

Universität Stuttgart

Institut für Wasserbau Lehrstuhl für Hydrologie und Geohydrologie Prof. Dr. rer. nat. Dr.-Ing. András Bárdossy

Integration and Calibration of a conceptual Rainfall-Runoff-Model in the framework of a Decision Support System for River Basin Management

Götzinger, J.; Bárdossy, A.

Jens.Goetzinger@iws.uni-stuttgart.de

Central Asia Chirchik basin

Abstract

In this approach the hydrological model HBV was adapted to allow for a spatially highly discretized simulation of daily groundwater recharge that is transferred to the groundwater model which returns modeled base flow to the flood-routing module of the rainfallrunoff-model. Regionalisation and optimization methods lead to an objective and efficient calibration in spite of the large number of parameters. The representation of model

MOSDEW

(Model for Sustainable Development of Watersheds)

- GIS-based user interface, database and external submodels

Location of project basins

parameters by transfer functions of catchment

enables a consistent parameter estimation. By characteristics establishing such relationships, the model was calibrated for the parameters of the transfer function instead of the model parameters themselves. Simulated annealing using weighted Nash-Sutcliffecoefficients of variable temporal aggregation assists in an efficient ww.rivertwin.org parameterisation.

Model concept HBV

• Grid-based (1 km²)

- Fully distributed process description
- Parameter estimation by transfer functions of catchment characteristics
- Calibration of the parameters of the transfer functions instead of the model parameters

• coupled submodels are started in a scenario case of run, e.g.: hydrological model HBV

Submodel interfaces in MOSDEW

Soil-Parameters from **SLYSIS**

Climatic Variables from **Downscaling**

⊨⇒Baseflow –

Coupling of the water balance model

Input:

 statistical downscaling and External Drift Kriging

 regional soil and landuse database information system

Output:

- spatially distributed groundwater recharge = boundary condition for the groundwater model returning baseflow
- discharge at river network nodes

Regionalized parameters and basis for regionalization

Parameter

Discharge

MONERIS

QUAL2K

CASIMIR

WEAP

Topography of upper Neckar catchment (3211 km²)

$$Q_{1} = k_{1} \cdot S_{1}^{1+\alpha} \qquad Q_{perc} = k_{perc} \cdot S_{1} \qquad Q_{2} = k_{2} \cdot S_{2}$$
$$p = G (flow time, landuse, soiltype)$$

Upper reservoir, non-linear recession constant	Flow time, land use
Upper reservoir, non-linear recession exponent	Land use
Upper reservoir, linear percolation constant	Field capacity, wilting point
Upper reservoir starting water level	Soil class

Groundwater Recharge

MODFLOW

Results

• Discharge in similar, uncalibrated catchments can be

Annual groundwater recharge HBV (left) and Armbruster (right)

Mean	175 mm	207 mm
Standard deviation	107 mm	108 mm

Local variations through different model approaches (1 km²: r=0,44)

• Large-scale pattern matches well (25 km²: r=0,7)

simulated using a priori defined transfer functions of readily available catchment characteristics (Regionalisation)

- Model performance suited well for river basin management, water availability, water quality and habitat ecology simulations
- Areal groundwater recharge simulations reproduce model results of Armbruster (2002)

References:

Armbruster, V.: Grundwasserneubildung in Baden- Württemberg, Freiburger Schriften zur Hydrologie (17), Institut für Hydrologie, Freiburg, 2002. Bergström, S.: The HBV model. In: Singh, V.P., (Ed.), Computer Models of Watershed Hydrology, Water Resources Pub., Littleton, CO, pp. 443-476, 1995. Hundecha, Y. and Bárdossy, A.: Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model, Journal of Hydrology, 292, 281-295, 2004.

srivertwin

A Regional Model for Integrated Water Management in Twinned River Basins