

High-resolution discharge and groundwater recharge simulations by conceptional hydrological models in the Neckar Basin, Germany

Jens Götzinger

J. Götzinger

Universitaet Stuttgart Institute of Hydraulic Engineering Dept. of Hydrology and Geohydrology www.iws.uni-stuttgart.de

Outline

- Intended objectives
- Developed models
- Discharge simulations
- Groundwater recharge
- Conclusions and implications
- Outlook

RIVERTWIN - Goals

•Scenarios of integrated water resources management to support the establishment of River Basin Management Plans (RBMP)

J. Götzinger

Integrated regional model

for scenario analysis and evaluation under contrasting ecological and socioeconomic conditions in three river basins

http://www.rivertwin.org/

Intended objectives

- Coupled and adapted surface water models (HBV/LARSIM)
- High resolution discharge and groundwater recharge simulations
- Impact of climate/socio-economic change on water balance

J. Götzinger

Hydrological Modelling

J. Götzinger

Hydrological Modelling

HBV-IWS: Model structure

- Spatially distributed process description
- Transfer functions linking model parameters with catchment characteristics

HBV-IWS: Calibration strategy

• Parameters of transfer functions calibrated directly for a set of subcatchments using discharge at outlet

- Regionalization in the other subcatchments using soil, land use and topography
- distributed predictions
 natural variability
 few free parameters

Decision Support Systems for Soil and Water Resources Management

Damascus 23. – 24. January 2006

Structure of LARSIM

• resolution: 1 km²

J. Götzinger

• Knauf

(LHG)

- Penman-Monteith
- Xinanjiang-Model
- linear reservoirs

Gauge Rockenau

Neckar Basin

- 14.000 km²
- 91 1030 masl
- temperate humid

Climate scenarios

	Temperature	Precipitation
1988 – 1999	9.3 °C	1074 mm
Enke dry	10.9 °C	1162 mm
Enke wet	10.9 °C	1220 mm
Yang A2	12 °C	1208 mm
Yang B2	11.9 °C	1311 mm

Land use scenarios

A10: 6% more dense settlement (50% sealed, 35% grasland, 15% forest) B20: 5% more loose settlement (30% sealed, 50% grasland, 20% forest)

J. Götzinger

Decision Support Systems for Soil and Water Resources Management

Damascus 23. – 24. January 2006

Decision Support Systems for Soil and Water Resources Management

Damascus 23. - 24. January 2006

J. Götzinger

Decision Support Systems for Soil and Water Resources Management

Damascus 23. – 24. January 2006

Mean annual groundwater recharge Enke

1987-2003	2021-2030 dry	2021-2030 wet	
137 mm	122 mm	130 mm	

Mean annual groundwater recharge Yang

1987-2003	2021-2030 A2	2021-2030 B2	
137 mm	160 mm	156 mm	

Mean annual gw recharge land use scenarios

2021-30 dry	2021-30 A10	2021-30 B20
122 mm	120 mm	122 mm

Conclusions and implications

- Conceptual models can provide information about internal state variables –
 only if the calibration considers catchment characteristics
- Increase in temperature and precipitation will not perturb water balance in the Neckar basin significantly
- Differences in scenario results are relatively small
- Projected urban growth shows no negative impact on water resources

Outlook

- Training workshops and sample model transfer to SIC (Uzbekistan) and DH (Benin) accomplished
- Model set-up for the Ouémé has started
- Multi-response data will be used to check consistency
- Other regionalization method based on the similarity of raster cells
- We have to expect different results from different climate/downscaling/hydrological...models

Hydrological Modelling in the Neckar Basin

Jens Götzinger

Institute of Hydraulic Engineering **Dept. of Hydrology and Geohydrology** Pfaffenwaldring 61, 70569 Stuttgart, Germany www.iws.uni-stuttgart.de