
Application of Fuzzy Logic to Signal Processing of Ultrasound 
Measurements  
 
Yi He *, Desmond Manful ***, Gerhard Dill-Langer **, András Bárdossy *, Simon Aicher ** 
 

* - Department of Hydrology and Geo-hydrology, Institute of Hydraulic Engineering, University of Stuttgart, 
Pfaffenwaldring 61, 70569 Stuttgart, Germany 

** - Department of Timber Engineering and Fire Behavior, Otto-Graf-Institute, Materialprufungsanstalt 
(MPA) Stuttgart, University of Stuttgart, Pfaffenwaldring 4, 70569 Stuttgart, Germany 

*** - Institute of Landscape Planning and Ecology, University of Stuttgart, Keplerstrasse 11, 70174 
Stuttgart, Germany 

Abstract 

In the presented paper a digital filter based on Fuzzy Logic is applied to 

ultrasound data from through transmission and acoustic emission 

measurements from timber and glued laminated timber (glulam) specimens of 

structural dimensions. It could be shown that the adopted filtering technique 

was able to reduce random noise efficiently and the level of interfering 

artefacts or phase shifts could be kept very low. For transmission 

measurements a significant reduction of repetitions has been achieved, which 

are necessary to reach reasonably high signal-to-noise ratios. For acoustic 

emission (AE) measurements the noise reduction worked most efficiently in 

the high frequency domain. From the preliminary AE results one can expect 

that the fuzzy filter can increase the ratio of events suitable for evaluation of 

source locations. 

Introduction 

Non-destructive Testing (NDT) of wood presents a unique opportunity to 

examine the material or its constitution in ways that do not impair future 

usefulness and serviceability [1]. While the integration of NDT methods is 

already standardised for steel and concrete, its implementation for timber 

products is still limited due to the special properties of timber and engineered 

wood products (e.g. growth bound defects, anisotropy, porosity, creep 

behaviour etc.). 

In case of application of ultrasound based NDT methods to glued laminated 

timber (glulam) of structural dimensions three main fields of research needs 

can be identified, namely: 
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• adaptation of the ultrasound equipment to particular requirements of 

the material, the coupling conditions and the dimensions 

• improved comprehension / modelling of wave propagation in timber in 

the presence / absence of damage or significant defects 

• advanced signal processing for derivation of characteristic values from 

the raw ultrasound signal data 

This paper is a contribution to the latter research need of improving signal 

processing by means of digital de-nosing. 

In the following sections it shall be outlined why the problem of signal de-

noising is particularly essential in the case of glued laminated timber and large 

(structural) dimensions. 

Due to the strong attenuation of high frequencies in timber, usually low 

frequency ultrasound is used for transmission measurements. In order to 

realise transmission measurements of (glulam) members with structural 

dimensions, the excitation energy is maximised by application of e.g. burst 

generators and resonant transducers/sensors and the transmitted signals 

have to be amplified by factors of up to 100 dB. Highly amplified signals of low 

frequency resonant transducers transmitted through an anisotropic material 

with limited dimensions may bring about serious problems for signal 

interpretation and evaluation of characteristic parameters. The shape of the 

signals usually shows a long tail dominated by multiple reflections caused by 

the interaction of the (refracted) wave and the boundaries of the examined 

specimen. Not only compression (p)-waves but also transversal (s-) waves 

and plate or beam wave modes are hidden in the received signal. Therefore in 

the analysis of ultrasound transmission signals of highly attenuating materials, 

the beginning (on-set) of the signal containing the fastest (i.e. non-reflected, 

p-wave) part yields the most reliable information of ultrasound transmission 

(see e.g. [2]). However the noise mainly generated through the amplification 

process interferes considerably with the signal on-set. Therefore the 

evaluation of ultrasound signals measured obtained from timber or glulam 
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members of structural dimensions is often restricted due to a low signal-to-

noise ratio (SNR). 

The most common method of noise reduction is the averaging of repeated 

measurements. For active ultrasound measurements such as pulse through 

transmission or pulse echo however, this averaging method is limited due to 

its high requirements either for the pulse repetition rate or for the measuring 

time. Moreover, in some situations, e.g. acoustic emission (AE) testing, the 

averaging method cannot be used at all, as each acoustic emission signal is 

unique and cannot be repeated. As a result digital filters are used in order to 

reduce noise for each single ultrasound signal. 

Five conventional methods, i.e. averaging of repetitive measurements, a 

moving average filter and two finite impulse response filters are applied and 

their results compared to those of a fuzzy based filter. In this particular case 

ultrasound signals taken from through transmission and acoustic emission 

(AE) measurements from a glulam beam are used. 

Ultrasound data from through transmission and acoustic emission 
measurements 

Test configurations 

The selected sample of ultrasound data used in this work as raw data for the 

various signal processing methods were recorded within the framework of two 

studies: 

- The first study considered detection and characterisation of longitudinal 

cracks in glulam beams by means of ultrasonic pulse transmission 

measurements. The tests were performed as line (B-) scans in the 

longitudinal direction and pulse transmission perpendicular to the grain. 

The glulam beam depth (= distance between transmitter and receiver) 

varied between 440 mm and 1230 mm. Details of the test set-up and 

measurement results for the smaller depth please consult [3]. Particularly 

in the case of large beam depths and in the case of pulse transmission 
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through the cracked area signals with low SNRs had to be evaluated, see. 

Fig.1b for a signal with low SNR. 

- The second study considered monitoring of damage evolution in timber 

specimens subjected to tensile loading parallel to the grain by means of 

acoustic emission measurements. In the test section of the tapered 

specimens (width: 120 mm, length: 600 mm, thickness 20 mm) of the 

tension specimens, six acoustic emission sensors were fixed to the narrow 

sides in order to record and locate acoustic emission signals caused by 

micro-fracture events near natural defects (knots). For details of test set-

up and first results please consult [4]. Depending on the distance between 

the respective ultrasonic sensors and the source location of the micro-

fracture event, signals with highly variable SNRs had to be evaluated.  

Noise and evaluation of ultrasound signals 

Experimental data always contain a portion of "noise" which can be defined as 

unwanted components interfering with the sought-after "signal" i.e. the pure 

response of the tested system. Important sources of noise are the 

components of the measurement system itself and external sources such as 

electromagnetic radiation disturbances. The main source of noise in the case 

of the studied ultrasonic signal data stems from the amplification system 

located between the ultrasound sensors and the transient recording unit. The 

noise in the ultrasound signals may consist of three different parts: 

- generic random ("white") noise without any phase correlation between two 

deliberate data samples within one recorded signal (typical for amplifier 

noise) 

- recurring disturbances from external sources (e.g. testing machine 

vibrations, fluctuations in the mains supply etc.) with some phase 

correlation within one recorded signal 

- nonrecurring disturbances from external sources  
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Generic random noise can be compensated for in the case of active 

ultrasound measurements by repetition and averaging. However in the case 

of recurring disturbances, the averaging technique may work well, as the 

phase of the interfering disturbance usually varies randomly for the repeated 

measurements. It is nevertheless important to emphasize that recurring 

disturbance noise shows no random characteristic within the recorded signal. 

Nonrecurring disturbances are distinct events and as such can not be 

compensated by averaging techniques. 

In order to illustrate the problem of noise occurrence in signal two ultrasound 

signals from through transmission measurements at a cracked glulam beam 

(first study as described above) are depicted in Fig. 1. Figure 1a shows an 

ultrasound signal in the crack free zone with relatively low attenuation and 

thereby high signal-to-noise ratio of about 10:1. The shape and the on-set of 

the signal are clearly visible and can easily be evaluated quantitatively. Figure 

1b shows an ultrasound signal obtained from the cracked section of the same 

specimen. The signal is highly attenuated resulting in a low SNR of about 3:1. 

The shape of the signal is difficult to discern and the quantitative evaluation of 

the signal on-set is associated with a high error margin. In order to use a 

consistent algorithm for the evaluation of signals with both high and low SNRs, 

digital filter techniques have to be applied. 

Fig. 1 Signals obtained by the ultrasound through-transmission on a glulam 

specimen with a thickness of 44 cm  

a. signal in the crack free zone 

b. signal in the crack zone 

c. spectrum analysis of the signal in the crack zone 

Conventional filtering techniques 

As mentioned in the previous section, the random components and recurring 

disturbances can be removed by summing up a number of signal 

measurements. A particular advantage in ultrasound transmission 
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measurement is that in many cases, the repetitive signals can be averaged to 

significantly improve the signal-to-noise ratio (SNR) [5]. Unfortunately this is 

not the case for the AE signals since AE events are unique and not 

repeatable. 

A symmetrical moving average filter (SMAF) can be applied as an alternative 

to the simple averaging technique. The moving average filter is optimal for 

reducing random noise while retaining a sharp step response [6]. However, it 

is the worst filter for frequency domain encoded signals, with little ability to 

separate one band of frequencies from the other [7]. 

Finite impulse response filters are well-know for their band separation ability. 

They can be designed to remove noise with high frequency, low frequency or 

a certain band of frequency and classified accordingly as low-pass, high-pass 

and band-pass filters. These filters do not perform well in the time domain with 

respect to their unavoidable amplitude distortion such as excessive ripple and 

overshoot in the step response [7]. 

Traditional means of minimising the effects of noise such as frequency 

domain filtering and averaging are not without their disadvantages [8]. Their 

shortcoming revolves around the amount of time required to effect repetitive 

measurements and the large storage space required to save them and the 

signal evaluation associated with simple averaging filter; Applying symmetrical 

moving average filters and finite impulse response filters results in far from 

satisfactory de-noising performance in industrial ultrasound NDT application 

and additionally artefacts can be introduced.  

Other available de-noising solutions are being tested in current NDT research. 

One of them is the wavelet-transform, which is essentially a band-pass filter 

[9]. It has shown its advantages over many traditional Fourier based filtering 

techniques in that it uses more appropriate functions than the sines and 

cosines which form the bases of the Fourier analysis approach to approximate 

choppy signals [10]. However, wavelets analysis should be applied carefully 

due to the fact that significant artefacts can be created during de-noising [11]. 
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In an attempt to avoid these aforementioned shortcomings, a fuzzy logic 

based filter is implemented in this study. 

Fuzzy based filtering technique 

Fuzzy based filters adopt a whole new perspective based on human 

reasoning and logic. Fuzzy logic (FL) was first presented by Lofti Zadeh [12] 

as a way of processing ambiguous, imprecise, noisy information or linguistic 

variables rather than crisp values. FL is a superset of Boolean logic dealing 

with, for example, a situation where a statement and its opposite may both be 

true to a certain degree [13]. Most natural and/or man-made systems can 

hardly be holistically described using only crisps variables. Computers and 

electronic devices, for example are designed to manipulate precise or crisp 

values. FL was invented to allow for the representation of values between 0 

and 1, shades of grey, and maybe; it allows partial membership in a set. 

Adaptive Network Fuzzy Inference System (ANFIS) is an extension of the 

application of FL combined with the idea of Artificial Neural Network (ANN) 

(see e.g. [14]). The first in-depth description of ANFIS was presented by Jyh-

Shing Roger Jang [15]. Since then, ANFIS has found its application in various 

fields such as controller design, online parameter identification for control 

systems, time series prediction and inference [16]. 

The proposed approach is a custom-designed ANFIS model hereinafter 

referred to as ‘Y-ANFIS’. It uses first-order Takagi-Sugeno fuzzy rules [17]. 

The input to the fuzzy model and number of fuzzy rules are determined by the 

number of training data pairs and the required accuracy. In this study, both 

signal and noise are functions of time (t) and that they are independent of 

each other. Signal information is an unknown function of (t). Noise information 

is a random function of (t) and/or the history of (t). In this work, the input to the 

fuzzy model is (t) and output is the amplitude (v). To describe the model, a 

system with two fuzzy rules is used. 

The fuzzy rules are constructed as the following: 

If t is D1, then v1=P1 t + C1
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If t is D2, then v2=P2 t + C2

P1, P2, C1 and C2 are model parameters to be solved. D1 and D2 are fuzzy 

numbers given by a generalized bell function 
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where, ai, bi and ci are function parameters (see figure 2). 

Figure 2  Generalized bell membership function 

The outputs of the two fuzzy rules are combined by taking an arithmetic mean 

of each output taking into consideration of the value of their weights wi. which 

is equivalent to µD(ti), see fig 2. 
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Equations (2) can be formed for each signal sample (vi,ti). The function 

parameters, ai, bi, and ci are given initial values, thus wi can be obtained. 

Usually a signal has more than four samples which means there are more 

data pairs than the parameters to be fitted. The Least Square Estimation 

(LSE) optimization algorithm can be applied to solve the four model 

parameters, P1, P2, C1 and C2. After obtaining optimal model parameters, the 

function parameters are then optimized by the Gradient Descent (GD) method 

(using the derivative of the model error). LSE and GD optimization procedures 

are repeated until they produce an acceptable error defined a priori by the 

modeller. Up to this point, both the model parameters and the function 

parameters are optimized accordingly and the overall output can be 

computed.  

To apply the Y-ANFIS model to noise reduction, the noise components have 

to be dealt with. A measured signal is composed of a clean signal and noise 

as expressed by Equation (3). 
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( ) )()( tdtxtv +=                                                                                       (3) 

where, 

( )tv  = measured signal 

)(tx  = uncorrupted signal 

)(td  = original noise signal 

The error of the model is the difference between the measured signal and the 

modelled clean signal.  

2#2#2#2 )()()(2)()(2)()()()()( tdtdtxtdtxtxtxtxtvte +⋅−⋅+−=−=   (4) 

where, 

)(# tx  = modelled clean signal by Y-ANFIS 

The expected value of ||e(t)||2 is derived as Equation (5). The noise being 

dealt with is Gaussian white noise with zero mean value which leads E[d(t)] to 

zero. The expected values x(t)⋅d(t) and x(t)#⋅d(t) are zero due to the fact that 

clean signal x(t) and noise d(t) as well as modelled signal x(t)# and noise d(t) 

are uncorrelated. First, we consider noise as zero signals, which means clean 

signals can be obtained and used as input training data in the model to 

reproduce the signal. However, noise is always present and interfering with 

the desired signals. Fortunately, the noise is zero-mean, Gauss-Markov 

theorem still holds to ensure an unbiased LSE. Therefore, to minimize the 

error is to minimize the squared error between the real signal and the 

modelled signal. 

[ ] [ ] [ ]22#2 )())()(( tdEtxtxEeE +−=                                                            (5) 

Results and discussion 

The five different filters, namely the averaging filter, symmetrical moving 

average filter, two finite impulse response filters and Y-ANFIS are applied to 

the ultrasound through-transmission measurements as previously described. 
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The five filters are applied to the onset of the signal presented in Fig 1b. A 

comparison of the performance of them is shown in Figure 3. The original 

signal shown in figure 3a as a grey line is too noisy for one to discern the 

actual beginning of the signal. After it is treated with the AF with 10 repetitive 

measurements, the low frequency disturbances are eliminated, but still the 

SNR is rather low due to the remaining high frequency noise. This situation 

can be further improved with more repetitions as shown in Fig. 3e with 26 

repetitive measurements here serving as the reference result. The digital 

filters are applied to ten measurements and the averaged values are 

presented in Figs. 3b, c, d and f. This was done such that the non-random 

disturbances with frequency band similar to that of the signal could be 

overcome. The moving average filter (results shown in Fig. 3b) does remove a 

lot of noise from the signal but it leaves traces of high-frequency noise behind 

making evaluation difficult still. Both finite impulse response filters and 

Blackman window filter (results shown in Figs. 3c and d) introduce some 

artefacts to the signal which may mislead the reading of the signal 

parameters. Y-ANFIS produces (results shown in Fig. 3f) unnoticeable level of 

artefacts and amplitude distortion. It enables a judgement of parameters like 

on-set time of the signal with a much higher confidence level compared to the 

conventional filters. 
 

Figure 3 Comparison of filter performance in time domain: 

  a) Original signal and result of AF (10 repetitions) 

  b) Symmetrical moving average filter  

  c) Blackman window filter 

  d) Finite impulse response filter 

  e) Averaging filter (26 repetitions) 

  f) Y-ANFIS filter 
 

Y-ANFIS shows excellent de-noising ability with respect to the glulam 

specimen with a depth of 440 mm and length of approximately 200 cm. 

Further testing of the proposed algorithm was done by increasing the 
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dimension (depth=1230 mm) of the same glulam specimen by gluing another 

undamaged glulam beam on the top of the original beam. The idea was to 

introduce more noise into the signal in order to further test Y-ANFIS de-

noising ability. The signal below shown in figure 4 was obtained at the same 

location as the signal shown in fig. 1b but with a lower SNR ratio. Figure 4a 

illustrates the effect of 350 repetitions of the averaging (AF) filtering technique 

compared to the Y-ANFIS filter applied to the original signal without any 

repetition measurements. Although the high frequency random part of the 

noise is compensated completely for both methods, some low frequency 

noise, i.e. non-random disturbance, is still present in the Y-ANFIS signal. The 

calculation therefore has been performed also by means of combined 

application of 10 repetitions with the use of the Y-ANFIS filter. The results are 

presented in Fig. 4b. From the figure it is obvious that the combined action of 

averaging by the Y-ANFIS method yields nearly identical results compared to 

the reference, however the needed repetitions could be reduced by a factor of 

35. 

 

Figure 4 Comparison of the onset region of one ultrasound transmission 
measurement (depth=1230mm) treated by averaging filter and by 
Y-ANFIS  
a. evaluation of one signal by application of Y-ANFIS method only 
b. evaluation by averaging 10 signals filtered by Y-ANFIS 

 
 
When it is technically / practically possible to obtain sufficient numbers of 

repetitive measurements for a target SNR level, such as for the ultrasound 

transmission method in case of small specimens, the averaging filter remains 

the most reliable method since it does not alter the true signal. However, Y-

ANFIS shows its significant value over the averaging filter in treating results of 

transmission measurement from timber specimens in structural dimensions 

with extremely low SNR, where the number of necessary repetitive 

measurements is beyond practical limits. 

Another example of the application of the Y-ANFIS method is the de-nosing of 

signals which cannot be measured repeatedly, e.g. in the case of acoustic 

emission measurements. Figure 5 shows two AE signals from the above 

mentioned acoustic emission measurements from the timber specimens 
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subjected to tension loading. One signal (Fig. 5a and b) represents an 

example with SNR, whereas the second signal (Fig. 5c and d) represents a 

relatively high SNR value. In Fig. 5 a and c the entire signals are shown and 

Fig. 5b and d show a close-up of the respective signal on-sets. In the close-

ups the original signal samples are depicted as '+'-symbols and the results of 

the Y-ANFIS filter are depicted as solid lines. From the figure it is obvious that 

the Y-ANFIS filter successfully eliminates random noise in the high frequency 

range. Furthermore, no artefacts such as overshoots or additional wave 

cycles can be found. It works well both in the case of low and high SNR 

values. By applying the Y-ANFIS filter, a clearer and less ambiguous 

evaluation of the signal on-set is possible. However, a portion of the noise, 

particularly with frequencies lower than the signal frequency, is not 

compensated by the Y-ANFIS filter. This is due to the non-random character 

of the disturbances which are reproduced rather than eliminated by the 

employed filter algorithm. Besides the successful elimination of high 

frequency noise, the compensation or at least reduction of the interfering non-

random (low frequency) noise would, however, be a prerequisite for a reliable 

automatic detection of signal on-sets. 
 

 
Figure 5 AE signals treated by Y-ANFIS 

a. AE signal with low SNR (complete signal) 
b. AE signal with low SNR (close-up of the signal onset) 
c. AE signal with high SNR (complete signal): original signal 

samples given as ‘+’-symbols, Y-ANFIS result given as solid line 
d. AE signal with high SNR (close-up of the signal onset): original 

signal samples given as ‘+’-symbols, Y-ANFIS result given as 
solid line 

 

Conclusions  

In the presented study it was shown, that the developed “Y-ANFIS” digital 

filter based on fuzzy logic can be successfully applied to ultrasound signals in 

order to considerably reduce random noise. The feasibility of de-noising and 

its advantages with respect to Y-ANFIS have been demonstrated through the 

successful treatment of signals from ultrasound through transmission and 

acoustic emission measurements. For both examples, however, also the 

limitations of the method were also discovered: Non-random disturbances, 
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usually in the low frequency domain, could not be compensated by the “Y-

ANFIS” filter algorithm. In the case of transmission measurement a 

combination of conventional averaging techniques (with a reduced number of 

repetitions) and the fuzzy approach yielded best results. For further 

development of signal processing of acoustic emission measurements, a 

combination of the fuzzy approach with advanced band pass filters e.g. based 

on digital wavelet transform appears to be promising. 
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