most typical coe�cient of dependence quanti�cation is the product-moment
correlation coe�cient. Other important coe�cients include Spearman's ρ, Kendall's
τ , Ginni's γ, Blonqvist's q, etc. (The reader is referred to Joe (1989) for more
coe�cients).

E�orts have been advanced for considering the interaction of more than just
two variables at a time. Concerning measures built around the concept of copulas,
Wol� (1980) presents a measure of dependence which can be considered an extension
to Spearman's ρ, whereas Schmid et al. (2010) extend this work and introduce a
series of measures that can be considered as extension to other well-established,
two dimensional measures of dependence.

Another course of action, traceable back to Linfoot (1957), is to use entropy
or mutual information as association coe�cient. Joe (1989) proposes a number
of measures of this type that apply to more than two variables, Peña and Linde
(2007) introduces a measure which adjusts itself to dimension, so as to compare the
intensity of association of two vectors of di�erent dimension. Micheas and Zografos
(2006) deal with the general case of ϕ-dependence, of which mutual information
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is one particular case. The intensity of association is measured in terms of the
deviance of the joint distribution from the distribution given by the product of the
marginal distributions (the independence case).

From the applied point of view, interactions among more than two variables are
of interest in neuronal sciences (Staude et al. (2010a,c,b), and also Grün and Rotter
(2010), chapter 12), in hydrological research (Bárdossy and Pegram (2009, 2012))
and in empirical �nance (Dhaene and Linders (2012); Dhaene et al. (2013)). The
need to consider methods to diagnose and quantify interactions among more than
two variables simultaneously has been identi�ed by these authors as a potential
substantial improvement for current methods.

This paper deals with some of the issues inherent to high dimension interaction
measures and proposes an approach for dealing with these problems. Section 1 in-
troduces some issues that one encounters when dealing with measures of interaction
for more than two variables. Section 2 states the approach we suggest for dealing
with these issues: to discriminate between interaction �parameters� and interaction
�manifestations�. Section 3 introduces joint cumulants and Lancaster Interactions.
The relation between the two is exhibited. Section 4 exhibits the relation between
joint cumulants and some illustrative interaction manifestations, as de�ned in this
paper. Section 5 illustrates the ideas presented, in that a speci�c model is presented.
In section 6, discussion of the results and some work in progress is provided.

1. Difficulties of defining a measure of multivariate interaction

1.1. Interpretability. It is relatively easy to imagine one variable in�uencing an-
other (say, hight of father on hight of son), and to visualize association between two
variables (e.g. with the aid of a dispersion plot). By looking at several bi-variate
datasets, and noticing the computed correlation coe�cient, one can get a rough
idea, at least, of what a correlation coe�cient with a value of −0.8 stands for. The
situation becomes more complicated when one has three or four variables at hand.
Assuming we have some �correlation� measure among four variables: how is one
supposed to interpret a value of corr (X1, X2, X3, X4) = −0.8? Can one visualize
a dataset producing such a coe�cient? Answers to these questions do not come to
mind as easily as in the two-dimensional case.

It has been suggested that major advances in the science of statistics usually
occur as a result of the theory-practice interaction (Box (1976)), and that the pa-
rameters of a model should have clear subject-matter interpretations (Cox et al.
(1995)). However, the kind of parameters and quantities an applied scientist or
engineer deals with, and which serve as criteria in his research is not likely to in-
clude such an abstract thing as corr (X1, X2, X3, X4). Our point is that interaction
parameters as mere abstract constructions will not �nd much application, unless
one can �paraphrase� their meaning and relate it to the problem of study.

A similar issue has been noticed in the area of probabilistic risk assessment.
When, due to the absence of data, expert knowledge must be included to assess the
risk of a speci�c event, working mathematical models often have rather abstract
parameters (�target variables�) that can not be easily interpreted or paraphrased
in terms of the physical quantities (�elicitation variables�) the expert is acquainted
with. This problem is exacerbated when the joint behavior of such parameters is
to be assessed. Hence the expert is asked to express his uncertainty judgments
in terms of elicitation variables, i.e. observable quantities within the area of his
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expertise. A target variable set for the model is then recovered, such that the
elicitation variables produced by the postulated model look as similar as possible
like the elicited variables provided by the expert. This is an inverse problem,
labeled �probabilistic inversion�. The interested reader is referred for more details
to (Bedford and Cooke (2001); Du et al. (2006)) and the references therein.

We suggest in section 2 a course of action that is analogous to �probabilistic
inversion� for the problem of interactions quanti�cation and modeling.

1.2. High parametric dimensionality. As dimension of the random vector un-
der analysis increases, a naive use of interaction coe�cients becomes prohibiting.
For example, the correlation matrix of a 10-dimensional random vector is an array
having 45 correlation coe�cients. Assume symmetry on the variables with respect
to the association coe�cient (i.e. the order of the variables plays no role on the
coe�cient's value). If one wants to consider 3-wise, 4-wise and 5-wise "correlation
coe�cients", the corresponding arrays would have 450, 4500, and 45000 coe�cients.
Hence, it is necessary to be able to select judiciously the interaction parameters with
which to work, and impose reasonable constraints on them.

One option would be to compute these multivariate "correlation coe�cients" for
relatively low-dimensional marginal distributions, say, sub-vectors of dimension 4,
5 or 6. It would then be necessary to construct a model for the whole random
vector, which �glues� together these 4-6 dimensional marginals, and incorporates
the estimates of the high-order �correlation� coe�cients into an overarching model.

In the area of Spatial Statistics (see, for example Cressie (1991); Cressie and
Wikle (2011); Diggle and Ribeiro (2007)), where the random vector X spans hun-
dreds or thousands of components, such an approach is customary. In this case, each
component of X is labeled with a spatial location. The dependence structure of the
vector is built from dependence coe�cients between pairs of variables: covariances,
correlation coe�cients or rank correlation coe�cients. A model in which a covari-
ance matrix de�nes the interdependence among the variables is then assumed, such
as the Normal model. A simple Spatial Model considers the covariance between ev-
ery two components of a vector as a function of the distance between their labeling
locations. This function must ensure positive de�niteness of the covariance matrix
so built. There are a few common covariance functions mostly used in practice, one
of them is the powered exponential covariance function,

(1.1) Cov (d) = σ2
0 .I (d = 0) + σ2

1 exp
(
− (d/θ1)

θ2
)

where θ1 > 0, 0 < θ2 ≤ 2, σ2
0 ≥ 0, σ2

1 ≥ 0 are the covariance function parameters.
This function de�nes the covariance between every two components, Xi and Xj , of
X such that their labeling locations are at a distance d > 0 from each other. With
adequate estimators of

(
θ1, θ2, σ

2
0 , σ

2
1

)
, the covariance between every pair of compo-

nents of the vector can be found. If the vector is to be extended to a new component
representing a new location, one can readily extend the covariance matrix for this
new component.

A similar approach, whereby one integrates together the model on the basis of
4-6 marginals distributions is recommended below.

Another aspect that can be considered a sort of �curse� of dimensionality, is the
coe�cient of interdependence to use: there are too many features that multivari-
ate datasets can exhibit. In the one-dimensional case, parameters such as mean,
standard deviation, skewness and kurtosis (basically, the �rst four cumulants) give
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a lot of information about the distribution of data, provided these data come from
an unimodal distribution. Those parameters (mean, skewness coe�cient, etc.) de-
scribe data to some extent, since they can be readily connected to speci�c questions
about data: the location of data, how informative this location about data is, how
symmetric the distribution is, to what extend can one expect values very far away
from the mean. As a reference one may have in mind these characteristics for the
normal distribution. That is, these coe�cients can be interpreted.

In the two dimensional case, as we have said, di�erent types of correlation coef-
�cients are still interpretable. Actually, applying the terminology of probabilistic
inversion, in the Spatial Statistics model given above covariance coe�cients be-
tween components are indeed the �elicitation variables� we are acquainted with,
and intend to reproduce properly. The parameters of the covariance function take
the place of �target variables�.

As dimension increases, a single coe�cient says less and less about the data
features. Additionally, it becomes more and more di�cult to use directly such
�correlation� coe�cients as �elicitation variables�. This points to the need to select
more intuition-appealing measures of interaction.

2. Interaction parameters versus interaction manifestations

The approach we suggest in this paper can be summarized as follows: �rst
select an interaction �manifestation� relevant for the research in question. Then
�t (low-dimensional) interactions �parameters� that make the �tted distribution
reproduce, as close as possible, the observed interaction manifestation. This is
entirely analogous to the elicitation/target variable discrimination put forth above,
but here the interaction manifestations are to be estimated on the basis of available
data.

By interaction manifestation, we mean any function of more than one component
of the random vector analyzed, X ∈ RJ , which can be interpreted as relevant for
the research objective. For the sake of illustration:

(1) The distribution of the sum of subsets of components of a random vector.
In the context of �nancial analysis, this sum is readily interpreted as �risk�.

(2) The joint distribution of subsets of components, or the probability of tres-
passing simultaneously a threshold de�ned for each component. This is
useful in many applications. For example, in the context of series systems
reliability, such trespassing probability is the probability of �failure�.

(3) Di�erential entropy, any information-based dependence measure, or any of
the copula-based generalizations to correlation measures studied by Schmid
et al. (2010), of subsets of components. Depending on the speci�c research
carried out, these may have subject-matter interpretations, or can readily
provide the versed researcher of a speci�c area with a summary picture of
the dependence in the data.

Interaction manifestations are interesting for the problem at hand, but they are not
very helpful for building a model that integrates them, let alone a low-dimensional
model. Suppose we had at hand interaction parameters or coe�cients which:

(1) Provide us with an idea of the number of variables interacting within the
random vector analyzed, X ∈ RJ .

(2) Can be somehow (functionally) connected with the interaction manifesta-
tions that are interesting for the research carried out.



MODELING OF MULTIVARIATE INTERACTIONS 5

(3) Can be built into a parametric or semi-parametric model. This would imme-
diately open up the possibility of a low-dimensional model, via a judicious
selection of assumptions and/or constraints on the interaction parameters.

Then we could proceed, in the manner of an inverse problem, as follows:

(1) We �nd data-based estimates or approximations to the interesting interac-
tion manifestations

(2) We �t the interactions parameters so as to match best the observed inter-
action manifestations

In the next section, we introduce a reasonable interaction measure, and through it,
a reasonable type of interaction parameter with which one can work along the lines
above, namely the joint cumulant.

3. The Lancaster Interaction Measure and Joint Cumulants

3.1. Lancaster Interactions. We deal now with a function, called �additive inter-
action measure� or �Lancaster interaction measure�, introduced by Lancaster (1969)
and later modi�ed by Streitberg (1990).

An additive interaction measure ∆F (X) is a signed measure determined by a
given distribution F (X) on RJ . Its de�ning characteristic is that it is equal to zero
for all X ∈ RJ , if F (X) can be written as the non-trivial product of two or more of
its (multivariate) marginal distributions (Streitberg (1990)). For example, if J = 4
and F can be written as F124F3, being F124 and F3 the marginal distributions of
(X1, X2, X4) and X3, respectively, then ∆F (X) ≡ 0, for all X ∈ RJ .

An alternative explanation is that ∆F ≡ 0, if one subset of X's components is
independent of another subset of components. If ∆F ≡ 0, then F is said to be
"decomposable".

Lancaster Interaction measure is de�ned by

(3.1) ∆F (X) =
∑
π

{(
(−1)

|π|−1
(|π| − 1)!

)
Fπ (X)

}
where the sum is over all partitions, π, of index set C = {1, . . . , J}.

An example will help clarify the notation: for index set C = {1, 2, 3, 4} there
are 15 partitions, three of which are: π1 = {{1} , {2} , {3, 4}}, π2 = {{1, 4} , {2, 3}},
π3 = {{1, 2, 3, 4}}. Their cardinalities are |π1| = 3 , |π2| = 2 and |π3| = 1,
respectively. In general, a set of J elements has a total of BJ possible partitions1,
where B0 = B1 = 1 and any subsequent Bk>1 can be found (see e.g. Rota (1964))

by the recurrence relation Bk+1 =
∑k
r=0

(
k
r

)
Br. The reader is referred to the

textbook of Aigner (2006) for more on partitions and their enumeration.
The symbol Fπ1

is further to be interpreted as

(3.2) Fπ1
(X) = F1 (X1)F2 (X2)F34 (X3, X4)

that is, the product of the (multivariate) marginal distributions de�ned by partition
π1. The same explanation holds at (3.1) for any of the BJ partitions, π, of index
set C = {1, . . . , J}.

It will be convenient to de�ne partition operator Jπ, to be applied to F for a
given partition π, by

(3.3) JπF → Fπ

1The number BJ is often called Bell's number.
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where Fπ is as in the example at equation (3.2).
Streitberg (1990, 1999) shows an important result concerning ∆F : given a prob-

ability distribution function F , function ∆F as in (3.1) is the only function built
as a linear combination of products of (multivariate) marginal distributions of F ,
such that ∆F (X) := 0, whenever one subset of X's components is independent of
another components subset.

Since the interaction measure is de�ned in terms of a given distribution F , we
can de�ne the interaction operator:

(3.4) ∆ =
∑
π

{(
(−1)

|π|−1
(|π| − 1)!

)
Jπ

}
which, upon application to the distribution in question, returns the additive inter-
action measure.

3.2. Joint Cumulants. Moments and cumulants can be de�ned as constants sum-
marizing important information about a probability distribution and sometimes,
even determining it completely (cf. Kendall and Stuart (1969)). In this section we
deal with random variables having a probability density function. The development
is also valid for discreet distributions, under simple modi�cations. The reader is
referred to Kendall and Stuart (1969); Muirhead (1982); Billingsley (1986); McCul-
lagh (1987) for more details on moments and cumulants.

The Cumulant Generating Function (c.g.f.), KX (t), of a random vector,X ∈ RJ ,
is de�ned as the logarithm of the moment generating function (m.g.f.),

(3.5) KX (t) = log (MX (t)) = E

exp

 J∑
j=1

tjXj


where t ∈ RJ , assuming these functions exist.

Joint cumulants are then de�ned to be the coe�cients of the Taylor expansion
for KX (t),

(3.6) KX (t) ∼
∞∑
r1=0

. . .

∞∑
rJ=0

κr1,...,rJ .t
r1
1 . . . trJJ

r1! . . . rJ !

and hence can be found by di�erentiating KX (t) and evaluating at t = 0,

(3.7) κr1,...,rJ =
∂r1+...+rJ

∂rJ tJ . . . ∂r1t1
KX (t) |t=0

where rj ≥ 0 is a non-negative integer. An important particular case is the covari-
ance coe�cient, or second order joint cumulant,

∂2

∂ti∂tj
KX (ti, tj) |(ti,tj)=(0,0)= cov (Xi, Xj)

The c.g.f. of a sub-vector Y = (Xj1 , . . . , Xjk), with indexes in an index set,
ji ∈ I, can be readily found in terms of that of X, by setting the indexes not
corresponding to Y to zero:

KY (s) =

(
E

(
exp

(
k∑
i=1

siXji

)))
= log

E
exp

 J∑
j=1

gj (s)Xj

 = KX (g (s))
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where g : Rk → RJ , and

gj (s) =

{
1, j ∈ I
0, j /∈ I

An alternative de�nition for joint cumulants uses product moments as departing
point (see, for example, Brillinger (1974)). Let X ∈ RJ be a random vector. For a
set (Xj1 , . . . , Xjd) of X´s components, where some sub-indexes jr may be repeated,
consider joint moments

E (Xj1 . . . Xjd)

Consider partition operator J∗π , analogous to (3.3), related to each partition π of
(j1, . . . , jd). This operator converts E (Xj1 . . . Xjd) into the product of the factors
determined by partition π.

For example, for d = 4 , (j1, j2, j3, j3) and π = {{1} , {2, 3} , {4}}, one has
partition components v1 = {1}, v2 = {2, 3} and v3 = {4}. Upon application of J∗π ,
we have,

J∗πE (Xj1 . . . Xj4) = E (Xj1)E (Xj2Xj3)E (Xj3)

In the general case

J∗πE (Xj1 . . . Xjd) =
∏
v∈π

E

∏
jr∈v

Xjr


The alternative de�nition of joint cumulants can now be given.
For random variables (Xj1 , . . . , Xjd), their joint cumulant of order d is given by,

(3.8) cum (Xj1 , . . . , Xjd) :=
∑
π

{(
(−1)

|π|−1
(|π| − 1)!

)
J∗π

}
E (Xj1 . . . Xjd)

Two examples are:

cum (X1, X2) = E (X1X2)− E (X1)E (X2)

and

cum (X1, X2, X3) = E (X1X2X3)− E (X1X2)E (X3)− E (X1X3)E (X2)

− E (X2X3)E (X1) + 2E (X1)E (X2)E (X3)

Hence joint cumulants can be seen, from a mere formalistic point of view, to
form a kind of higher order covariance coe�cient. The second order joint cumulant
is just the typical covariance coe�cient.

3.3. Relationship between Lancaster Interactions and Joint Cumulants.

The similarity between (3.1) and (3.8) might have already seemed �suspicious� to
the reader. Indeed, if we concentrate for now on the case X ∈ R2, then Lehmann
(1966) reports that:

(3.9) Cov (X1, X2) = cum (X1, X2) =

+∞ˆ

−∞

+∞ˆ

−∞

[F12 (x1, x2)− F1 (x1)F2 (x2)] dx1dx2

under the condition that E
(∣∣∣Xk1

1 Xk2
2

∣∣∣) < +∞, for kj = 0, 1.
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This equation is often called "Hoe�ding's formula" since it was �rst discovered
by Hoe�ding (1940). Of course, the above equation can be written in terms of the
Lancaster interaction measure (3.1), as

(3.10) cum (X1, X2) =

+∞ˆ

−∞

+∞ˆ

−∞

∆F (x1, x2) dx1dx2

It turns out that this equation can be extended to higher dimensions. LetX ∈ RJ
be a random vector. As shown by Block and Fang (1988), we have that (page 1808):

(3.11) cum (X) = (−1)
J

+∞ˆ

−∞

. . .

+∞ˆ

−∞

∑
π

{(
(−1)

|π|−1
(|π| − 1)!

)
Fπ

}
dX

under the condition that E
(∣∣XJ

j

∣∣) < +∞, for j = 1, . . . , J . Again, this is the same
as saying that

(3.12) cum (X) = (−1)
J

+∞ˆ

−∞

. . .

+∞ˆ

−∞

∆F (X) dX

Thus, joint cumulants are equal (up to a known constant) to the integral of Lan-
caster Interaction measure; they are �summary� or �integral� measures of additive
interaction. To our knowledge, this connection had not been pointed out elsewhere.

It goes without much explanation that the joint cumulants of a random vector
X vanish whenever a subset of the vector is independent of another, since then the
integrating function is identically zero. This property is well-known and oftentimes
the reason why joint cumulants are used in practice (e.g. in Brillinger (1974);
Mendel (1991)). The inverse is true only if the distribution of X is determined by
its moments, which may or may not be a reasonable assumption, depending on the
application.

In particular, whenever we have cum (Xj1 , . . . , Xjd) 6= 0, where no index jk is
repeated, this means that one cannot decompose the distribution of (Xj1 , . . . , Xjd);
at least d variables within X are interacting simultaneously with each other.

Our contribution here is that joint cumulants are seen as the integral of the
Lancaster interaction measure. Now as shown by Streitberg (1990), ∆F is the only
additive measure, built very elementarily with the marginal distributions of the ran-
dom vector, which vanishes whenever one subset of X's components is independent
of another subset of components.

We have provided a theoretical basis for declaring joint cumulants �interaction
parameters�, and the cumulant generating function a �dependence structure�. The
functional character of the c.g.f. opens up the possibility of parametric modeling.
It is just another way of de�ning a model, alternative to the density speci�cation.

We shall see below, how the parameters of this model can be connected with
some interesting interaction manifestations.

4. Interaction manifestations in terms of interaction parameters

4.1. The Edgeworth Expansion and the Saddlepoint Approximation. We
recall �rst some well-known results about density approximation. Details for all
topics of this sub-section can be found in Barndor�-Nielsen and Cox (1990); Kolassa
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(2006); we present here just the approximations, in the context of a distribution
having a probability density function.

The Edgeworth Expansion is a series expansion of the probability density and
of the probability distribution in terms of the joint cumulants (performing as co-
e�cients) and of the multivariate normal distribution (performing as basis func-
tion). We employ in this sub-section the shorthand notation for summations used
in Barndor�-Nielsen and Cox (1990), in order to avoid an over�ow of symbols in
these pages. Arrays are represented by symbols with superscripts and under-scripts.
For example a matrix is represented by ai,j or by bij . An array with three dimen-
sions would be ci,j,k or dijk, and so on. The product of these symbols indicates
summation along all dimensions for which the index is repeated. For example the
term 1

6
√
n
κj1,j2,j3hj1j2j3 , to be used below, should be interpreted as

(4.1)
1

6
√
n
κj1,j2,j3hj1j2j3 =

1

6
√
n

J1∑
j1=1

J2∑
j2=1

J3∑
j3=1

κj1,j2,j3hj1j2j3

where, for example,

κj1,j2,j3 = cum (Xj1 , Xj2 , Xj3)

κj1,j2,j3,j4 = cum (Xj1 , Xj2 , Xj3 , Xj4)

We can now introduce the Edgeworth Expansion. Let Z ∈ RJ be a random
vector with probability density function f . Assume also, without loss of generality,
that Z has mean a vector of zeros, a J × J covariance matrix κi,j = Γ, and joint
cumulants

{
κj1,j2,j3

}
,
{
κj1,j2,j3,j4

}
, . . .. If we have a random sample of n i.i.d.

random vectors with the same distribution as Z, namely Z1, . . . ,Zn, then we can
form the average random vector X = 1

n

∑n
i=1 Zi. This latter random vector has a

density function fX which can be formally written as the following series expansion,
in terms of the summation shorthand notation:

(4.2) fX (x) = φΓ (x)
{

1 +
1

6
√
n
κj1,j2,j3hj1j2j3 (x; Γ) +

1

24n
κj1,j2,j3,j4hj1j2j3j4

+
1

72n
κj1,j2,j3κj4,j5,j6hj1j2j3j4j5j6 (x; Γ)

}
+O

(
n−

3
2

)
Where φΓ is the multivariate Normal density function with zero mean and co-

variance matrix Γ, and hj1...jk (x; Γ) represents the evaluation at x of the k-order
Hermite polynomial determined by the identity

(4.3) φΓ (x)hj1...jk (x; Γ) = (−1)
k ∂kφΓ (x)

∂xj1 . . . ∂xjk

Actually, φΓ (x) is a Normal approximation to fX, and the factors within brackets
are often referred to as "correction terms".

It could be protested that we have considered only the case of an average X =
1
n

∑n
i=1 Zi of random vectors. However, if the distribution of Z is unimodal and

not wildly skewed or leptokurtic, then the Edgeworth Approximation given in 4.2 is
often a good approximation in practice even with n = 1, as we shall use it. After all,
a random variable does not have to be the result of averaging n variables in order
to have cumulants as such an average variable. This is the case of the chi-squared
distribution with n degrees of freedom, for example, which can be interpreted as
the sum of n standard Normal variables after raising each to the second power.
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The usefulness of retaining the dependence on n is that we are reminded of when
the Edgeworth Expansion is useful in practice: When the cumulants of X, of which
the density must be approximated, do not explode as their order increases, i.e. they
behave as if X were approximately an average.

The Edgeworth expansion is practically accurate near the expected value of the
distribution, but degenerates as one moves towards the tails of the distribution.

The Saddlepoint Approximation, also called �tilted� Edgeworth Approximation,
is a more accurate approximation to the density ofX at the tails, which we can apply
if we know its cumulant generating function KX (t). In the context of considering
X as the mean of n copies of Z, the relation between the cumulant generating

functions is KX (t) = nKZ

(
t√
n

)
. As mentioned above, we shall be using this

approximations as if we were dealing with a variable being the average of n = 1
random variables. Thus we remove in the following the dependence on such an
underlying n and work directly with KX (t).

In order to to introduce the Saddlepoint Approximation, assume for a moment
we are trying to �nd the Edgeworth Expansion not of fX (x), but of a related family
of density functions, de�ned in terms of an auxiliary vector λ ∈ RJ ,

(4.4) fX (x;λ) = exp
(
xT.λ−KX (λ)

)
fX (x)

The idea is, for each x ∈ RJ to choose the most advantageous value λ̂ of λ ∈ RJ
in order to make the Edgeworth approximation f̂X (x;λ) to fX (x;λ) as accurate
as possible. Of course, this will provide automatically an approximation for fX,

f̂X (x) = exp
(
KX

(
λ̂
)
− xT.λ̂

)
f̂X

(
x; λ̂

)
which is in fact what we want.

The optimum value λ̂ can be proved to be the one ful�lling x = ∇KX

(
λ̂
)
, for

the particular x ∈ RJ in question, because then density fX

(
x; λ̂

)
corresponds to

a random vector having its mean at x, where the Edgeworth Approximation is
most accurate. Now, under suitable regularity conditions, the leading term of the

Edgeworth expansion of fX

(
x; λ̂

)
is a multivariate Normal density with covariance

matrix with entries (
Σ̂i,j

)
=
∂2KX (λ)

∂λi∂λj
|λ=λ̂

evaluated at its mean; that is,

fX

(
x; λ̂

)
≈ e0

(2π)
J/2

det (Σ)
1/2

Thus, the looked for approximation is given by

(4.5) fX (x) = exp
(
KX

(
λ̂
)
− xT.λ̂

)
fX

(
x; λ̂

)
≈

exp
(
KX

(
λ̂
)
− xT.λ̂

)
(2π)

J/2
det
(

Σ̂
)1/2

The error of this approximation is of order O
(
n−1

)
for all x ∈ RJ , if the joint

cumulants of random vector X behave like an average of n iid random vectors.
Suitable normalization can bring this order down to O

(
n−2

)
.
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In spite of the apparent disadvantage of having to re-compute the density esti-
mation for each x, the computational cost becomes considerably smaller than that
of the Edgeworth Approximation as dimension increases, since the number of mul-
tivariate Hermite polynomials at 4.2 to evaluate increases exponentially with the
dimension of x.

The fact that we can approximate the probability density function of X in terms
of its joint cumulants or c.g.f. points out already that a wide spectrum of charac-
teristics of X can be approximated on the basis of these mathematical objects.

4.2. Connection of dependence structure with interaction manifestations.
We shall see now explicitly the connection of joint cumulants and the c.g.f. with
three of the interaction manifestations listed at section 2, which manifestations refer
to subsets of components, (Xj1 , . . . , Xjk), 1 ≤ k ≤ J , of the random vector X ∈ RJ .
Namely: the distribution of the sum of components; parameters related to the joint
probability of the components; and the di�erential entropy of the components.

A relevant point here is that, except for the distribution of the sum of compo-
nents, even with a lot of data at hand, estimation of the interaction manifestations
mentioned can be done only for (multivariate) marginals of relatively low dimen-
sion, such as k equal to 3, 4 or 5. But if we had somehow a sensible c.g.f. at hand,
these manifestations can be consistently integrated into the whole distribution (in
much the same way as covariances are integrated into a Spatial Statistics model that
spans thousands of variables) with the aid of the overarching dependence structure,
that is, the c.g.f.

Assume for the moment you have a reasonable type of c.g.f., that is, one that
seems reasonable for the problem at hand (for an illustration see section 5).

4.2.1. Connection of dependence structure with Sums of components. Given a ran-
dom vector X ∈ RJ representing the variables under analysis, we are interested in

the distribution of variable SX =
∑k
i=1Xji , where (Xj1 , . . . , Xjk), 1 ≤ k ≤ J , is a

sub-vector of the random vector X ∈ RJ .
One approach is to �nd the cumulants of SX in terms of the joint cumulants ofX,

and then approximate the density of SX using the Edgeworth Expansion. Since SX

is a one-dimensional random variable, one can alternatively �nd research-relevant
quantiles of its distribution by inverting the Edgeworth Expansion, i.e. by using
the Cornish-Fisher inversion.

To �nd the cumulants of SX, note that two of the properties of joint cumu-
lants are Brillinger (1974): symmetry and multi-linearity. Symmetry means that
cum (Xj1 , . . . , Xjk) = cum (P (Xj1 , . . . , Xjk)) for any permutation P (j1, . . . , jk) of
the indexes (j1, . . . , jk). Concerning multi-linearity, for any random variable Z ∈ R,
one has

cum (Z +Xj1 , . . . , Xjk) = cum (Z, . . . ,Xjk) + cum (Xj1 , . . . , Xjk)

Combining these two properties, it can be shown that
(4.6)

κr (SX) = cum

SX, . . . , SX︸ ︷︷ ︸
r

 =

k∑
i1=1

[
k∑

i2=1

. . .

[
k∑

ir=1

cum
(
Xji1

, . . . , Xjir

)]]
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where κr (SX) denotes the r -th cumulant of random variable SX =
∑k
i=1Xji . Then

the interesting quantiles of SX can be (approximately) written in terms of the κr
via the Cornish-Fisher inversion.

As the dimension k of the sub-vector increases, this approach becomes impracti-
cal, since the sum at (4.6) comprises too many elements. Fortunately, knowing the
c.g.f. of X tells much about the c.g.f. of sums of its components.

In a somewhat more general context as before, given a random vector X =
(X1, . . . , XJ), one can study the joint distribution of aggregated variables of the
form:

ξ1 =
∑
j1∈I1

Xj1

ξ2 =
∑
j2∈I2

Xj2(4.7)

...
...

...

ξl =
∑
jl∈Il

Xjl(4.8)

where Ik, for k = 1, . . . , l represent non-overlapping index sets such that

I1 ∪ . . . ∪ Il = {1, . . . , J}
The cumulant generating function of the l-dimensional vector so obtained is given

by

(4.9) Kξ (t) = log
(
E
(

exp
(
t.ξ
′
)))

=

log (E (exp (t1ξ1 + . . .+ tlξl))) =

log

(
E

(
exp

(
t1
∑
I1

Xj1 + . . .+ tl
∑
Il

Xjl

)))
=

log (E (exp (g1 (t)X1 + . . .+ gJ (t)XJ))) =

log
(
E
(

exp
(
g (t) .X

′
)))

= KX (g (t))

Function g : Rl → RJ is a vector function de�ned by

g (t) = (g1 (t) , . . . , gJ (t))

gj (t) = t. (1 (j ∈ I1) , . . . ,1 (j ∈ Il))
′

(4.10)

where

1 (j ∈ Ik) =

{
1, j ∈ Ik
0, j /∈ Ik

It is hence possible to �nd the cumulant generating function of random vector
ξ ∈ Rl in terms of that of the original vector X ∈ RJ . Then, if we know the
c.g.f. of the original random vector X, the cumulants, the cumulant generating
function (and hence the approximate joint density of the aggregated variables, via
Saddlepoint approximation at (4.5)) of ξ ∈ Rl can be found. In this way it is
possible to deal with interaction manifestations of these aggregate variables, as
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well. If we consider l = 1, then we see that we can attack successfully the problem
posed by equation (4.6).

4.2.2. Joint probabilities of (multivariate) marginals. Given a sub-vector Y :=
(Xj1 , . . . , Xjk) of X, in order to �nd probabilities of the form

Pr (Xj1 ≥ xj1 , . . . , Xjk ≥ xjk)

one should in principle integrate expression (4.5), for the c.f.g. of Y.
In the uni-variate case, it is a well-established practice Huzurbazar (1999) to em-

ploy instead an accurate approximation to that integral, which is due to Lugannani
and Rice (1980). Namely, in the univariate case, we have:

(4.11) FX (x0) ≈
x0ˆ

−∞

exp
(
KX

(
λ̂ (x)

)
− xλ̂ (x)

)
(2π)

1/2
(
d2KX(λ)
dλ2 |λ=λ̂(x)

)1/2
dx

≈ Φ (r) + φ (r)

{
1

r
− 1

q

}
Where τ̂ is such that K

′

X (τ̂) = x0, and:

r = sign (τ̂) {2 [τ̂x0 −KX (τ̂)]}
1
2

q = τ̂

{
d2KX (λ)

dλ2
|λ=τ̂

} 1
2

Thus, one must not perform the numerical integration at all.
For the multivariate case, Kolassa and Li (2010) have provided a generalization

of the Lugannani-Rice formula, which produces an approximation to probability
Pr (Y ≥ y) of order O

(
n−1

)
, for X ∈ RJ . This formula is extremely complicated

and writing it here will most likely obscure rather than clarify anything. Only
the probability distribution function of a multivariate Normal distribution with
covariance matrix given by

Γij =
∂2

∂ti∂tj
KX (t) |t=0

must be computed. For this task there are accurate methods available for up to 20
dimensions Genz (1993).

If one intends to deal with vectors of dimension at most 5, corresponding to mul-
tidimensional marginals of the random �eld modeled, we consider more convenient
to use numerical integration of (4.5). For higher dimensions it would be better to
use the result of Kolassa and Li (2010) in order to avoid di�cult and inaccurate
integrations.

4.2.3. Di�erential entropy. Using the shorthand notation of 4.1, de�ne Z (x) :=
1
3!κ

j1,j2,j3hj1j2j3 (x; Γ). Hulle (2005) studies an approximation to the di�erential
entropy of X, which utilizes only the �rst correction term in 4.2:
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(4.12)

ˆ
fX (x) log (fX (x)) dx = H (φΓ)−

ˆ
fX (x) log

(
fX (x)

φΓ (x)

)
dx

≈ H (φΓ)−
ˆ
φΓ (x) (1 + Z (x)) log (1 + Z (x)) dx

≈ H (φΓ)−
ˆ
φΓ (x)

(
Z (x) +

1

2
Z (x)

2

)
dx = H (φΓ)− 1

12

{ J∑
j=1

(
kj,j,j

)2
+ 3

J∑
i,j=1,i6=j

(
κi,i,j

)2
+

1

6

J∑
i,j,k=1,i<j<k

(
κi,j,k

)2 }

The value of H (φΓ) can be found in closed form, H (φΓ) = 1
2 log (det (Γ)) +

J
2 log (2π) + J

2 . The approximation (4.12) is accurate to order O
(
n−2

)
.

4.3. Summarizing. As we have seen in this section, joint cumulants provide us
not only with a lower bound for the number of variables interacting within a vector;
joint cumulants can also be connected with relevant interaction manifestations, that
may have a speci�c subject-matter interpretation. The extent to which our model
reproduces these interaction manifestations, can be used for model calibration or
validation.

5. Illustration: Extending the Gaussian model

The multivariate Normal model is a widely applied model in multivariate analy-
sis. A random vector X ∈ RJ having mean vector m and covariance matrix Γ, has
c.g.f. given by,

(5.1) KX (s) = s.mT +
1

2
sΓsT

A similar c.g.f. was studied by Steyn (1993),

(5.2) KX (s) = s.mT +
c1
1!

(
1

2
sΓsT

)
+
c2
2!

(
1

2
sΓsT

)2

+
c3
3!

(
1

2
sΓsT

)3

+ . . .

Indeed, this c.g.f. reduces to that of the Gaussian model by setting c1 = 1 and
cr>1 = 0. In order to avoid identi�ability problems of the covariance matrix, we
set c1 = 1 and declare Γ to be a true covariance matrix. This model is treated in
detail at Rodríguez and Bárdossy (2013), in the context of spatial statistics; it is
shown at Rodríguez and Bárdossy (2013) how it covers a span of tail dependence
going from zero (i.e. Normal) to that of the Student-t.

Joint cumulants of this random vector are found by di�erentiating 5.2, and eval-
uating at s = 0. All joint cumulants of odd order, cum (Xj1 , . . . , Xjk), fork odd,
are zero. The non-zero joint cumulants are of the form:
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cum (Xj) = mj

cum (Xj1 , Xj2) =
c1
2
{Σj1j2 + Σj2j1}

cum (Xj1 , . . . , Xj4) =
c2
2!

1

22
{Σj1j2Σj3j4 + Σj1j3Σj2j4 + Σj1j4Σj2j3}

...

cum (Xj1 , . . . , Xj2r ) =
c r

2

r
2 !

1

2
r
2


J∑

j1,...,jr=1

Γj1j2 . . .Γjr−1jr

(5.3)

and so on. The indices of the covariances involved in each product appearing in
the summation at (5.3) form a partition for the index set {j1, . . . , jr}.

Each higher order joint cumulant of order r > 2 is (low-dimensionally) built
on the basis of the covariance coe�cients of the components involved and just an
additional coe�cient, cr. This is the kind of judicious constraining/selection of
joint cumulants advocated for in this paper.

Moreover, joint cumulants of increasing order can be �tted �orthogonally� by
�tting the respective cr coe�cient, without modifying the lower dimensional joint
cumulants. Hence mean and covariances can be �tted by �nding estimates for m,
Γ and c1, and additional features of the random vector X can be �tted by �nding
estimates for c2, c3, c4, . . ..

By �additional features� we mean relevant interaction manifestations. In this
way, we enrich the Gaussian model, and make it more capable of reproducing
important features of data. This points to the necessity of a two-step estimation
procedure. In a �rst step, means and covariances are �tted. On a second step,
parameters cr>2 are �tted, such that the relevant interaction manifestation observed
in data is best reproduced.

We deal in the example below with the interaction manifestations: 99% and
99.5% quantiles of the sum of components of X.

5.1. Illustration for interactions manifestations related to the sums of

components. Assume we have realizations x1, . . . ,xN of X ∈ RJ , where xi =
(xi1, . . . xiJ). We choose for the illustration a sample size of N = 10000

We assume data is standardized, so that each marginal component has mean zero
and variance 1. Then one can safely assume that c1 = 1, mj = 0, for j = 1, . . . , J ,
and that Γ is a correlation matrix.

One must also decide at what order one wishes to truncate the expansion (5.2).
For example, cr>3 := 0.
Step 1, correlation estimation. The components of Γ can be estimated by the sample
correlation coe�cients,

Γ̂i,j = ρ̂i,j

In this way, we obtain an estimate Γ̂ for the correlation matrix.
Step 2, interaction manifestation �tting. If we are interested on the distribution of

SX =
∑J
j=1Xj , as would be the case in empirical �nance applications, the c.g.f. of

SX is (see sub-section 4.2.1)

(5.4) KSX
(t) =

(
1

2
sΓsT

)
+
c2
2!

(
1

2
sΓsT

)2

+
c3
3!

(
1

2
sΓsT

)3

+ . . .
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where

s = (t, . . . , t)︸ ︷︷ ︸
J

Compute the sample quantiles of the sum, q1 = q̂90% (SX) and q2 = q̂99% (SX).
These comprise the interaction manifestations you would like to reproduce faith-
fully.

Now, using

(5.5) KSX
(t) =

(
1

2
sΓ̂sT

)
+
c2
2!

(
1

2
sΓ̂sT

)2

+
c3
3!

(
1

2
sΓ̂sT

)3

+ . . .

as our c.g.f., we can apply the Lugganani-Rice approximation (4.11) to form ap-

proximations to FSX
. These approximations, F̂SX

, are a function of the unknown
parameters c2 and c3. Note that these parameters do not a�ect the already �tted
correlation matrix. Then, one can de�ne the following objective function:

(5.6) Z (c2, c3) =
(
F̂SX

(q1)− 0.9
)2

+
(
F̂SX

(q2)− 0.99
)2

Upon minimization of Z, one has estimates of c2 and c3 which best reproduce
the interesting interaction manifestation, in addition to reproducing correlations
properly.

6. Discussion

An approach for considering interactions that go beyond correlations has been
presented. We have seen that the discrimination between interactions �parameters�
and interactions �manifestations� can help to circumvent two major problems one is
confronted with, when attempting to quantify and model higher order interactions:
the problem of interpretability, by working with subject-matter relevant manifesta-
tions of interdependence; and the problem of high dimensionality, by recoursing to
joint cumulants as building blocks of a dependence model, which cumulants can be
judiciously selected/constraint. By using the cumulant generating function, we are
recoursing to a well-studied object: the characteristic function of a distribution.

As dimension of vector X increases, interactions of high order may be more and
more di�cult to assess. For example, a random vector having c.f.g. (5.2), with
c1 = 1 , cr ≈ 0 for 2 ≤ r ≤ 3 but then cr≥4 6= 0, would have one and two di-
mensional marginals practically equal to those of a Guassian distribution. But the
interaction coe�cients of groups of 14 components or more will be much di�erent,
producing di�erent interaction manifestations. The di�erence in the overall depen-
dence structures may grow tremendously as the dimension of the random vector X
grow (i.e. J >> 2), even though these fact may go totally unnoticed in the one and
two dimensional marginal analysis of data.

In Rodríguez and Bárdossy (2013), these issues are dealt with and illustrated in
the context of Spatial Statistics, where the issue of low dimensionality is essential,
and where interaction manifestations can di�er drastically between two models
having very similar 1 and 2 dimensional marginals, due to the big dimension of the
�eld.
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