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Preface

Groundwater pollution control has become a growing challenge to water resources management. In
this context groundwater research has to cope with the task of describing the processes influencing the
input, spreading and chemical transformations of contaminants in aquifers in a quantitative manner,
both as individual and as interactive processes.

In this context numerical simulation of groundwater flow, contaminant transport and chemical trans-
formations is of primary importance because it provides the opportunity to integrate such different
disciplines as hydromechanics, geology, chemistry and microbiology on a common quantitative ba-
sis. It also permits coupling of the results from field measurements to those from classical laboratory
experiments for the prediction of field-scale reactive behaviour. Without numerical models the ef-
fects of single processes in complex interaction in reactive transport could hardly be distinguished.
Therefore numerical simulation is an indispensable tool for present-day groundwater research.

As a prerequisite for the application of numerical methods, it must be ensured that the numerical tools
used lead to a correct solution of the mathematical problem. Discretization errors leading to numeri-
cal diffusion or oscillatory behaviour may lead to erroneous results which may be misinterpreted as
effects of chemical or physical processes. Requirements for the stability, the accuracy and the effi-
ciency of the numerical methods are more strict and more difficult to fulfill for reactive transport than
for conservative transport.

The present report written by Olaf Cirpka serves as an introduction to numerical methods for reactive
multicomponent transport. Special emphasis is given to discretization methods for transport, and ex-
tensive comparisons of different approaches are presented. The given test cases for reactive transport
indicate that conceptual models, such as the macrodispersion model or the two-domain approach,
which are commonly used for conservative transport, may lead to incorrect results when applied to
the transport of compounds which react with each other. However, the test cases also reveal the dif-
ferences in qualitative behaviour between reactive transport and reactive systems in fully-mixed batch
reactors.

This report includes the program documentation of the simulation toolCONTRACT (Contaminant
Transport and Chemical Transformations)developed at the Institut f¨ur Wasserbau. For ease of com-
munication with our international research partners, the report has been prepared in English.

Prof. Dr. h.c. Helmut Kobus, Ph.D.
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Vorwort

Der nachhaltige Schutz des Grundwassers vor anthropogenen Verunreinigungen geh¨ort zu den dr¨an-
genden Herausforderungen der Wasserwirtschaft. Vor diesem Hintergrund stellt sich der Grundwas-
serforschung die Aufgabe, die Prozesse, die den Eintrag, die Ausbreitung und die stofflichen Umwand-
lungen von Schadstoffen in Grundwasserleitern bestimmen, einzeln und in ihrer gegenseitigen Wech-
selwirkung quantitativ zu beschreiben.

Eine besondere Bedeutung kommt hierbei der numerischen Simulation der Grundwassertr¨omung,
des Schadstofftransports und des Schadstoffabbaus zu. Sie erm¨oglicht es, unterschiedliche Fachdis-
ziplinen wie die Str¨omungsmechanik, die Geologie, die Chemie und die Mikrobiologie auf einer
gemeinsamen quantitativen Grundlage zu integrieren, sowie Ergebnisse aus dem Feld- und Labor-
maßstab miteinander zu verkn¨upfen. Wirkungen einzelner Prozesse in den gekoppelten Reaktions-
Transport-Systemen ließen sich ohne Hilfe numerischer Modelle zumeist kaum quantifizieren.

Als Voraussetzung f¨ur den Einsatz von Simulationsmethoden muß zun¨achst sichergestellt sein, daß
die eingesetzten numerischen Werkzeuge die mathematisch formulierten Probleme tats¨achlich lösen
und nicht durch Diskretisierungsfehler zu numerischer Diffusion oder zu Oszillationen und damit zu
Ergebnisse f¨uhren, die ein qualitativ falsches physikalisches oder chemisches Verhalten vort¨auschen.
Hierbei stellt die Simulation reaktiver Transportvorg¨ange ungleich h¨ohere Anforderungen an die Sta-
bilit ät, Genauigkeit und Effizienz der numerischen Methoden als die Berechnung des konservativen
Stofftransports.

Das vorliegende Mitteilungsheft von Herrn Dipl.-Geo¨okol. Olaf Cirpka gibt einen Einblick in die
numerischen Methoden zur Simulation des reaktiven Multikomponenten-Transports. Ein besonderer
Schwerpunkt wurde auf die Wahl der Diskretisierungsmethoden gelegt. Hierzu werden ausf¨uhrliche
Vergleichsrechungen vorgestellt. Die dargestellten Anwendungsbeispiele f¨ur den reaktiven Stofftrans-
port verdeutlichen, daß Modellkonzepte wie der Makrodispersionsansatz oder das Doppelkontin-
uumsmodell, die sich f¨ur die Beschreibung des konservativen Stofftransports bew¨ahrt haben, nicht
direkt auf den Transport von miteinander reagierenden Stoffen ¨ubertragen werden k¨onnen. Sie zeigen
jedoch auch, daß sich Reaktions-Transport-Systeme qualitativ von reinen Reaktions-Systemen in
vollständig durchmischten Reaktoren unterscheiden.

Das Mitteilungsheft dient gleichzeitig als Programmbeschreibung f¨ur das am Institut f¨ur Wasser-
bau entwickelte SimulationsprogrammCONTRACT (Contaminant Transport and Chemical Trans-
formations). Im Hinblick auf die direkte Kooperation mit unseren internationalen Forschungspartnern
wurde das Heft in englischer Sprache verfaßt.

Prof. Dr. h.c. Helmut Kobus, Ph.D.
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Chapter 1

Problem Statement

Contamination of the subsurface by organic compounds is a serious problem for the protection of
groundwater. Although many organic pollutants have been shown to be degradable in laboratory stud-
ies most of them remain for years in the subsurface without reasonable attenuation. The availability
of all necessary substrates such as electron acceptors, electron donors, primary carbon sources and
in some cases cosubstrates or additional micronutrients has been identified as a limiting factor for
biodegradation in aquifers.

In-situ bioremediation is based on injecting limiting substrates into the subsurface to stimulate mi-
crobial activity at the location of contamination. The delivery efficiency of compound injection is
influenced firstly by advective-dispersive transport and hence by groundwater flow, secondly by mass
transfer processes and finally by chemical transformations. This is shown schematically in Fig. 1.1.

A combination of chemical and microbial processes on the one hand and advective-dispersive trans-
port on the other leads to a coupled problem, which may be expressed mathematically by coupled
partial differential equations (PDE), ordinary differential equations (ODE) and algebraic equations
(AE), all of which contain uncertainties.

Transport in groundwater is commonly described by the advection-dispersion equation derived in
chapter 2. For this part of the problem ’only’ the parameters are uncertain. In contrast to this the
chemical part is uncertain on the conceptual level, where measures and processes of interest are
defined in general. Equations to describe chemical transformations cannot always be proofed. And
furthermore, parameter data for the equations are scarse.

Against this background a numerical tool to simulate the fate and behaviour of organic compounds
in the subsurface should be flexible in the formulation of chemical processes so that it can be used
for system identification. On the other hand it should be as accurate as possible for the calculation of
known processes such as advective-dispersive transport, in order that differences between model cal-
culations and measured data can clearly be interpreted as shortcoming in the identification or quantifi-
cation of transformation processes. CONTRACT is a numerical model based on these requirements.

1
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Withdrawal Well

Flow and Transport

Microbial ActivityAbiotic TransformationsMass Transfer

Injection Well

Cl

Addition of Compounds

Cl

ClCl

Figure 1.1: Processes of interest.



Chapter 2

Governing Equations

2.1 Continuity Equation

Calculation of transport requires the flow field to be known. This can be achieved by solving the
continuity equation for groundwater flow, which can be derived from mass balance considerations
for an infinitesimally small control volume in a porous medium. The following may be applied to
calculate groundwater flow in a confined aquifer:

r � (vf) = qin;out � S0
@h

@t
(2.1.1)

Velocities in groundwater systems are typically in the range of less than 1m/day. For this case DARCY’s
linear law for calculating DARCY velocitiesvf holds:

vf = k
f
rh (2.1.2)

Inserting (2.1.2) into (2.1.1) leads to:

S0
@h

@t
+ r � (k

f
rh) = qin;out (2.1.3)

The specific storage coefficientS0 is a characteristic measure for the storage capacity of a hydroge-
ological unit. For confined aquifers it is a function of the compressibility of both water and the rock
matrix. Typical ranges are about5 � 10�5 to 5 � 10�3.

In unconfined aquifers the cross-section of flow is a function of the hydraulic head. Integrating over
the depth from the bottom of an aquifer to the free groundwater surface thus leads to a non-linear
form of the continuity equation:

hne
@h

@t
+ r � (hk

f
rh) = Qin;out (2.1.4)

3



4 CHAPTER 2. GOVERNING EQUATIONS

In this case the specific storage coefficient is replaced by the effective porosity which is about two
orders of magnitude higher. Note that in the case of an unconfined aquifer, groundwater injection
or extraction directly alters the volume of pores filled with water, whereas in the case of a confined
aquifer this volume is almost constant and only compressibility contributes to the storage capacity.

2.2 Advective-Dispersive Transport

Balancing the mass of a dissolved compound in a infinitesimally small control volume of groundwater
leads to the transport equation:

ne
@c

@t
+ r � (Jm)� ner(c) = 0 (2.2.5)

wherer(c) is the concentration change due to chemical transformations and mass transfer processes.
Other mass inputs and outputs are neglected initially in this chapter.Jm is the mass flux of the dis-
solved compound and is defined for the advective-dispersive case by:

Jm = necva � neDrc (2.2.6)

The seepage velocityva describes the average time for advective transport of a compound between
two points along a streamline. In contrast to this DARCY’s velocity vf is the ratio of the discharge
to the area of a cross-section perpendicular to the flow in the subsurface. The two velocities are
proportional to each other, the proportionality factor being the effective porosity:

va =
1

ne
vf (2.2.7)

The effective diffusion tensorD includes molecular diffusion as well as of flow-related dispersion.
For the one-dimensional case SCHEIDEGGER[53] defines the effective diffusion coefficient in the
following way:

D = Dm + �va (2.2.8)

in which� is the dispersivity.In the multidimensional case dispersion longitudinal to the flow direction
greatly exceeds transverse dispersion. This may be accounted for by introducing dispersivities�l and
�t for longitudinal and transverse dispersion, respectively. Provided the system of coordinates is along
the direction of flow this leads to diagonal dispersion tensors:

D =

2
64Dl 0 0
0 Dt 0
0 0 Dt

3
75 with Dl = Dm + �lva

Dt = Dm + �tva

(2.2.9)
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In the general case the tensor (2.2.9) has to be transformed into the general system of coordinates. For
two-dimensional problems this leads to:

D =
�
Dxx Dxy

Dyx Dyy

�
with Dxx = �l

v2x
v
+ �t

v2y
v
+Dm

Dxy = Dyx = (�l � �t)
vxvy
v

Dyy = �l
v2y
v
+ �t

v2x
v
+Dm

(2.2.10)

and for three-dimensional problems:

D =

2
64Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

3
75 with Dxx = �l

v2x
v
+ �t

v2y + v2z
v

+Dm

Dxy = Dyx = (�l � �t)
vxvy
v

Dxz = Dzx = (�l � �t)
vxvz
v

Dyy = �l
v2y
v
+ �t

v2x + v2z
v

+Dm

Dyz = Dzy = (�l � �t)
vyvz
v

Dzz = �l
v2z
v
+ �t

v2x + v2y
v

+Dm

(2.2.11)

Inserting (2.2.6) and (2.2.7) into (2.2.5) and assuming constant porosities and fluid densities leads to:

ne
@c

@t
+ ner � (cva)� ner � (Drc)� ner(c) = 0 (2.2.12)

Applying product the rule of differentiation to the advective mass flux termner� (cva) and introduc-
ing the continuity equation into the first resulting term leads to:

ne
@c

@t
+ cr � (vf ) + neva � rc� ner � (Drc)� ner(c) =

ne
@c

@t
+ c

 
qin;out � S0

@h

@t

!
+ neva � rc � ner � (Drc)� ner(c) = 0

(2.2.13)
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2.2.1 Inflow and Outflow

Equation (2.2.13) was set up for a situation, in which no additional inputs of mass are taken into
account. Hence mass fluxes across boundaries have to be added. These mass fluxes can be expressed
by the product of discharge and concentration. At inflow boundaries the concentration in the incom-
ing watercin must be specified as a boundary condition, whereas at outflow boundaries the outflow
concentration is the concentration resulting from the calculations. This means that the first term in the
brackets of (2.2.13) vanishes. The resulting equation is:

ne
@c

@t
+ (c� cin)qin � cS0

@h

@t
+ nev

T
a rc� ner � (Drc)� ner(c) = 0 (2.2.14)

whereqin is the inflow discharge.

2.2.2 Depth-Integrated Transport Equation for Unconfined Aquifers

The transport equation (2.2.5) can be formulated in a depth-integrated manner for an unconfined
aquifer by inserting (2.1.4) and (2.2.6) and including inflow and outflow boundary conditions:

neh
@c

@t
+ (c� cin)Qin � cne

@h

@t
+ nehva � rc (2.2.15)

� ner � (hDrc)� nehr(c) = 0

2.2.3 Two-Domain Approach

The main idea of the two-domain approach is to divide the pore volume of a porous medium into a
mobile and an immobile fraction. Transport takes place only in the mobile fraction, and mass trans-
fer between mobile and immobile porosity is expressed by a first order law [16]. This concept was
originally developed to explain pore-scale effects such as ”dead-end” pores or mass transfer between
immobile soil aggregates and mobile macro-pores. However, the approach may be used to simplify
large-scale heterogeneity [8].

The approach results in a system of two coupled equations for each compound, a partial differential
equation for the concentration in the mobile domain and an ordinary differential equation for the
concentration in the immobile domain:

nmobRi
@cmob

i

@t
+ r �

�
vac

mob
i � nmobDrcmob

i

�
�nmobr

mob
i

+ km$i(c
imm
i � cmob

i ) = 0
(2.2.16)

nimmRi
@cimm

i

@t
� nimmr

imm
i � km$i(c

imm
i � cmob

i ) = 0 (2.2.17)
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in which subscriptsmob andimm refer to the mobile and immobile porosity, respectively, andkm$i

is the first-order mass transfer coefficient. Note that the seepage velocity~ve for the evaluation ofD in
(2.2.16) must be related to the mobile porosity rather than to total porosity.

2.3 Sorption

2.3.1 Local Equilibrium Assumption

Mass transfer between a dissolved phase and a sorbing surface is by nature a kinetic process. Never-
theless, the characteristic time of mass transfer may be reasonably smaller than the characteristic time
of advective-dispersive transport, i.e. local equilibrium can be assumed without introducing a sig-
nificant error. Equilibrium may be expressed by sorption ’isotherms’, plots showing the equilibrium
concentration in the sorbed phase as a function of the concentration in the dissolved phase. These
isotherms are measured in batch experiments and can be interpretated on the basis of theoretical con-
siderations.

2.3.1.1 Linear Partitioning

Linear partitioning is the simpliest concept for describing sorption. The ratio between the sorbed and
dissolved concentration is assumed to be constant. For reasons of simplification the sorbed concentra-
tion may be related here to the pore volume and not, as conventionally defined, to the matrix volume:

c�sorb = Kdcw (2.3.18)

The partitioning coefficientKd includes the ratio of the matrix volume to the pore volume and the
sorptivity of the substance at the surfaces. A common model for hydrophobic organic substances is to
assume that sorption takes place only at the natural organic matter of the soil. This assumption leads
to thefOCKOC model in which the partitioning coefficient can be calculated from the porosityne,
the organic carbon contentfOC and a partitioning coefficientKOC between organic carbon and water,
which is assumed to be a substance-specific constant:

Kd =
1� ne
ne

focKoc (2.3.19)

2.3.1.2 Nonlinear Sorption Isotherms

The concept of linear partitioning assumes that the distribution of a compound between sorbed and
dissolved phases is not influenced by the concentration. This might be true for low concentrations
where sorption is influenced only by interactions between almost free surfaces and dissolved com-
pounds of interest. At higher concentrations an interaction between the dissolved compounds and the



8 CHAPTER 2. GOVERNING EQUATIONS

compounds already sorbed at the surface must also be considered. Two kinds of interaction with con-
trary effects are possible: If there is only a certain number of sorbing sites at the surface, increasing
the dissolved concentration would lead to a decreasing ratio of sorbed compounds as there are less
sorption sites available. On the other hand, sorbed compounds themselves could act as sorbing sites
for dissolved compounds. This would lead to an increase in the partitioning coefficient with increas-
ing concentrations. The first case is stated much more in the literture than the latter, even though both
kinds of interaction occur.

The concept of LANGMUIR is based on the assumption that a certain maximum sorption capacity can
be defined. This maximum capacity is approached asymptotically by increasing the concentration in
the dissolved phase:

c�sorb = cmax
sorb

cw
cw + c 1

2

(2.3.20)

c/c2
0 1086420

cs/csmax

0

0.8

0.6

0.4

0.2

0

Figure 2.1: LANGMUIR isotherm.

The concept of FREUNDLICH does not include such a maximum sorption capacity. Nevertheless,
sorptivity of the surface is decreasing with increasing concentrations:

c�sorb = Kc1=nw

log (c�sorb) = logK + 1
n
logcw

(2.3.21)

The paramtersK and n in (2.3.21) can be derived by applying linear regression to the sorption
isotherm represented in a double-logarithmic plot of measured data.
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2.3.2 Incorporating Sorption into the Transport Equation

Under the assumption of local equilibrium mass transfer can easily be introduced into the transport
equation (2.2.14):

ne
@cw
@t

+ ne
@c�sorb
@t

+ (cw � cin)qin � cwS0
@h

@t
+ neva � rc (2.3.22)

� ner � (Drcw)� ner(cw) = 0

In (2.3.22) it is assumed that transport and chemical interactions only take place in the dissolved
phase. Sorbed mass is only considered to act as a storage term. The term@c�sorb=@t can be transformed
into:

@c�sorb
@t

=
@cs
@cw

@cw
@t

(2.3.23)

and hence (2.3.22) can be transformed into:

Rne
@c

@t
+ (c� cin)qin � cS0

@h

@t
+ neva � rc (2.3.24)

� ner � (Drc)� ner(c) = 0

in whichR is the retardation factor defined by:

R = 1 +
@c�sorb
@cw

(2.3.25)

Dividing (2.3.24) by the retardation factor shows that retardation slows down transport processes
(for this retardation). In the case of a linear sorption isothermR is independent of concentration. In
the case of a LANGMUIR or FREUNDLICH isothermeR decreases with increasing concentration. This
leads to tailing of a peak. In contrast to this a concave sorption isotherm would lead to fronting effects.

2.3.3 Sorption Kinetics

Adsorption, absorption and desorption processes are related to mass transfer across boundary layers
at least in the dissolved phase and in some cases in the sorbed phase as well (organic coating, porous
cores, etc.). On the molecular scale this mass transfer is a diffusive process. Thus mass transfer is lim-
ited by the diffusion coefficient, by the thickness of the diffusive layer and in some cases by advective
processes in non-diffusive boundary layers. Depending on boundary layer thickness, equilibrium con-
ditions, diffusion coefficients and flow velocity, mass transfer must be treated as slow or fast process,
whereby a slow process is expressed by an ordinary differential equation (ODE) and a fast process
leads to the local equilibrium assumption. The simpliest model for kinetic-controlled mass transfer is
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the first order kinetics approach in which the mass flux is proportional to the difference between the
equilibrium and actual concentration:

@cw
@t

= �sorb

�
c�sorb
Kd

� cw

�
(2.3.26)

First order kinetics only approximately descirbes kinetic-controlled mass transfer, as the entire sorbed
mass is assumed to be involved in mass transfer. More sophisticated models also take into account the
penetration of sorbing cores. In these models diffusion processes are calculated directly. This leads to
mass transfer coefficients dependent on sorption history.

2.4 Microbial Growth and Related Chemical Transformations

2.4.1 Conceptual Model

Stimulation of microbial activity requires fulfillment of at least the following criteria:

� The presence of microbes catalyzing the biotransformations of interest,

� Availability of an appropriate electron acceptor and an appropriate electron donor,

� Availability of a primary carbon source for microbial growth,

� Sufficiently high concentrations of additional nutrients,

� Absence of toxic factors.

Provided these conditions are fulfilled, microbial biomass should grow and consume electron accep-
tors, electron donors and primary carbon sources. The contaminant can be the electron acceptor in a
reductive degradation pathway, the electron donor in an oxidative degradation pathway or neither of
them in the case of cometabolism. In the latter case microbiota produce enzymes catalyzing a reac-
tion which destroys the contaminant, while contaminant destruction itself does not stimulate microbial
growth.

2.4.2 Substrate Consumption

2.4.2.1 Michaelis-Menten Kinetics

Although MICHAELIS-MENTEN kinetics was originally developed for enzyme kinetics it has often
been applied to model more complex systems. The concept is based on the assumption that a certain
concentration of enzymes is present. The reaction consists of two reaction steps: the attachment of the
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aqueous compound to the reactive site of the enzyme and the release of the transformed compound
from the enzyme:

A + Ef
r1! AE

r2! A� + Ef (2.4.27)

in whichA is the original aqueous compound,A� is the transformed compound,Ef is the free enzyme
andAE is the complex of the enzyme withA. Under steady-state conditions the reaction rate for the
first stepr1 equals the reaction rate for the second stepr2. The reaction rater1 is assumed to be
proportional toA � Ef , and the rater2 is assumed to be proportional toAE. Introducing the total
concentration of enzymesEt then yields:

r1 = k1A � Ef

r2 = k2AE
r2 = r1 = r
Ef = Et � AE

) k1A (Et � AE) = k2AE

) AE = A
k2
k1

+ A
Et

) r = ~rmax
A

KA
m + A

� Et

(2.4.28)

in which~rmax = k2 is the maximum reaction rate per unit enzyme andKA
m = k2=k1 is the MICHAELIS-

MENTEN or MONOD coefficient. The dependency of reaction rates on concentration is linear for low
concentrations as enzymes are not limiting. At high concentrations reaction rates do not increase with
increasing concentrations as all enzymes are already activated. The MICHAELIS-MENTEN terms are
similiar to LANGMUIR isotherm (2.3.21) for sorption.

Assuming that the concentration of enzymes is proportional to the biomass concentration and that the
coupled transformation of several reacting compounds (e.g. electron acceptor and electron donor) can
be described by the products of single MICHAELIS-MENTEN terms leads to:

rj = ~rjmaxX
nSubY
i=1

ci
Ki

m + ci
(2.4.29)

in which ~rjmax is the maximum reaction rate of compoundj related to the biomass concentrationX,
nSub is the number of substances interacting,rj converges to~rjmaxX at high concentrations, and a
linear relationship with a slope of~rjmaxX=K

i
m is attained at low concentrations.
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2.4.3 Inhibitory Effects

2.4.3.1 Substrate Inhibition

In some cases one of the substrates degraded by the microbiota becomes toxic at higher concentra-
tions. One possibility of accounting for this is to apply HALDANE’s extended version of the MICHAELIS-
MENTEN equation:

rj = ~rjmaxX
nSubY
i=1

ci

Ki
m + ci +

c2i
Ki

i

(2.4.30)

in whichKi
i is the inhibition concentration andrj converges to zero whenci becomes much larger

thanKi
i .

2.4.3.2 Inhibition by other Compounds

Inhibition by other compounds can be expressed by additional factors which are equal to unity for
cinh = 0 and converge to zero at high concentrations. One possible expression is as follows:

rj = : : : � Ki
inh

Ki
inh + cinh

(2.4.31)

2.4.3.3 Competitive Inhibition

Considering two competing reactions of two aqueous compoundsA andB with the same reactive site
of an enzymeE yields:

A + Ef
r1! AE

r2! A� + Ef

B + Ef
r3! BE

r4! B� + Ef
(2.4.32)

A� andB� are now the transformed compounds,Ef is the free enzyme, andAE andBE are the
complexes of the enzyme withA andB, respectively. The concentration of the free enzymes is now
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dependent on both complexes:

r1 = k1A � Ef

r2 = k2AE
r3 = k3B � Ef

r4 = k4BE
Ef = Et � AE � BE

k1A (Et � AE � BE) = k2AE
k3B (Et � AE � BE) = k4BE

AE = A
KA

m + A
(Et � BE)

BE = B
KB

m +B
(Et � AE)

(2.4.33)

in whichKA
m = k2=k1 andKB

m = k4=k3. The following is obtained after rearrangements:

AE = A

KA
m

 
1 +

B

KB
m

!
+ A

Et

BE = B

KB
m

 
1 +

A

KA
m

!
+B

Et

) rA = ~rAmax
A

KA
m

 
1 +

B

KB
m

!
+ A

Et

) rB = ~rBmax
B

KB
m

 
1 +

A

KA
m

!
+B

Et

(2.4.34)

(2.4.34) may be interpreted as a decrease in the apparentKi
m value if several compounds compete

at the same reaction site. Assuming again that the concentration of enzymes is proportional to the
biomass concentration and that multiplication of several modified MICHAELIS-MENTEN terms ex-
presses the dependency on several interacting compounds leads to (2.4.35):

rj = ~rjmaxX
nSubY
i=1

ci

Ki
m

 
1 +

P ck
Kk

m

!
+ ci

(2.4.35)

in which the subscriptk describes all compounds competing with compoundi at the reaction site.

2.4.4 Microbial Growth

In the case where the primary carbon source coincides with the electron donor, microbial growth is
proportional to consumption rates. Assuming MICHAELIS-MENTEN dependency for both electron
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acceptor and donor leads to the following coupled system of equations:

kgr = �max
cD

KD + cD

cA
KA + cA

(2.4.36)

@X

@t
= (kgr � kdec)X

@cD
@t

=
kgrX

YD
@cA
@t

=
kgrX

YA

in which�max is the maximum growth rate,kgr is the actual growth rate andkdec is a first-order decay
rate for biomass. The subscriptsD andA denote the electron donor and acceptor, respectively.

If the primary carbon source does not coincide with the electron donor or acceptor, microbial growth
and degradation rates are coupled in such a way, that degradation rates are independent of the primary
carbon source concentration whereas microbial growth is dependent on the latter:

kgr = ~�max
cD

KD + cD

cA
KA + cA

(2.4.37)

@X

@t
=

�
kr

cP
KP + cP

� kdec

�
X

@cD
@t

=
krX

YD
@cA
@t

=
krX

YA
@cP
@t

=
cP

KP + cP

krX

YP

In addition to the first set of equations, in (2.4.37) the primary carbon source (denoted byP ) also
occurs.kr is the reaction rate.



Chapter 3

Transport Calculation

Several approaches are possible for solving the transport equation. They may be subdivided into
LANGRANGIAN, EULERIAN-LANGRANGIAN and EULERIAN methods.

� LANGRANGIAN methods are based on the characteristic form of the transport equation. In the
classical particle tracking/ random walk method, particles carrying masses are tracked through
the aquifer. These methods are not considered in this paper.

� EULERIAN-LANGRANGIAN methods split the transport equation into the hyperbolic part, which
is solved by LANGRANGIAN methods, and the parabolic part which is solved by EULERIAN

methods. Alternatively to that a space-time EULERIAN method may be applied, in which the
boundaries of the control volumes follow characteristics in the space-time domain. See (3.3.114).

� In EULERIAN methods fixed control volumes are observed. Eulerian approaches are therefore
the most direct means of solving the partial differential equations. Unfortunately, however, sta-
bility problems may occur if the solution is discontinuous and if advective transport exceeds
diffusion.

The choice of method for the calculation of transport is dependent on the requirements of chemical
calculations and coupling:

� Chemical calculations require concentrations in definite spatial units. Masses on particles would
first have to be converted into concentrations in domains, thus destroying the accuracy of the
particle tracker algorithm.

� Different compounds may follow different characteristics. This leads to complications in EU-
LERIAN-LANGRANGIAN methods if an implicit coupling method is chosen.

� Chemical transformations can be treated as reactive sink/source terms in the transport calcula-
tion. If such a coupling approach is chosen the transport algorithm must be capable of dealing
with multiple sink/source terms independent of the flow field.

� Transformation rates are very sensitive to mixing of compounds. Hence artificial diffusion in
the transport calculation must be minimized.

15
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� The equations describing chemical transformations are instable in the negative concentration
range. As a consequence monotonicity of the transport algorithm is required.

The last two points reflect typical problems associated with EULERIAN approaches, the first three
points reflect problems which arise using (partially) LANGRANGIAN methods.

In CONTRACT only EULERIAN approaches are applied. CONTRACT-FE is based on the Finite
Element Method (FEM), whereas CONTRACT-2 and CONTRACT-3 are based on the integrated
Finite Difference Method (FDM). Principles of the methods are explained in the following sections.

3.1 Criteria for the Quality of Numerical Methods

Only for specific initial and boundary conditions the exact solution of the transport equation may
be derived by analytical methods. Therefore numerical methods are used. In numerical methods the
model problem is discretized in space and time, thus providing a solution at discrete nodes only. For
any point between the nodes interpolation is necessary. The method of interpolation is dependent on
the chosen method of discretization (e.g. linear interpolation, piecewise constant approximation, etc.).

The application of discretization techniques such as FEM or FDM generally leads to numerical errors
which are dependent on the discretization in space and time. Exact nodal values can only be achieved
in special test cases.

3.1.1 Accuracy

The most common method used to quantify discretization errors is truncation error analysis. Trunca-
tion error analysis is based on the TAYLOR evolution of nodal values. A rectangular grid and constant
coefficients must be applied. In the case of FEM the system of element equations must be transformed
into an equation for one particular nodal value as a function of the values at the surrounding nodes in
space and time (stencil). Finally, the nodal values at the surrounding nodes are replaced by TAYLOR

evolution series of the value of interest. The resulting partial differential equation is compared with
the original partial differential equation to be solved. The remaining terms form the truncation error.
The order of consistency designates the order of the lowest derivative of the truncation error. For
instance, second order errors in space are diffusive errors.

As TAYLOR evolution is only applicable for continuously differentiable functions the truncation error
gives no indication as to whether a scheme yields reasonable results in the proximity of discontinu-
ities. However, for smooth solutions the truncation error is a correct measure of accuracy. Truncation
error analysis indicates in any particular case whether a scheme converges to the correct solution
when the discretization is refined.
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3.1.2 Stability

Stability describes how sensitive a numerical scheme reacts to errors introduced into the approximate
solution. A scheme amplifying small errors is unstable as even higher order truncation errors can lead
to significant oscillations. A scheme which damps errors is stable as higher order truncation errors are
cancelled out. Unfortunately, the fact that linear stable schemes have an order of consistency of not
more than unity means that they lead to artificial diffusion.

Monotonicity or monotonic convergence is a property which includes stability. Monotonic conver-
gence implies that:

� Refinement of discretization reduces the dicretization error (convergence) and

� the local sign of the error does not change (monotonic behaviour).

Fig. 3.1 illustrates that alternating convergence leads to oscillations whereas no oscillations occur in
the case of monotonic convergence.

3.2 Integrated Finite Difference Method

3.2.1 General Approach

The Finite Difference Method (FDM) is the simpliest approach in terms of spatial discretization: the
domain is simply divided into rectangular cells. In the integrated FDM approach the integrated form
of the transport equation (2.2.5) is solved:

Z
V

ne
@c

@t
dV +

Z
�

n � Jmd��
Z
V

ner(c)dV = 0 (3.2.1)

in whichV is the volume of a cell and� its boundary. For a regular 2-D cell the integrals are solved
easily:

 
@ci;j
@t

� r

!
ne�xi�yj�zi;j +

�
Jxi+1=2;j � Jxi�1=2;j

�
�yj�zi;j

+
�
Jyi;j+1=2 � Jyi;j�1=2

�
�xi�zi;j = 0

(3.2.2)

in which i andj are cell subscripts for the x and y direction, respectively, andJxi+1=2;j is the mass flux
in the x direction at the boundary between celli; j andi + 1; j. This implies a one-point integration
of mass fluxes.
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Alternating Convergence

real solution

refinement

refinement

c

x

numerical approximation

real solution
refinement

refinement

numerical approximation

c

x

Monotonic Convergence

Figure 3.1: Monotonic and alternating convergence.

3.2.2 Evaluation of Velocities

For the calculation of mass fluxes, seepage velocities must first be evaluated. Velocities at intercell
boundaries have boundary designators (e.g.vx(i + 1=2; j)). Velocities at cell centers have cell desig-
nators (e.g.vx(i; j)). For a two-dimensional domain these velocities can be calculated from:

vx(i; j) = �k
xx
f (i; j)

ne(i; j)

@h

@x
(i; j)� kxyf (i; j)

ne(i; j)

@h

@y
(i; j)

vy(i; j) = �k
yy
f (i; j)

ne(i; j)

@h

@y
(i; j)� kxyf (i; j)

ne(i; j)

@h

@x
(i; j)

(3.2.3)
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(3.2.3) holds for the evaluation of velocities at intercell boundaries as well as for velocities at cell cen-
ters. In the first case the hydraulic conductivity and the porosity must be evaluated from the harmonic
mean of the cell values:

ne(i + 1=2; j) =
2ne(i; j)ne(i + 1; j)

ne(i; j) + ne(i+ 1; j)

kxxf (i+ 1=2; j) =
2kxxf (i; j)kxxf (i+ 1; j)

kxxf (i; j) + kxxf (i+ 1; j)

kxyf (i + 1=2; j) =
2kxyf (i; j)kxyf (i + 1; j)

kxyf (i; j) + kxyf (i + 1; j)

kyyf (i+ 1=2; j) =
2kyyf (i; j)kyyf (i+ 1; j)

kxxf (i; j) + kyyf (i+ 1; j)

(3.2.4)

The gradients can be approximated by simple linear interpolation:

@h

@x
(i; j) = 2

h(i + 1; j)� h(i� 1; j)

�x(i + 1) + 2�x(i) + �x(i� 1)

@h

@y
(i; j) = 2

h(i; j + 1)� h(i; j � 1)

�y(j + 1) + 2�y(j) + �y(j � 1)

@h

@x
(i+ 1=2; j) = 2

h(i+ 1; j)� h(i; j)

�x(i+ 1) + �x(i)

@h

@y
(i+ 1=2; j) =

h(i; j + 1) + h(i+ 1; j + 1)� h(i; j � 1) + h(i+ 1; j � 1)

�y(j + 1) + 2�y(j) + �y(j � 1)

@h

@y
(i; j + 1=2) = 2

h(i; j + 1)� h(i; j)

�y(j + 1) + �y(j)

@h

@x
(i; j + 1=2) =

h(i+ 1; j) + h(i+ 1; j + 1)� h(i� 1; j) + h(i� 1; j + 1)

�x(i + 1) + 2�x(i) + �x(i� 1)

(3.2.5)

For boundary nodes evaluation of some of the gradients are not definite as no cells beyond the bound-
ary exist. One possible solution to this is to set subscripts beyond the boundary to boundary subscripts.

3.2.3 Diffusive Mass Fluxes

Calculation of diffusive mass fluxes is equivalent to the calculation of velocities (3.2.3):

Jx;diffi+1=2;j = �ne(i+ 1=2; j)

 
Dxx(i+ 1=2; j)

@c

@x
(i + 1=2; j) (3.2.6)
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+Dxy(i + 1=2; j)
@c

@y
(i+ 1=2; j)

!

Jy;diffi;j+1=2 = �ne(i; j + 1=2)

 
Dyy(i; j + 1=2)

@c

@y
(i; j + 1=2) (3.2.7)

+Dyx(i; j + 1=2)
@c

@x
(i; j + 1=2)

!

Note that the definition of the dispersion tensor (2.2.10) requires velocities at intercell boundaries
normal to the intercell boundary, which is defined above, and also parallel to it. For the latter in-
nercell velocities should be calculated and averaged by taking the harmonic mean. Longitudinal and
transverse dispersivity may also be averaged by taking the harmonic means:

vx(i; j + 1=2) =
2vx(i; j)vx(i; j + 1)

vx(i; j) + vx(i; j + 1)

�l(i; j + 1=2) =
2�l(i; j)�l(i; j + 1)

�l(i; j) + �l(i; j + 1)

�t(i; j + 1=2) =
2�t(i; j)�t(i; j + 1)

�t(i; j) + �t(i; j + 1)

(3.2.8)

Concentration gradients are equivalent to head gradients in (3.2.5):

@c

@x
(i+ 1=2; j) = 2

c(i+ 1; j)� c(i; j)

�x(i+ 1) + �x(i)

@c

@y
(i+ 1=2; j) =

c(i; j + 1) + c(i + 1; j + 1)� c(i; j � 1) + c(i+ 1; j � 1)

�y(j + 1) + 2�y(j) + �y(j � 1)

@c

@y
(i; j + 1=2) = 2

c(i; j + 1)� c(i; j)

�y(j + 1) + �y(j)

@c

@x
(i; j + 1=2) =

c(i+ 1; j) + c(i + 1; j + 1)� c(i� 1; j) + c(i� 1; j + 1)

�x(i + 1) + 2�x(i) + �x(i� 1)

(3.2.9)

Note that cross-diffusion terms can lead to oscillations when discontinuities occur (namely under
heterogeneous conditions). Ignoring cross-diffusion terms is thus leading to monotonic but inaccurate
solutions. This property is important for the implementation of the flux-corrected transport (FCT)
algorithm (see section 3.2.4.2.1).

3.2.4 Advective Mass Fluxes

Calculation of advective mass fluxes is again equivalent to the calculation of diffusive mass fluxes
(3.2.6) and velocities (3.2.3). The main difference is that in advective transport the concentration
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itself is involved rather than its spatial derivative:

Jx;advi+1=2;j = ne(i+ 1=2; j)vx(i + 1=2; j)c(i+ 1=2; j) (3.2.10)

Jy;advi;j+1=2 = ne(i; j + 1=2)vy(i; j + 1=2)c(i; j + 1=2) (3.2.11)

The main problem of (3.2.10) is how to determine the concentrations at the intercell boundariesc(i+
1=2; j) andc(i; j + 1=2). In the following sections two linear schemes and two non-linear schemes
are presented.

3.2.4.1 Linear Differentiation Schemes

So-called upwinding is a common method appled in FDM to stabilise the solutions of hyperbolic
partial differential equations. Since the flux of information for pure advective transport is only in the
direction of flow, the advective mass flux at an edge is defined by the product of the velocity normal
to the edge, the interface cross-section and the concentration in the upstream (or ’upwind’) cell. In
contrast to this, the average concentrations in the donor and acceptor cells are used for calculating the
advective mass flux when applying central differentiation.

ccd(i + 1=2; j) =
c(i; j) + c(i+ 1; j)

2
(3.2.12)

cup(i+ 1=2; j) =

(
c(i; j) if vx(i+ 1=2; j) > 0
c(i+ 1; j) if vx(i+ 1=2; j) < 0

(3.2.13)

Any mixing of upwind and central differentiation is possible by means of an interpolation coefficient
� ranging from 0 to 1:

c�(i+ 1=2; j) = �cup(i+ 1=2; j) + (1� �)ccd(i + 1=2; j) (3.2.14)

The principles of upwind and central differentiation are shown in Fig. 3.2.

Notice that upwind differentiation leads to exact nodal values for advective transport if the COURANT

number equals unity. However, for COURANT numbers different from unity upwind differentiation in-
troduces artificial diffusion. Applying upwind differentiation leads to a monotonic scheme. In contrast
to the latter central differentiation is of second order accuracy, thus non-diffusive. However, central
differentiation is not monotonic.

3.2.4.2 Higher Order Monotonic Schemes

3.2.4.2.1 Flux Corrected Transport Flux-Corrected Transport is a method developed by BORIS

& B ROOKS [3] and ZALESAK [72]. The basic idea is to combine a low order monotonic method and
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i-1 i i+1 x

i-1c
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i
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c
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Approximation of Advective Mass Flux over Cell Edges

Approximation of c by Averaging or Choice of Upstream Concentration

v Defined at Cell Edges (see above)

Central Differences

Figure 3.2: Upwind and central differentiation in FDM.

a high order method. A time step has to be solved for both methods. Higher order fluxes are then
limited in such a way that no new extrema with respect to the low order solution and the old time
step occur. Hence monotonicity of the low order solution is preserved. The principle of the method is
explained in Fig. 3.3.

Mass fluxesF for the low and high order scheme first must be evaluated independently. The subscripts
h andl indicate the high order and low order scheme, respectively. After solving the time step by both
methods an antidiffusive fluxFad can be calculated:

F x
h (i + 1=2; j) = Jxh (i+ 1=2; j)�yj�zi;j (3.2.15)

F x
l (i + 1=2; j) = Jxl (i+ 1=2; j)�yj�zi;j

F y
h (i; j + 1=2) = Jyh(i; j + 1=2)�xj�zi;j

F y
l (i; j + 1=2) = Jyl (i; j + 1=2)�xj�zi;j

F x
ad(i + 1=2; j) = F x

h (i + 1=2; j)� F x
l (i+ 1=2; j)
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Limitation of fluxes between nodes

(mass conservation)

e.g. Taylor-Galerkin

Figure 3.3: Principle of the Flux-Corrected Transport Method.
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F y
ad(i; j + 1=2) = F y

h (i; j + 1=2)� F y
l (i; j + 1=2)

These antidiffusive fluxes must be limited to preserve monotonicity by a factorTi+1=2;j or Ti;j+1=2,
respectively, specific to the intercell boundary of interest:

F x;c
ad (i+ 1=2; j) = Ti+1=2;jF

x
ad(i + 1=2; j) (3.2.16)

F y;c
ad (i; j + 1=2) = Ti;j+1=2F

y
ad(i; j + 1=2)

in which Ti+1=2;j andTi;j+1=2 can vary from 0 to 1. Summarizing all corrected antidiffusive fluxes
related to a cell leads to the correction of the low order solution:

�ci;j = F x;c
ad (i� 1=2; j)� F x;c

ad (i+ 1=2; j) (3.2.17)

+F y;c
ad (i; j � 1=2)� F y;c

ad (i; j + 1=2)

ĉi;jfct = ci;jl +
�t

�xi�yj�zi;j
�ci;j (3.2.18)

The limiting procedure consists of the following four steps:

Sum all positive/negative antidiffusive fluxes at a cell

P+
i;j = max (0; F x

ad(i� 1=2; j)) +max (0;�F x
ad(i + 1=2; j))

+max (0; F y
ad(i; j � 1=2)) +max (0;�F y

ad(i; j + 1=2))

P�

i;j = max (0;�F x
ad(i� 1=2; j)) +max (0; F x

ad(i + 1=2; j))
+max (0;�F y

ad(i; j � 1=2)) +max (0; F y
ad(i; j + 1=2))

(3.2.19)

Define the maximum/minimum allowable antidiffusive flux at a cell

Q+
i;j =

Vi;j
�t

�
cmax
i;j � cli;j

�
(3.2.20)

Q�

i;j =
Vi;j
�t

�
cmin
i;j � cli;j

�

with the definition ofcmax
i;j andcmin

i;j :

cmax
i;j = max

�
cli;j; c

l
i+1;j; c

l
i�1;j; c

l
i;j+1; c

l
i;j�1; (3.2.21)

ci;j(tn); ci+1;j(tn); ci�1;j(tn); ci;j+1(tn); ci;j�1(tn))

cmin
i;j = min

�
cli;j; c

l
i+1;j; c

l
i�1;j; c

l
i;j+1; c

l
i;j�1; (3.2.22)

ci;j(tn); ci+1;j(tn); ci�1;j(tn); ci;j+1(tn); ci;j�1(tn))
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Calculate the ratio ofQ�

i;j and P�

i;j

R+
i;j = min

 
1;
Q+
i;j

P+
i;j

!
ifP+

i;j 6= 0 (3.2.23)

= 0ifP+
i;j = 0

R�i;j = min

 
1;
Q�

i;j

P�

i;j

!
ifP�

i;j 6= 0

= 0ifP�

i;j = 0

DefineTi+1=2;j and Ti;j+1=2

Ti+1=2;j = min
�
R+
i;j; R

+
i+1;j if F x

ad(i+ 1=2; j) > 0
R�i;j; R

�

i+1;j if F x
ad(i+ 1=2; j) > 0

�
(3.2.24)

3.2.4.2.2 Slope Limiter The upwinding scheme as defined in (3.2.12) is based on the assumption
that the concentration within the donor cell is spatially constant. In fact the integrated FDM approach
gives no direct indication of the innercell concentration distribution; only the average value is calcu-
lated.

The upwind scheme might be recalled in the framework of GODUNOV [24]. He suggested that hy-
perbolic problems should be solved by the explicit solution of RIEMANN problems in cells. For 1-D
linear hyperbolic equations this can easily be done. The basic principle can be explained by three
steps:

� Given cell-averaged datafcnj g, construct a function~c(x; tn). (Piecewise constant in GODUNOV’s
method).

� Solve the conservation law exactly with this data to obtain~c(x; tn+1).

� Compute cell averages of the resulting solution to obtainfcn+1j g.

Fig. 3.4 illustrates this principle under the assumption of a constant concentration distribution. The
black dots represent the average values at the previous time step, whereas the circles represent the
average concentrations at the new time step.

From Fig. 3.4 it is obvious that the scheme gives the exact solution of the model problem for a
COURANT number of unity. A COURANT number exceeding one would cause instabilities as infor-
mation is only carried from one cell to its neighbouring cell. Any COURANT number less than unity
leads to smeared solutions due to the averaging procedure. The total variation in an arbitrary subdo-
main decreases unless a boundary condition leads to new extrema. This total variation diminishing
(TVD) property is a measure of the monotinicity of a scheme.
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t+dt
c

j j+1 j+2j-1j-2 x

c

j j+1 j+2j-1j-2 x

v t

Figure 3.4: GODUNOV’s method.

The flux between two nodesj � 1 andj integrated over a time step can be easily calculated from:

Fj�1;j = vj�1;j�tc
n
j�1 (3.2.25)

The slope limiter approach is an extension of GODUNOV’s method in which piecewise linear innercell
distribution of concentration is assumed [67]. In order to achieve mass balance the local concentration
at the cell centre must equal the average value. The scheme is illustrated in Fig. 3.5.

Defining a slopesj within cell j, the time-integrated flux for this scheme is given by:

Fj�1;j = vj�1;j�t
�
cnj�1 + snj�1

�
�xj�1 � vj�1;j�t

2

��
(3.2.26)

The decisive factor in applying this method is the choice of the slope. Fig. 3.6 defines natural choices
based on the concentration distribution. These may be calculated from:
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t+dt
c

j j+1 j+2j-1j-2 x

c

j j+1 j+2j-1j-2 x

v t

Figure 3.5: Extension of GODUNOV’s method under the assumption of a linear concentration distribution.
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Figure 3.6: Definition of possible slopes for the slope limiter scheme.
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sdwnlin =
2(cj+1 � cj)

�xj+1 +�xj

sdwnmax =
2(cj+1 � cj)

�xj

suplin =
2(cj � cj�1)

�xj +�xj�1

supmax =
2(cj � cj�1)

�xj

(3.2.27)

Note that for the definition of upstream and downstream cells the subscripts are increase in the direc-
tion of flow. In the following figures a parameter� is adopted as a measure of the curvature of the
concentration.� is given by:

� =
suplin
sdwnlin

(3.2.28)

Fig. 3.7 shows the defined slopes as a function of the curvature�.

ups lin
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dwns
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dwns

lin
ups

lin
dwns
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θ=

s

lin
dwns

s= s=

s=

s=

s=0

φ=

Figure 3.7: Defined slopes as a function of curvature.

Adoptingsdwnlin as the slope is identical to the LAX -WENDROFF scheme whereas the application of
suplin leads to the BEAM-WARMING scheme. These two schemes are of second order accuracy. Any
slope between these two can be assumed to be of second order. This region is shown in Fig. 3.8.
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s lin
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s=

s=0
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Figure 3.8: Second order region of slope limiters.

The TVD property of the entire scheme is obtained if the reconstruction is TVD [42]. This leads to
the following limits:

� If a cell contains a local extremum, which is equivalent to� < 0, a constant innercell concen-
tration distribution must be applied (s = 0).

� The reconstructed function must not lead to local concentrations outside the range of[cj�1; cj+1].
This is equivalent tojsj < min(jsdwnmaxj; jsupmaxj).

This region is shown in Fig. 3.9. Hence a second order TVD region is given by the intersection of the
second order region and the TVD region. This is shown in Fig. 3.10

In the following, four slope limiting procedures are presented which lie in the second order TVD
region. Theminmodslope limiter (see Fig. 3.11) follows the lower boundary of the second order
TVD region, ROE’s Superbeelimiter [52] (see Fig. 3.12) follows the upper boundary of the second
order TVD region, the front limiter (see Fig. 3.13) mainly follows the BEAM-WARMING line, and
VAN LEER’s limiter (see Fig. 3.14) is a smooth interpolation of upstream and downstream slopes.

The reconstruction of theminmodslope limiter is given by:

if sdwnlin � suplin < 0 then s = 0

elseif jsuplinj < jsdwnlin j then s = suplin

else s = sdwnlin

(3.2.29)
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Figure 3.9: TVD region of slope limiters.
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Figure 3.10: Second order TVD region of slope limiters.
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Figure 3.11: Definition of minmod slope limiter.
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Figure 3.12: Definition of ROE’s Superbeeslope limiter.
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The reconstruction of the ROE’s Superbeelimiter is given by:

if sdwnlin � suplin < 0 then s = 0

elseif jsupmaxj < jsdwnlin j then s = supmax

elseif jsdwnlin j > jsuplinj then s = sdwnlin

elseif jsuplinj < jsdwnmaxj then s = suplin

else s = sdwnmax

(3.2.30)

ups lin
ups

max
dwns

lin
dwns

lin
ups

lin
dwns

θ=

lin

max
dwn
s

s
s= s=

s=

s=

s=0

φ=

Figure 3.13: Definition of the HAEFNER’s front limiter in the context of slope limiters.

The reconstruction of HAEFNER’s front limiter is given by:

if sdwnlin � suplin < 0 then s = 0

elseif jsuplinj < jsdwnmaxj then s = suplin

else s = sdwnmax

(3.2.31)

A smooth limiter function is given byVAN LEER. For non-extrema he calculates the slope from the
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harmonic mean of the linear upstream and downstream slopes:

if sdwnlin � suplin < 0 then s = 0

else s =
2suplins

dwn
lin

suplin + sdwnlin

(3.2.32)

s lin
ups

max
dwns

lin
dwns

lin
ups

lin
dwns

θ=

max

lin

s
dwns

ups= s=

s=

s=

s=0

φ=

Figure 3.14:VAN LEER’s slope limiter as a function of curvature.

Note that theminmod limiter, theSuperbeelimiter andVAN LEER’s limiter do not require the direction
of flow for the reconstruction of the innercell concentration distribution, whereas the front limiter
does. Fig. 3.15 illustrates theminmodslope limiter in an example.

In a semidiscrete version of the slope limiting approach the exact solution of the RIEMANN problem
is replaced by a numerical integration scheme in time. This is an appropriate approach if the exact
solution of the RIEMANN problem is difficult to obtain, namely in multidimensional problems and
problems, in which advective transport is coupled to other processes. For a definite point in time the
flux at an intercell boundary is given by:

Fj�1;j;t = vj1;j;t(cj�1;t + sj�1;t�xj�1=2) (3.2.33)

The simpliest method of applying the scheme to multidimensional problems is to construct slopes
for each direction independently in the semidiscrete context. For a correct explicit solution a bilinear
approach would be necessary.

Note that all slope limiter schemes are nonlinear, as the choice of the interpolation is dependent on the
solution in a nonlinear way. In contrast to the FCT algorithm, the slope limiter fits into the concept of
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Figure 3.15: Spatial approximation of concentrations in upwind scheme (above) and under application of theminmod
slope limiter scheme (below)
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the method of lines (MOL). In the semidiscrete version it has no influence on any time discretization
scheme, provided they are of second order accuracy, but it does require linearization.

The approach can be extended to higher order reconstruction. In order to achieve mass balance in
the cells this requires interpolation of primitive functions, which are spatial integrals. The class of
essentially non-oscillatory (ENO) schemes, developed by HARTEN ET AL. [25] follows this approach.

A test of all slope limiters described above is documented in section 3.6.1. Recently, in CONTRACT-
2, ROE’s Superbeelimiter was implemented in the semidiscrete form.

3.2.5 Discretization in Time

3.2.5.1 Finite Difference Approximation

In this classical approach integration in time is carried out by one-point integration based on linear
interpolation. Linear interpolation between the time stepstn andtn+1 first must be applied to concen-
trations, mass fluxes and reactive sources/sinks:

ci;j(t) = (1� �)ci;j(tn) + �ci;j(tn+1) (3.2.34)

Jx;yi�1=2;j�1=2(t) = (1� �)Jx;yi�1=2;j�1=2(tn) + �Jx;yi�1=2);j�1=2(tn+1)

ri;j(t) = (1� �)ri;j(tn) + �ri;j(tn+1)

t = tn +�(tn+1 � tn)

Time derivatives can thus be approximated by:

@ci;j
@t

=
�ci;j
�t

=
ci;j(tn+1)� ci;j(tn)

tn+1 � tn
(3.2.35)

Choosing a time point of collocation� for the calculation ofci;j(t), ri;j(t) andJx;yi�1=2;j�1=2 and ap-
plying this to (3.2.2) yields:

 
ci;j(tn+1)� ci;j(tn)

tn+1 � tn
� (1��)ri;j(tn)� �ri;j(tn+1)

!
ne�xi�yj�zi;j

+
�
(1� �)Jxi+1=2;j(tn) + �Jxi+1=2;j(tn+1)

�(1� �)Jxi�1=2;j(tn)��Jxi�1=2;j(tn+1)
�
�yj�zi;j

+
�
(1� �)Jyi;j+1=2(tn) + �Jyi;j+1=2(tn+1)

�(1� �)Jyi;j�1=2(tn)��Jyi;j�1=2(tn+1)
�
�xi�zi;j = 0

(3.2.36)

If � is chosen to be zero the time integration scheme is fully explicit. This is the simpliest way of
integration as all spatial derivatives are calculated for the known solution of the previous time step.
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Every (partially) explicit method requires that the COURANT- and NEUMANN- numbers do not exceed
unity:

Cr = max

 
vx�t

�x
;
vy�t

�y

!

Ne =
Qin;out�t

�x�y�z

(3.2.37)

If � is chosen to be unity the time integration scheme is fully implicit. This yields the most stable
solution. Fully implicit integration does not restrict the size of the time step.

In any (partially) implicit scheme a large system of linear equations must be solved. The related matrix
is positive definite but non-symmetric.

3.2.5.2 Lax-Wendroff Scheme

The LAX -WENDROFF scheme was developed to achieve a higher order of consistence for fully ex-
plicit one-step integration of the hyperbolic PDE for pure advective transport. In order to transform
time derivatives into spatial derivatives the following transformation rules are valid:

@c

@t
+ vx

@c

@x
+ vy

@c

@y
= 0 (3.2.38)

) @

@t
= �vx @

@x
� vy

@

@y
(3.2.39)

) @2

@t2
= v2x

@2

@x2
+ 2vxvy

@2

@x@y
+ v2y

@2

@y2
(3.2.40)

Truncation error analysis of the advective transport equation gives the following second order error
terms (see (3.5.145)):

e2 = +
�t

2

@2c

@t2
+��tvx

@2c

@x@t
+��tvy

@2c

@y@t

=
�
1

2
� �

�
�t

 
v2x
@2c

@x2
+ 2vxvy

@2c

@x@y
+ v2y

@2c

@y2

! (3.2.41)
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(3.2.41) indicates that explicit time integration includes an antidiffusive error causing instabilities.
Adding a correction term with an artificial diffusion ofD

corr
leads to second order accuracy for

explicit time integration:

@c

@t
+ r � (vc)� r � (D

corr
rc) = 0 (3.2.42)

D
corr

=

2
4
�
1
2
� �

�
�tv2x

�
1
2
� �

�
�tvxvy�

1
2
��

�
�tvxvy

�
1
2
� �

�
�tv2y

3
5 (3.2.43)

Note that the LAX -WENDROFF scheme is based on TAYLOR extension. TAYLOR extension requires
continuity. Hence the LAX -WENDROFFscheme cannot be used to stabilise solutions in the proximity
of discontinuities. Nevertheless, the LAX -WENDROFF scheme is an easy-to-apply improvement of
standard FDM. The computational effort is quite low as the scheme is linear.

3.2.5.3 Predictor-Corrector Scheme

The basic idea of the predictor-corrector scheme is to achieve second order accuracy with fully explicit
time integration. For this purpose the integration of one time step is split into two substeps. In a fully
explicit predictor step an intermediate concentration~c(tn+1) is calculated. In the corrector step fluxes
are calculated based on the concentration at the previous time stepc(tn) as well as on the intermediate
concentration~c(tn+1), and then averaged. This correction by the trapezoidal rule yields a fully explicit
scheme if second order accuracy. In order to obtain of a more accurate intermediate concentration the
LAX -WENDROFFscheme may be applied in the predictor step.

3.2.5.4 Method of Lines

The integrated finite difference approach described in the sections preceding section 3.2.5 includes
only spatial discretization, time derivatives remain unchanged. The partial differential equation of
transport is thus transformed to a large system of ordinary differential equations which may be solved
by the methods described above or by any other scheme suitable for the integration of ordinary dif-
ferential equations. (3.2.44) illustrates this principle:c are the continuous concentrations whereas~c is
the vector of nodal concentrations derived from spatial discretization.

f

 
c;
@c

@t
;
@c

@x

!
! ~f

 
~c;
@~c

@t

!
(3.2.44)

Note that the FCT scheme does not comply with the MOL approach whereas all other spatial dis-
cretization schemes presented above do.
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3.3 Finite Element Method

3.3.1 Spatial Discretization and Isoparametric Concept

Spatial discretization in the Finite Element Method (FEM) consists in deviding the domain of interest
into a finite number of elements which are characterized by discrete nodes. Spatial coordinates as
well as state variables of interest are defined at the nodes. These parameters are interpolated within
the elemenets. As the same interpolation function is used to compute both geometric values and state
variables this approach is termed isoparametric.

In the case of multi-component reactive transport the state variables of interest are the concentrations
ci and the reaction ratesri(c). Interpolation is achieved by applying the shape function
. The sum of
all 
 contributions must be unity:

x = 
 A (3.3.45)

c = 
 ĉ

r = 
 r̂


 = [
1;
2; : : : ;
nno]

(3.3.46)

A =

2
66664

x̂1 ŷ1 ẑ1
x̂2 ŷ2 ẑ2
...

...
...

x̂nno ŷnno ẑnno

3
77775 (3.3.47)

(3.3.48)

ĉ =

2
66664

ĉ1
ĉ2
...

ĉnno

3
77775 (3.3.49)

(3.3.50)

r̂ =

2
66664

r̂1
r̂2
...

r̂nno

3
77775 (3.3.51)

The spatial derivatives of the parameters of interest may be derived by multiplying the vector of nodal
values by the gradient of the shape function:

rc = (rx
) ĉ
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in which

rx
 =

2
666666666664

@
1

@x

@
2

@x
: : :

@
nno

@x

@
1

@y

@
2

@y
: : :

@
nno

@y

@
1

@z

@
2

@z
: : :

@
nno

@z

3
777777777775

(3.3.52)

Reaction rates are calculated on the basis of nodal concentrations and are interpolated in the same
way as concentrations:

r̂i = f(ĉi) (3.3.53)

These assumptions for spatial approximation lead to the following formulation of the PDE on the
basis of one element:

neR

@ĉ

@t
+ 
 ĉqin � S0

@h

@t

 ĉ+ nev

T
a (rx
)ĉ � ner � (D (rx
))ĉ (3.3.54)

= ne
 r̂ + 
cinqin

3.3.2 Method of Weighted Residuals

In general (3.3.54) will not be exactly solvable for every point within an element. A local error, the
residual", will occur:

neR

@ĉ

@t
+ 
 ĉqin � S0

@h

@t

 ĉ+ nev

T
a (rx
)ĉ � ner � (D (rx
))ĉ (3.3.55)

� ne
 r̂ � 
cinqQ = "

This residual is redistributed amongst the nodes of an element using the weighting function�:

� =

2
66664

�1
�2
...

�nno

3
77775 (3.3.56)

A basic requirement is that the weighted residual�" integrated over the domain must equate to zero:

Z
V

�"dV = 0 (3.3.57)
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As the domain is divided into elements the integral in (3.3.57) is equal to the sum of all element
integrals:

Z
V

�"dV =
nelX
1

Z
Vel

�"dV = 0 (3.3.58)

(3.3.55) and (3.3.57) thus lead to:

0
@ne

Z
V

�R
dV

1
A @ĉ

@t
+

0
@Z
V

�qin
dV �
Z
V

�S0
@h

@t

dV + ne

Z
V

�vTa (rx
)dV

�ne
Z
V

�r � (D (rx
)) dV

1
A ĉ

�
0
@ne

Z
V

�
dV

1
A r̂ �

Z
V

�qincindV = 0

(3.3.59)

which is solvable. Note that the solution of (3.3.59) need not necessarily represent the most accurate
solution as local errors with changing signs within an element can be cancelled out by the integration
procedure.

3.3.3 Partial Integration and Weak Formulation

3.3.3.1 Weak Formulation of Diffusive Mass Flux

(3.3.59) includes second order spatial derivatives in the diffusion term. Hence linear shape func-
tions cannot be applied directly to describe diffusion. Applying GREEN’s theorem (partial integration
across the element boundaries) makes it possible to transform one derivation from the shape to the
weighting function:

0
@Z
V

�r � (D (rx
)) dV

1
A ĉ = (3.3.60)

0
@Z
�

�nTD (rx
) d��
Z
V

(rx�
T )TD (rx
) dV

1
A ĉ
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Inserting (3.3.60) into (3.3.59) leads to the weak form for the diffusive mass flux:

0
@ne

Z
V

R�
dV

1
A @ĉ

@t
+

0
@Z
V

�qin
dV �
Z
V

�S0
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�vTa (rx
) dV

+ ne
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1
A ĉ
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0
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�
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1
A r̂ +

Z
V

�qincindV +

0
@ne

Z
�

�nTD (rx
) d�

1
A ĉ

(3.3.61)

The weak formulation may be interpretated as solving the integrated differential equation for the
diffusive mass flux. The boundary mass fluxes which now occur need not be calculated for interior
element boundaries, as mass conservation requires the sum over all weighted boundary mass fluxes
of an interior node to equal zero. Only nodes on the boundary of the total domain would require
integration of boundary mass fluxes. Setting the diffusive mass flux across the boundary of the do-
main to zero (NEUMANN boundary condition) makes integration of boundary fluxes uneccesary. This
introduces an error which is acceptable at least for all cases dominated by advection.

A great advantage of the weak formulation is that even inaccurate spatial integration does not lead to
errors in the mass balance of the total domain. This is true only for the weak part of the mass flux.
The strongly treated advective mass flux has to be integrated very accurately. No balancing of mass
fluxes occurs with boundary integrals.

3.3.4 Weak Formulation of Total Mass Flux

To overcome the strict requirements of accuracy for the advective mass flux integration a weak form
of advective mass flux can be formulated. Here the original definition of advective mass flux (2.2.6)
can be used; applying the chain rule is not necessary:

ne

Z
V

�r � (vac) dV =
Z
�

�nTvfc d�� ne

Z
V

(rx�
T )Tvac dV (3.3.62)

The boundary integral for interior nodes can again be neglected. On the domain boundaries the ad-
vective mass fluxes can be expressed by the product of the discharge across the boundary, which is a
direct result of flow calculations, and the concentration of the inflow or outflow. In the case of inflow
nodes this inflow concentration has to be specifies by the user as a boundary condition, whereas the
outflow concentration is simply the concentration computed at the boundary node. This leads to the
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following element equation:
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(3.3.63)

3.3.5 Transformation of Coordinates

The FEM formulations of (3.3.61) and (3.3.63) include spatial derivatives of shape and weighting
functions as well as spatial integration of the expressions in total. These operations are carried out
element by element. The transformation of coordinates permits a generalized calculation of deriva-
tives, thus leading to easy-to-handle program codes. By introducing local coordinatess1; s2; s3 the
following holds for a one-dimensional element:

s1 = +1 x = x1
s1 = �1 x = x2

(3.3.64)

a two-dimensional element:

s1 = +1 ; s2 = +1 x = x1
s1 = �1 ; s2 = +1 x = x2
s1 = �1 ; s2 = �1 x = x3
s1 = +1 ; s2 = �1 x = x4

(3.3.65)

and a three-dimensional element:

s1 = +1 ; s2 = +1 ; s3 = +1 x = x1
s1 = �1 ; s2 = +1 ; s3 = +1 x = x2
s1 = �1 ; s2 = �1 ; s3 = +1 x = x3
s1 = +1 ; s2 = �1 ; s3 = +1 x = x4
s1 = +1 ; s2 = +1 ; s3 = �1 x = x5
s1 = �1 ; s2 = +1 ; s3 = �1 x = x6
s1 = �1 ; s2 = �1 ; s3 = �1 x = x7
s1 = +1 ; s2 = �1 ; s3 = �1 x = x8

(3.3.66)
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Figure 3.18: Hexahedral 3-D element.

Spatial gradients can be transformed by the JACOBIAN matrix:

J =

2
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(3.3.68)
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The following transformation rules are valid:

rx
 = J�1(rs
) (3.3.69)

and

Z
V

dV =

+1Z
�1

+1Z
�1

+1Z
�1

det(J)ds1ds2ds3 (3.3.70)

Tranformation of coordinates transforms degenerated elements into orthogonal elements which can
be integrated much easier. For this purpose the shape function
 is defined by linear, bilinear and
trilinear functions:
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Figure 3.19: Linear shape function.
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(3.3.72)
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Figure 3.20: Bilinear shape function for node 1.
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Figure 3.21: Bilinear shape function for node 2.
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Figure 3.22: Bilinear shape function for node 3.
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Figure 3.23: Bilinear shape function for node 4.
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(3.3.73)

The JACOBIAN matrix J is itself a function of local coordinates. This leads to the problem of direct
integration of quadrilateral and hexagonal elements. The finite element formulation for an element
(3.3.63) can now be expressed by:
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(3.3.74)

with

~Q
in;out

= �
Z

�in;out

�nTvf
d� (3.3.75)

The source-sink term for water flux~Q
in;out

can be expressed by a diagonal matrix. For interior nodes

it becomes a zero matrix. For nodes at the boundary of the domain the summation of all~Q
in;out

terms at a node leads to the effective nodal inflow resulting from the flow calculation. The suffixin
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denotes inflow boundaries (Qin;out > 0) while the suffixout denotes outflow boundaries (Qin;out < 0).
Neglecting diffusive mass fluxes across boundaries leads to:
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ĉ

=

0
@ne

+1Z
�1

+1Z
�1

+1Z
�1

�
 det(J)ds1ds2ds3

1
A r̂ + ~Q

in
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(3.3.76)

3.3.6 Spatial Integration

For abitrary geometries the analytical solution of the integrals in (3.3.76) becomes rather complicated.
Numerical integration by the GAUSSIAN quadrature method is a flexible alternative.

+1Z
�1

f(s)ds = 5=9f(0:7746) + 8=9f(0) + 5=9f(�0:7746) (3.3.77)

3.3.7 Discretization in Time

3.3.7.1 Semidiscrete Formulation

In the semidiscrete formulation the FEM is applied only to spatial dimensions. Differentiation and
integration with respect to time is performed by finite differences (FD). The scheme is equivalent to
time integration as described in the FDM section.

Choosing a time point of collocation� for the calculation of̂c(t) and r̂(t) leads to (3.3.78) for the
weak formulation of diffusive mass flux and to (3.3.79) for the weak formulation of total mass flux:
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With the definitions of (3.3.77) for spatial integration, (3.3.78) and (3.3.79) are linear systems of
equations which can be solved using standard solvers.

3.3.7.2 Finite Elements in Space and Time

The transient transport equation (2.2.12) can be transformed into a steady-state equation in the space-
time continuum:

ner � (cv�a)� ner � (D�rc)� ner(c) = 0
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3
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(3.3.80)

Application of the isoparametric concept and the method of weighted residuals is straightforward. The
coordinates of the nodes now include time. Nodes of a space-time finite element differ both in space
and time. Nodes may pr may not lie on discrete time layers while the spatial coordinates on different
time layers relating to an element may or may not change. Various possible space-time distributions
for one-dimensional elements in space are shown in Fig. 3.24.

Note that methods for the minimizing numerical errors for steady-state problems in space can easily be
transformed for transient problems when space-time elements are applied. The computational effort
is of course higher as integration of the elements now includes an additional dimension.

3.3.8 Minimization of Numerical Errors

3.3.8.1 Standard Galerkin Method

In the standard GALERKIN procedure the shape function and the weighting function are identical:

� = 
T (3.3.81)
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Figure 3.24: Classes of space-time elements.
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The GALERKIN method has been shown to be an appropriate approach to solve parabolic and elliptic
partial differential equations. In contrast to this the solution of hyperbolic PDE’s by the standard
GALERKIN method leads to instabilities. Applying the method of finite differences, similiar problems
occur when central differentiation is applied. As a consequence, approaches comparable to FDM
solutions have been developed for finite elements to overcome these shortcomings. For example, the
LAX -WENDROFF method has been adapted to the TAYLOR-GALERKIN method while upwinding
methods have led to inconsistent PETROV-GALERKIN schemes.

3.3.8.2 Artificial Longitudinal Diffusion

The diffusive/dispersive term in the transport equation is parabolic in character whereas the advective
term is hyperbolic. Provided the resulting total PDE is sufficiently governed by diffusion no stability
problems should occur. PERROCHET& B ÉROD [49] developed a stability criterion based on amplifi-
cation matrix analysis:

Peapp � Cr � 2 (3.3.82)

with the definition of the apparent PECLET number

Peapp =
j va j �x
Dapp

(3.3.83)

and the COURANT number

Cr =
j va j �t

�x
(3.3.84)

With the definition of longitudinal dispersionDl = �l j va j + Dm (3.3.82) can be transformed into
a minimum longitudinal dispersivity�l required for stability:

�l � j va j �t
2

� Dm

j va j
(3.3.85)

Note that this condition includes no evaluation of COURANT or PECLET numbers and can hence be
easily applied to multidimenional systems.

3.3.8.3 Taylor-Galerkin Method

DONEA [20] carried out a truncation error analysis of the GALERKIN solution for a pure hyperbolic
partial differential equation of type (3.3.86):

@u

@t
+ A(u) = f (3.3.86)
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After some rearrangements the TAYLOR extension in a regular mesh leads to the following first and
second truncation errors of the solution:
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For the application in CONTRACT u, A and f are defined in the following way:

u := c (3.3.88)

A(u) :=
1

R
varc

f :=
1

R
r
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@t
= 0 (3.3.89)

within a time step. Substituting (3.3.88) and (3.3.89) into (3.3.87) thus leads to:
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Subtracting these errors leads to a solution scheme of second order accuracy in space and time. Diffu-
sive mass fluxes are neglected. This simplification is justified since parabolic equations can be solved
without stability problems by the GALERKIN procedure. As the two correction terms include second
order spatial derivatives they have to be applied in a weak formulation. This results in the following
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scheme:
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(3.3.91)

Similar to the LAX -WENDROFF scheme in the FDM the TAYLOR-GALERKIN method is only con-
ditionally stable. Although it increases the order of consistency it will fail if discontinuities in the
solution occur since TAYLOR expansion is only applicable to continuous functions.

The TAYLOR-GALERKIN method as described above was implemented in the transport code ROCK-
FLOW-TM [40]. ROCKFLOW-TM is the kernel of CONTRACT-FEM.

3.3.8.4 Inconsistent Petrov-Galerkin Method

Applying the concept of upwind differnetiation to finite elements can be achieved by changing the
weighting procedure in such a way that the advective terms have a greater influence on the downstream
nodes than on upstream nodes. One possible way to realize this is to introduce a quadratic term into
the linear weighting function for advection. The following additional requirements must be fulfilled:

� The quadratic term is positive for the downstream node and negative for the upstream node.

� The sum of all weighting functions is always unity.

� The integral of the quadratic term over the element should not exceed unity (full upwinding).

For the one-dimensional case this leads to:
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56 CHAPTER 3. TRANSPORT CALCULATION

1

0

Figure 3.25: Quadratic upwinding of linear elements.

where� is the upwind coefficient ranging between -1 and +1 and is positiv if node 1 is the downstream
node. Fig. 3.25 shows the graph of the weighting function.

The two-dimensional case can be developed by multiplying the 1-D weighting functions in both
directions. Here an upwinding coefficient for each local direction has to be determined:
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(3.3.93)

The upwinding procedure is only applied to the advection term whereas the diffusion term and the
mass storage term remain the sames as in the standard GALERKIN formulation. Truncation error
analysis for such an inconsistent upwinding procedure shows that artificial diffusion is introduced
with a diffusion coefficient of�vaL=2 in the one-dimensional case. If� is optimally chosen this
artificial diffusion balances out higher order truncation error terms.

3.3.8.4.1 Streamline Orientation The artificial diffusion introduced by upwinding is required
only in the direction of advective mass flux, which coincides with the direction of streamlines. Defin-
ing an arbitrary combination of upwinding coefficients�1 to �ndimen

in multidimensional systems
would lead to artificial diffusion perpendicular to the streamlines, or so-calledcrosswinddiffusion.
An incorrect assumption of transverse dispersivity leads to more significant errors as it is generally
much smaller than longitudinal dispersivity. Hence upwinding in the local coordinates of a multidi-
mensional element has to be balanced in the direction of streamlines.

Assuming an upwind coefficient in the direction of the streamline�0, projection in the direction of
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Figure 3.26: Quadratic upwinding of bilinear elements.�s1 = �s2 = 1. Node 1.
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Figure 3.27: Quadratic upwinding of bilinear elements.�s1 = �s2 = 1. Node 2.
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Figure 3.28: Quadratic upwinding of bilinear elements.�s1 = �s2 = 1. Node 3.
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Figure 3.29: Quadratic upwinding of bilinear elements.�s1 = �s2 = 1. Node 4.
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local coordinates leads to an upwind scheme free of crosswind diffusion:

�i = �0
va � ei
j va j

(3.3.94)

In (3.3.94)�i is the upwind coefficient in the direction of the local coordinatesi andei is the related
unit vector expressed in global coordinates. This projection can be calculated at every integration point
inside the element. Alternatively�i can be evaluated at the edges of the element and interpolated over
the element [26]. Methods to select upwind coefficients will be discussed below.

3.3.8.5 Galerkin Least Square Method

The method of least squares is defined by the following procedure: choose concentrations at the nodes
of an element in such a way that the square of the residual integrated over the element is a minimum:

ĉ
Z
~V

"2(ĉ)dV = min (3.3.95)

Under the assumption that the general extremum condition is sufficient to fulfill (3.3.93), the condition
simplifies to: the integrated square of residual partially derived with respect to the nodal concentra-
tions is a zero vector. Applying the isoparametric concept to the latter leads to:
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in which L is the differential operator describing the process of interest. (3.3.95) is the definition
of the Finite Element Least Square (FELS) method. Prooving that the general extremum condition
really satisfies (3.3.95) is not straightforward. Indeed ZINKIEVIC and TAYLOR noted, that the FELS
solution is only conditional stable.

If the differential operator is a linear expression of the concentration the first term in the integral can
be simplified toL(
). Applying FELS to the advection-diffusion-reaction equation requires a full
(space-time) finite element approximation quadratic in space and linear in time.

The GALERKIN Least Square method (GLS) developed by HUGHES ET AL. [35] is a linear combina-
tion of the GALERKIN method and the FELS method:
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Z
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TL(
ĉ) + �
@L(
ĉ)
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L(
ĉ)dV dt = 0 (3.3.97)
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The first factor of the least square part can also be interpreted as perturbation of the weighting func-
tion, thus leading to a PETROV-GALERKIN scheme. Substituting the definition of the differential
operator for the advection-diffusion-reaction equation (2.2.13) into (3.3.96) leads to:
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(3.3.98)

Quadratic approximation in space is only necessary for the least square part of the diffusion term.
As the diffusion equation can be solved quite accurately by the standard GALERKIN method, linear
approximation in space is assumed to be sufficient. For a semidiscrete formulation in time the time
derivative of the shape function vanishes. Furthermore, the reactive source/sink termr will now be
treated as being independent of concentration. This leads to the definition of the Streamline Upwind
PETROV-GALERKIN (SUPG) [6, 64] method:
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A (�ĉ(t1) + (1��)ĉ(t0))
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(3.3.99)

with
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T + �
�
nev

T
a (rx
)

�T
(3.3.100)

� can be interpreted as an upwind coefficient which must be determined by stability considerations
or truncation error analysis.� and the upwind coefficient� of the inconsistent PETROV-GALERKIN

method are related by:

� = �
h

2nejvaj
(3.3.101)
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0
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Figure 3.30: Weighting function in the SUPG scheme.

in whichh is a measure of the element size, being identical to the element length in 1-D.

The SUPG method introduces an upwinding term oriented along the characteristics of advective trans-
port at the collocation time point whereas the GLS method for a shape function at least quadratic in
space and linear in time introduces an upwinding term oriented at the characteristics of total mass
flux in a space-time domain. In contrast to the inconsistent upwinding, SUPG and GLS apply the
perturbated weighting function to all terms of the partial differential equation. As can be shown by
truncation error analysis this consistent formulation prevents the introduction of artificial diffusion.

3.3.8.6 Choice of the Upwind Coefficient

3.3.8.6.1 Superconvergent steady-state solution in 1-DThe key task in all upwind methods is to
select an appropriate upwind coefficient�0 or � . An overestimation of�0 leads to artificial diffusion
whereas an underestimation may lead to remaining instabilities. For one-dimensional steady-state
problems without sink or source terms a nodally exact solution is given by HUGHES & B ROOKS

[1979] (3.3.102).

�opt = coth
�
Pe

2

�
� 2

Pe
�
s

Pe2

36 + Pe2
(3.3.102)

A plot of (3.3.102) is shown in Fig. 3.31.

An extension of (3.3.102) to multidimensional and transient problems based on semidiscrete FEM for-
mulations is not straightforward. The solutions developed below suffer either from artificial diffusion
or instability or both.

3.3.8.6.2 Extension to multidimensional problems The PECLET number required for applica-
tion of (3.3.102) is defined in (3.3.83) for one-dimenional systems. A multidimensional definition
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Figure 3.31: Dependency of upwind coefficient� on the PECLET number.

might be obtained by transforming the seepage velocity and the dispersion tensor into local coordi-
nates:

vloc = J�1va (3.3.103)

D
loc

= J�1J�1D

Note that the transformed velocity and dispersion tensor are already related to a length scale of the
element by multiplication with the inverse JACOBIAN matrix. Hence the definition of the SUPG-
related upwind factor� in (3.3.101) can be simplified to:

� =
�

2nejvlocj
(3.3.104)

For the definition of a multidimensional PECLET number a reduction of the parameters to scalar values
is required. For this purpose the dispersion tensor in local coordinates is projected along the direction
of velocity in local coordinates, thus leading to the following form of longitudinal dispersion in local
coordinates:

evloc =
1

j vloc j
vloc (3.3.105)

Æloc = eTvlocDloc
evloc
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The resulting PECLET number is:

Pe = 2
j vloc j
Æloc

(3.3.106)

The factor 2 in (3.3.106) is a consequence of the definition of local coordinates from -1 to +1. Since
the inverse JACOBIAN matrix transforms the length of the element edges to 2, this factor has to be
included in (3.3.106). Note that in the publications of HUGHES and his working group a PECLET

number is applied which does not include this factor. The PECLET number given by (3.3.106) can
directly be applied in (3.3.102).

3.3.8.6.3 Extension to transient problems The steady-state case as discussed previously can be
viewed as the worst case for transient problems. Hence the choice of an upwind coefficient for tran-
sient problems will never exceed�opt as defined for the related steady-state problem. Minimizing arti-
ficial diffusion will necessitate assumptions aimed at decreasingalpha as a function of the COURANT

number. This can be done

� either by defing a PECLET number for space-time elements, as the transient case simplifies to a
steady-state problem in full finite element discretization,

� or by defining an upwind coefficient based on stability analysis for semidiscrete formulations.

For the second approach NOORISHAD ET AL. [47] developed the following relationship:

�opt = Cr � 2

Pe
(3.3.107)

(3.3.107) is based on the same stability criterion as (3.3.85) and leads to identical results at least for
1-D problems.

3.3.8.7 Localized Adjoint Method

3.3.8.7.1 General Approach Assuming that the advection-dispersion-reaction equation has a lin-
ear decay expression on the left-hand side of the equation and zeroth order source/sink terms on the
right-hand side:

L(c) = @c

@t
+ r � (vac)� r �

�
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�
+ �c = r (3.3.108)
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then a general weak formulation can be achieved by introducing a weighting or test function� in the
space-time domain:
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(3.3.109)

Applying GREEN’s theorem to the time derivative in the time direction and to the advective-dispersive
terms in the spatial direction leads to:
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(3.3.110)

A second application of GREEN’s theorem to the dispersive term yields:
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(3.3.111) can be simplified to:
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(3.3.112)

in whichL� is the adjoint operator of the partial differential equation. Evaluation of inner integrals
in space-time elements on the right-hand side of (3.3.112) becomes unnecessary for all test functions
fulfilling L�(�) = 0:

L�(�) = �@�
@t
� r� � va � r �

�
DT r�

�
+ �� = 0 (3.3.113)

In the localized adjoint method (LAM) test functions locally fulfilling (3.3.113) are applied. In the
following two sections a space-time approach and a semidiscrete approach will be discussed.

3.3.8.7.2 Space-Time LAM The boundary integral of the advective terms in (3.3.112) vanishes if
the space-time boundaries of the elements follow characeristics of advective transport. This leads to
the Eulerian-Langrangian localized adjoint method (ELLAM) introduced by CELIA ET AL . [11]:
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(3.3.114)

The choice of an optimal test function fulfilling (3.3.113) is straightforward in an EULERIAN-LA-
GRANGIAN approach:

� In space the test function should be a polynomial of order zero or one leading to a finite volume
formulation or a standard linear finite element formulation in space.
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� In the space-time domain the test function should follow the characteristics of advective trans-
port.

� An exponential increase with time with an exponent of�t has to be introduced if linear decay
is taken into account.

Fig. 3.32 and Fig. 3.33 show space-time elements and test functions for the one-dimensional case.

t n

t n+1

t n

t

Element Boundaries

n+1

Test Function

x

x

Figure 3.32: Space-time element linear in space.

The ELLAM approach directly indicates how boundary conditions should be handled since at bound-
aries the element edges can no longer follow characteristics and the boundary integrals for advective
mass flux in (3.3.112) are to be evaluated. Furthermore, the scheme is perfectly mass conservative
as, in contrast to other EULERIAN-LANGRANGIAN methods, spatial integrals over the entire spatial
domain are developed from the spatial derivatives. Nevertheless, a number of disadvantages of all
EULERIAN-LANGRANGIAN methods still remains:

� Accurate evaluation of the space-time boundary integrals for diffusive mass flux requires high
computational effort. Operator split methods may be a valid simplification for advective-dominant
transport but leads to time step restrictions.

� The source/sink term still has to be integrated over the entire space-time domain. Since source/
sink terms due to chemical interactions do not usually follow the characteristics, the evaluation
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Figure 3.33: Space-time element constant in space.

of integrals again leads to high computational effort. Operator split methods for coupling of
reactive terms to advective-dispersive transport circumvent this problem but should be handled
with care.

� Boundary conditions lead to space-time boundary integrals which can be irregularly configu-
rated in multidimensional applications.

� The backtracked nodes will not conincide in general with the nodes of spatial interpolation at
the old time level. As a consequence, evaluation of the spatial integral at the old time level
includes products of at least two hyperbolic paraboloids in the 2-D case. A test function which
is constant in space will lead to less complications.

� Artificial diffusion produced by backtracking. Although adaptive mesh refinement can be in-
cluded in the scheme, this again increases the computational effort.

3.3.8.7.3 Semidiscrete LAM As a consequence of the problems listed above, semidiscrete meth-
ods should be viewed as simplified alternatives to the principally more accurate time-space approach.
CELIA ET AL . [10] developed optimal test functions (OTF) based on LAM for semidicrete methods.
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In this case only the spatial part of the localized adjoint operator has to be taken into account:

L�(�) = �r� � va � r �
�
DT r�

�
+ �� = 0 (3.3.115)

The optimal choice of a test function fulfilling (3.3.115) corresponds to the solution, in which the
boundary integrals of the advective mass flux vanish. Under the condition that the velocity is contin-
uous, this leads to boundary conditions in which� is a constant (e.g. 1) at the node of interest and
equals zero at the other node(s) of the element. In one dimension this yields:
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Note that~v equalsv if no linear decay occurs. For this case (3.3.116) simplifies to:
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The resulting test function is illustrated in Fig. 3.34 for Pe=10.

Applying linear shape functions (3.3.117) leads to the following analytical integrals:
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Mobility matrix A
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Figure 3.34: Optimal test function for semidiscrete LAM without linear decay (Pe=10).

3.3.8.8 Finite Element Control Volume Approach

The GALERKIN and PETROV-GALERKIN methods described above do not preserve nodal mass bal-
ance. Mass balance is achieved only over the entire domain. This is due to the overlapping patch
volumes of neighbouring nodes.

In the FEM Control Volume approach each element is divided into node-related subdomains. For
each subdomain the integrated form of the transport equation (3.2.1) must be solved. In contrast to
the Integrated Finite Difference approach, unstructured grids can be applied. For the evaluation of
mass fluxes at the inner-element subdomain boundaries the shape function of the FEM approach is
used.

For quadrilateral elements the subdomains can easily constructed by connecting the centres of oppo-
site edges. This is illustrated in Fig. 3.36.

The shape function
 of the auxiliary nodes I, II, III, IV and C is defined by:


I = [ 1=2 ; 1=2 ; 0 ; 0 ]


II = [ 0 ; 1=2 ; 1=2 ; 0 ]


III = [ 0 ; 0 ; 1=2 ; 1=2 ]


IV = [ 1=2 ; 0 ; 0 ; 1=2 ]


C = [ 1=4 ; 1=4 ; 1=4 ; 1=4 ]

(3.3.120)
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Figure 3.35: Definition of control volumes in 2-D.
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Figure 3.36: Construction of control volumes in 2-D.
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The mass matrixM is diagonal and defined by the volumes of the four subdomains (3.3.121):
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The mobility matrixA may be partitioned into four rows:

A = del
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The entriesa1 to a4 can be evaluated fom the fluxes across the inner-element subdomain boundaries:

a1 = f
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+ f
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� f
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a4 = f
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(3.3.123)

The integral mass fluxes across the inner-element subdomain boundaries may be evaluated by two-
point integration. For this purpose the mass fluxes at the auxiliary points I, II, III, IV and C must be
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evaluated. (3.3.124) defines the fluxes across these boundaries:
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whereLI;C is the length of the innercell subdomain boundary between the auxiliary pointsI andC
andn?I;C is the unit vector perpendicular to this boundary.n?I;C is directed towards node 1,n?II;C
towards node 2,n?C;III towards node 4 andn?C;IV towards node 1.j

P
is the mass flux at point

P, where P can be I, II, III, IV or C. (3.3.125) defines these fluxes under the application of central
differentiation:

j
P
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P �D(rx
P ) (3.3.125)

(3.3.126) gives the spatial gradient of the shape functionrx
 for any point (s1; s2) inside the element.
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For the pointC with local coordinates (0,0), (3.3.126) simplifies to:
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For the pointI with local coordinates (0,1), (3.3.126) simplifies to:
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For the pointII with local coordinates (-1,0), (3.3.126) simplifies to:

@
1

@x
= (y2 � y3)=%1

@
2

@x
= (�y1 + 2y3 � y4)=%1

@
3

@x
= (y1 � 2y2 + y4)=%1

@
4

@x
= (y2 � y3)=%1

@
1

@y
= (�x2 + x3)=%1

@
2

@y
= (x1 � 2x3 + x4)=%1

@
3

@y
= (�x1 + 2x2 � x4)=%1

@
4

@y
= (�x2 + x3)=%1

%1 = (x1y2 � x2y1)� (x1y3 � x3y1) + 2(x2y3 � x3y2)�
(x2y4 � x4y2) + (x3y4 � x4y3)

(3.3.129)

For the pointIII with local coordinates (0,-1), (3.3.126) simplifies to:

@
1

@x
= (y3 � y4)=%1

@
2

@x
= (y3 � y4)=%1

@
3

@x
= (�y1 � y2 + 2y4)=%1

@
4

@x
= (y1 + y2 � 2y3)=%1

@
1

@y
= (�x3 + x4)=%1

@
2

@y
= (�x3 + x4)=%1

@
3

@y
= (x1 + x2 � 2x4)=%1

@
4

@y
= (�x1 � x2 + 2x3)=%1

%1 = (x1y3 � x3y1) + (x4y1 � x1y4) + (x2y3 � x3y2)�
(x2y4 � x4y2) + 2(x3y4 � x4y3)

(3.3.130)
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For the pointIV with local coordinates (1,0), (3.3.126) simplifies to:

@
1

@x
= (y2 + y3 � 2y4)=%1

@
2

@x
= (�y1 + y4)=%1

@
3

@x
= (�y1 + y4)=%1

@
4

@x
= (2y1 � y2 � y3)=%1

@
1

@y
= (�x2 � x3 + 2x4)=%1

@
2

@y
= (x1 � x4)=%1

@
3

@y
= (x1 � x4)=%1

@
4

@y
= (�2x1 + x2 + x3)=%1

%1 = (x1y2 � x2y1) + (x1y3 � x3y1) + 2(x4y1 � x1y4)+
(x2y4 � x4y2) + (x3y4 � x4y3)

(3.3.131)

The scheme as defined by (3.3.125) and (3.3.124) is not monotonic. This is due to the central differ-
entiation scheme and due to the 9-point stencil which arises if the scheme is applied to a structured
grid. To achieve monotonicity the scheme must be modified as follows:

� The fluxes across the inner-element subdomain boundaries are be evaluated by one-point inte-
gration at the element edges (points I, II, III and IV).

� Advective fluxes are be evaluated by upwind differentiation.

� Cross diffusion terms must be eliminated. These terms express the influence of nodal concen-
trations e.g. at the nodes 3 and 4 on the flux between the nodes 1 and 2, and cause oscillations
near discontinuities.

Note that the monotonic scheme is identical to the monotonic integrated FDM approach, when applied
to a structured grid.

3.3.8.9 Mass Lumping

The structure of the mass matrixM has been identified as a significant factor causing instabilities in
FEM calculations. A diagonal matrix has been found to stabilize the scheme. In structural mechanics
the physical interpretation of this mass lumping may be explained by Fig. 3.37: instead of a continuous
mass distribution the mass is concentrated at the discretization nodes.

To achieve a diagonal mass matrix, at least three approaches are possible:
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Bilinear Interpolation Mass-Lumping

Figure 3.37: Physical interpretation of mass lumping.

� The FECV approach as described above divides the element into definite subdomains. This is
the most physical development of a diagonal matrix.

� The mass matrix can be calculated by the standard FEM and then modified by summating all
entries in a row.

mlump
i;i =

PnN
k=1mi;k (3.3.132)

� An alternative approach for diagonalization is to preserve the relation between the diagonal
entries:

Mdiag =
PnN

k=1mk;k

Mtot =
PnN

k=1

PnN
i=1mi;k

mlump
i;i = mi;i

Mtot

Mdiag

(3.3.133)

3.3.8.10 Flux-Corrected Transport

The Flux-Corrected Transport algorithm described for Finite Differences has been applied to Finite
Elements by PARROTT & CHRISTIE [1986]. As low order and high order schemes can differ in the
mass matrix a direct comparison of element contributions to a node is not possible. Extending an
approach of L̈OHNER ET AL. [1987] the high order method has to bereformulated:

M
h

@ĉh
@t

= M
h
r̂ � A

h
ĉh (3.3.134)
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� @ĉh
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= HEC
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and

M
l

@ĉl
@t

= M
l
r̂ � A

l
ĉl = LEC (3.3.135)

HereM denotes the mass matrix,A is the mobility matrix and the subscriptsh andl indicate the high
order and low order scheme, respectively.HEC represents the high order element contribution vector
to the nodes andLEC the low order element contribution vector. After solving the time step by both
methods an antidiffusive element contribution vector can be calculated:

AEC = HEC � LEC (3.3.136)

=
�
M

h
�M

l

�
r̂ � A

h
ĉh + A

l
ĉl +

�
M

l
�M

h

� @ĉh
@t

This antidiffusive element contribution vector has to be limited to preserve monotonicity by an ele-
ment specific factorCel:

AECc = CelAEC; 0 � Cel � 1 (3.3.137)

SummatingAECc over all elements with a common node leads to the correction of the low order
solution:

�ci =
X
el

AECc
i (3.3.138)

ĉifct = cil +
�t

V i
Patch

�ci (3.3.139)

The limiting procedure consists of the following four steps:

Summating all positive/negative AEC’s at a node

P+
i =

X
el

max
�
0; AECel

i

�
(3.3.140)

P�

i =
X
el

min
�
0; AECel

i

�

Definition of the maximum/minimum allowable AEC’s at a node

Q+
i =

V Patch
i

�t

�
cmax
i � cli

�
(3.3.141)

Q�

i =
V Patch
i

�t

�
cmin
i � cli

�
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cmax
i is the maximum concentration in the low order solution and in the last time step at any node

sharing an element with the node of interesti. cmin
i is defined in the same manner as the minimum

concentration.

Calculating the ratio of Q�

i to P�

i

R+
i = min

 
1;
Q+
i

P+
i

!
ifP+

i 6= 0 (3.3.142)

= 0ifP+
i = 0

R�i = min

 
1;
Q�

i

P�

i

!
ifP�

i 6= 0

= 0ifP�

i = 0

DefiningCel

Cel = min
nodesel

�
R+
i if AECel

i > 0
R�i if AECel

i < 0

�
(3.3.143)

3.4 Boundary Conditions

3.4.1 Fixed Concentrations (Dirichlet-B.C.)

In principle there are two ways of including fixed concentrations as boundary conditions. Assuming
that the discretization scheme leads to a system of equations of the type (3.4.144):

M c = b (3.4.144)

then the matrixM may be changed so that the line of the known concentrationci is blanked out with
the exception of the entryMi;i which is set to unity. Additionally, the load vectorb is changed in
entrybi to the fixed concentration. In this case the order of the system of equations remains the same.
If the matrix was symmetric before introducing the boundary condition, it subsequently becomes
unsymmetric.

An alternative way is to delete the rowi in M , c andb. The i’th column ofM has to be multiplied
by the known concentrationci and subtracted fromb. The transformed system of equations is now of
one order less than the original system. Possible symmetry is preserved.
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3.4.2 Fixed Mass Fluxes

3.4.2.1 FEM with Weak Formulation of Diffusive Mass Fluxes

In this case advective mass fluxes out of the domain are already implemented in the formulation.
Diffusive mass fluxes at ouflow nodes are not implemented. In most cases advection dominates over
diffusion, and hence the error is negligible. Furthermore, it is not clear whether the spatial derivatives
are continuous over the boundary of the domain. This may differ from the physical type of boundary.

For inflow boundaries the total mass flux into the domain at the inflow node has to be added to the
reactive source/sink term on the right-hand side of the system of equations. Along the main diagonal
of the matrix on the right-hand side the water flux has to be added.

3.4.2.2 FEM with Weak Formulation of Total Mass Fluxes and FDM Formulation

These schemes require explicit definitions of all mass fluxes across the boundary of the domain to
be defined. At inflow nodes the total mass flux has to be added to the right-hand side of the system
of equations. At outflow nodes the water fluxes have to be subtracted from the main diagonal of the
matrix on the right-hand side. As in the previous case, diffusive mass fluxes across outflow boundaries
are not considered. Additional terms may be added if desired.

3.5 FDM versus FEM - A Brief Comparison

3.5.1 FEM expressed in terms of FDM

Although the two approaches presented in this paper seem to be slightly different, they can be com-
pared under the assumption of a structured, rectangular grid with regular spacing and constant co-
efficients. Evaluating the matrices of one node in the domain for FEM (Standard GALERKIN) and
comparing it to FDM (central differentiation) leads to the following results:

� The advective FEM fluxes connecting one node with another are identical to the sum of three
parallel FDM fluxes with the weightings 1/6 - 2/3 - 1/6.

� The same holds for the diffusive fluxes resulting from the diagonal entriesDxx andDyy in
the dispersion tensor. The terms for cross-diffusion are identical in FEM and FDM if 9-point
differentiation is used in FDM.

� The FEM mass matrix is the sum of three parallel FDM mass matrices per spatial direction.
The weightings are 1/6 - 2/3 - 1/6 per spatial direction.

� Mass lumping of FEM leads to a mass matrix identical to FDM, in which the mass fluxes are
still identical to FEM.
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� The truncation error terms evaluated by TAYLOR expansion are almost identical up to third
order terms (see 3.5.145-3.5.147). Hence the correction terms in the TAYLOR-GALERKIN and
LAX -WENDROFFschemes are identical.

� FDM upwinding and inconsistent PETROV-GALERKIN are not equivalent in the framework
described above: upwind differentiation in FDM leads to artificial diffusion with a diagonal
scaled diffusion tensor whereas the artificial diffusion introduced by the inconsistent PETROV-
GALERKIN method is a dense tensor. If the upwind coefficients for the inconsistent PETROV-
GALERKIN method are chosen properly, artificial diffusion can be restricted to longitudinal
diffusion. For upwind differentiation in FDM this is only possible for a streamline-oriented
grid. SUPG is not comparable to FDM since the mass matrix is changed.

Fig. 3.38 illustrates these results. Nodes are marked by circles, FDM cells have solid boundaries and
FEM elements have dashed boundaries. FDM fluxes are illustrated by arrows. Weighting of FDM
fluxes and mass matrix entries in FEM are illustrated by colour density.

3.5.2 Truncation Error Analysis

The following truncation errors are for purely advective transport in two dimensions.

Truncation Error of Integrated Finite Differences:
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Truncation Error of Standard Finite Elements:
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Figure 3.38: Comparison of FDM using central differentiation and standard GALERKIN FEM.
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Truncation Error of Finite Elements + Mass Lumping:
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3.5.3 Grids

The main advantage of FEM over FDM is the suitability for unstructured grids, thus providing the
opportunity to simulate complex geometries or to refine the grid locally. Unfortunately, however,
stabilization of transport calculations is more complicated with unstructured grids than with structured
ones.

A general Finite Volume approach (FVM) may also be suitable for unstructured grids. The main
problem in this class of discretization methods lies in the approximation of cross-diffusion terms.

The optimal grid in a multidimensional domain both for FEM and FDM is oriented in the direction
of streamlines. For streamline-oriented grids, advection occurs as a 1-D problem. Additionally, the
dispersion tensor is diagonally scaled. For FDM this reduces the stencil to 5 points in 2-D and to 7
points in 3-D.

3.5.4 Stability Considerations

Integrated Finite Differences are easier to stabilize than Finite Elements. A basic assumption of FEM
is C0 continuity. Unfortunately, the true distribution of concentration can be discontinuous at the
scale of discretization due to heterogeneity, reactions or local sources. In these situations FEM yields
oscillatory results.

These oscillations can easily be explained within the framework of Fig. 3.38. The advective FDM
flux from one cell to another is only dependent on the concentrations in these two cells. At least full
upwinding guarantees monotonicity under this condition. The advective FEM flux from one node to
another is dependent on the concentrations at these two nodes and on the concentrations at all other
nodes belonging to elements shared by both nodes of interest. This influence of additional nodes can
lead to oscillations if concentration jumps exist.

Note that this type of relationship also occurs in the cross-diffusion terms of FDM. These terms do
not occur only on streamline-oriented FDM grids.
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3.6 Benchmark Tests for Advective-Dispersive Transport

3.6.1 1-D Point Source Test

A classical one-dimensional benchmark test for advective-dispersive transport is the HEAVISIDE

problem, in which the initial concentration is uniform (e.g. 0.0) and the inflow concentration at the
inflow boundary of the domain is constant but different to the initial concentration (e.g. 1.0). Particu-
larly for high PECLET numbers this test gives a good indication as to whether a numerical scheme is
stable near a moving discontinuity. The analytical solution to this problem is given by [48]. (3.6.148)
is valid for a non-retarded compound.

c(x; t) =
cin
2

erfc

0
@ x� vet

2
q
(�ve +Dm)t

1
A (3.6.148)

The benchmark test was extended to test the behaviour of the numerical schemes near stationary
discontinuities, which may occur due to point sources. Therefore the initial concentration over the
entire domain was set to zero. The inflow concentration was set to zero as well. At an interior point of
the domain the concentration was maintained at unity over the entire simulation period. For all nodes
downstream of this point source the problem is identical to the HEAVISIDE problem. Additionally,
the behaviour of the numerical scheme is also tested at the nodes upstream of the point-source.

For the nodes upstream of the point-source the concentration profiles converge to the steady-state
solution (3.6.149):

c(x) =
1� evex=D

1� evexs=D
(3.6.149)

in which xs is the distance of the point source from the inlet. The chosen parameters for the test
runs are summarized in Table 3.1. For the tested FEM schemes the weak formulation of total mass

Table 3.1: Parameters for the one-dimensional point source test.

Flow and transport parameters
K = 10�3 m/s �e = 0.1 � = .01m Dm = 10�9 m2/s
Geometric parameters
Length of the domain: 100m xs = 10m �x = 1m
Boundary conditions for the flow field
hinflow - houtflow = 1.0m
Discretization in time
�t = 5.000s for FEM models adaptive�t for FDM models
Resulting dimensionless numbers
Pe = 100 CrFEM = 0.5 CrFDM variable

flux was chosen without mass lumping. For integration in time the CRANK-NICOLSON approach was
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adopted. All tested FDM schemes include the slope limiter approach in a semidiscrete formulation.
Linearization and integration in time was carried out using the DAES-solver DASPK (see Sections
4.1 and 5.3).

Fig. 3.39-3.48 show length profiles of concentration obtained for different numerical schemes. The
profiles are shown for the times 20,000s, 40,000s, 60,000s, 80,000s and 100,000s after the start of
simulation.
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Figure 3.39: 1-D point source test, standard GALERKIN.

Fig. 3.39 shows length profiles given by the Standard GALERKIN method, as described in Section
3.3.8.1. At the moving front the scheme leads to oscillations at the upstream tail of the front whereas
no oscillations occur at the downstream head of the front. Note that for the given one-dimensional
problem without source-sink terms the CRANK-NICOLSON time integration is equivalent to explicit
time integration using second order TAYLOR-GALERKIN stabilization. Since the resulting mobility
matrix is identical to FDM using central differentiation, the stability of the scheme can be discussed
in the context of TVD stability as introduced in Section 3.2.4.2.2.

For the stated model problem the CRANK-NICOLSON standard GALERKIN scheme is therefore equiv-
alent to an extended GODUNOV scheme where the innercell concentration distribution has a slopes
of sdwnlin , as obtained by linear interpolation to the downstream node. For a regular grid this scheme
leads to oscillations for any curvature� (as defined in 3.2.28) smaller than 0.5 (see Fig. 3.9). Note
that at the downstream head of the moving front� exceeds 1.0 because the upstream slope is larger
than the downstream slope. The very small value of� at the upstream tail of the moving front causes
oscillations to occur.

However, the instabilities upstream of the stationary discontinuity are much more significant than the
instabilities near the moving front. These instabilities can again be explained in the context of Fig. 3.9
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since the true solution shows a concentration distribution with a small slope further upstream of the
discontinuity and a sudden rise in the slope directly in front of the point source.
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Figure 3.40: 1-D point source test, TAYLOR-GALERKIN.

Fig. 3.40 shows length profiles obtained from the TAYLOR-GALERKIN scheme explained in Section
3.3.8.3. The scheme leads to no significant improvement. Oscillations at the upstream tail of the
moving front are slightly damped. However, small oscillations occur at the downstream head of the
moving front. This is caused by the third-order correction terms introduced into the scheme. The
instabilities upstream of the point source are identical to the standard GALERKIN scheme.

Fig. 3.41 shows length profiles obtained from the SUPG scheme explained in Section 3.3.8.5. Using an
upwind coefficient optimized for steady-state problems (3.3.102) supresses the instabilities upstream
of the point source. However, at the usptream tail as well as at the downstream head of the moving
front spurious oscillations occur. Allthough these oscillations do not increase with time they may be
inacceptable in the context of reactive transport. The scheme shows no significant artificial diffusion.
This is due to the consistent formulation of upwinding in the SUPG method.

Fig. 3.42 shows length profiles obtained from the inconsistent PETROV-GALERKIN scheme explained
in Section 3.3.8.4 using the upwind coefficient of NOORISHAD ET AL. (3.3.107). The results are
identical to the standard GALERKIN solution with artificial diffusion as explained in Section 3.3.8.2.
The effect of artificial diffusion is clearly indicated by excessive smearing at the moving front. Near
the moving front no oscillations occur. However, artificial diffusion produced by the scheme is not
sufficient to stabilize the solution upstream of the stationary discontinuity.

Note that the upwind coefficient for the scheme decreases with decreasing COURANT number. Since
the stationary discontinuity leads to a quasi-steady-state problem, the upwind coefficient for this prob-
lem should be independent of the time discretization. In fact the scheme is developed from amplifi-
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Figure 3.41: 1-D point source test, Streamline Upwind PETROV-GALERKIN.
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Figure 3.42: 1-D point source test; inconsistent PETROV-GALERKIN scheme (Cr*Pe=2).
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cation matrix analysis. The introduction of boundary conditions such as the point-source changes the
matrix to be analyzed. This was not considered in [49].
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Figure 3.43: 1-D point source test, inconsistent PETROV-GALERKIN scheme� = coth(Pe=2)� 2=Pe.

Fig. 3.43 shows length profiles obtained from the inconsistent PETROV-GALERKIN scheme explained
in Section 3.3.8.4 using the upwind coefficient optimized for steady-state problems (3.3.102). Choos-
ing this upwind coefficient leads to stabilization upstream of the stationary discontinuity. However,
the artificial diffusion produced by the scheme smears the moving front to an unacceptable extent.
Note that FDM schemes using simple upwind differentiation would yield equivalent length profiles.

Fig. 3.44 shows length profiles obtained from the Flux-Corrected-Transport scheme for FEM as
explained in Section 3.3.8.10. The inconsistent PETROV-GALERKIN method using the upwind co-
efficient optimized for steady-state problems was adopted as the low-order method, whereas the
TAYLOR-GALERKIN scheme was applied as the high-order method. The FCT solution shows no
oscillations and minimal artificial diffusion. Note that similiar results would be obtained from the
FCT scheme based on FDM.

Figures 3.45-3.48 illustrate length profiles for different slope limiter schemes. All of these are free of
oscillations. However, the different schemes produce different amounts of artificial diffusion.

Fig. 3.45 shows the results for theminmodslope limiter. In the context of Fig. 3.10 this scheme re-
flects the lower limit of the second-order TVD region. Since the sharpness of the front increases with
increasing slope, theminmodlimiter introduces a remarkable amount of artificial diffusion. However,
this artificial diffusion is still moderate compared to the artificial diffusion produced by full upwind-
ing.
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Figure 3.44: 1-D point source test; FEM Flux-Corrected Transport. High order scheme: TAYLOR-GALERKIN. Low order
scheme: inconsistent PETROV-GALERKIN scheme.
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Figure 3.45: 1-D point source test;minmodslope limiter.
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Figure 3.46: 1-D point source test; HAEFNER’s front limiter.

Fig. 3.46 shows the results for HAEFNER’s front limiter. This scheme mainly follows the BEAM-
WARMING line. This represents the upper limit of the second-order TVD region for a curvature�
ranging from 1.0 to 2.0, and the lower limit of the second-order TVD region for curvature� ranging
from 0.0 to 1.0. As a consequence the profiles are very sharp at the downstream head of the moving
front and are smeared at the upstream tail of the moving front.
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Figure 3.47: 1-D point source test; ROE’s Superbeelimiter.
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Fig. 3.47 shows the results for ROE’s Superbeelimiter. This scheme generally follows the upper limit
of the second-order TVD region. As a consequence, the shape of the front is very sharp both at the
head and the tail of the moving front. In [33] test calculations are shown indicating over-sharpening
of this method.

Note that the computational effort for theSuperbeelimiter was much higher than for theminmod
limiter. This result only holds if implicit time integration is used. Similiar results were obtained by
REICHERT [51] when comparing theSuperbeelimiter to VAN LEER’s limiter. He explained this be-
haviour by the non-differentiable nature of the limiter function. This explanation cannot be valid when
comparing theSuperbeelimiter to theminmodlimiter since both limiters are piecewise linear. In the
opinion of the author the smoothness of the solution is much more important for the performance of
the scheme than the smoothness of the limiter function. The DAES solver is based on polynomial
interpolation. For the tested model problem, time profiles of concentrations at nodes contain sharp
steps. Therefore polynomial extrapolation yields a poor predictor for concentration development at
”front nodes”. The sharper the front, the smaller the time step has to be, in order to obtain the required
accuracy. This is a general disadvantage of the method of lines approach.
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Figure 3.48: 1-D point source test;VAN LEER’s slope limiter.

Fig. 3.48 shows the results forVAN LEER’s limiter. The sharpness of the solution lies between that
of theSuperbeeand theminmodlimiter. The shape of the front is as symmetric as in the latter two
approaches.

With regard to all the methods tested, it may be concluded that all linear schemes suffer either from os-
cillatory behaviour, e.g. as in the case of the standard GALERKIN scheme or SUPG, or from excessive
artificial diffusion, e.g. as in the case of the inconsistent PETROV-GALERKIN method.
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High-order accurate schemes which preserve monotonicity must be nonlinear. An easy-to-implement
nonlinear scheme is the FCT method. Allthough this scheme doubles the computational effort it
requires no further - possibly even more costly - linearization. As an alternative the slope limiter
schemes may be used. For one-dimensional problems without source/sink terms these may be inte-
grated explicitly. Implicit time integration as used in the present study increases the computational
effort dramatically. This may be different in the case of nonlinear reactive transport, as the reactive
terms cannot be integrated explicitly.

3.6.2 2-D Point Source Test with a Homogeneous Flow Field

In order to test the behaviour of the selected schemes for multidimensional problems the point source
test was extended to two dimensions. Two situations of parallel flow field were tested: a situation in
which the flow is parallel to the grid (see Figs. 3.49 and 3.50), and a situation in which it is diagonal
to the grid (see Figs. 3.51-3.53). For the 2-D test a steady-state transport problem was chosen. The
grid spacing was 1m both in the x and y direction. The longitudinal dispersivity was 0.01m and the
transverse dispersivity 0.001m.

Since the oscillatory behaviour of the standard GALERKIN method, the TAYLOR-GALERKIN method
and the SUPG method has already been demonstrated in the 1-D point-source test, the two-dimensional
test was limited for FEM to the inconsistent PETROV-GALERKIN scheme in two versions and the FCT
scheme.
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Figure 3.49: 2-D point source test for a flow field parallel to the grid. Inconsistent PETROV-GALERKIN method for bilinear
FEM discretization.
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Fig. 3.49 shows the concentration distribution for the 2-D point source test with flow parallel to the
grid using the inconsistent PETROV-GALERKIN method for bilinear FEM discretization as explained
in Section 3.3.8.4. In contrast to the one-dimensional test case, the scheme yields an oscillatory solu-
tion for multidimensional problems.

This may be explained in the context of Fig. 3.38. The mobility matrix for bilinear FEM includes
flux terms from a node to a neighbouring node which are dependent on parallel nodes. For the stated
model problem this leads to a positive flux from a node parallel to the point source to its downstream
neighbour. Since there is no mass flux towards this parallel node, mass balance can only be achieved
by a negative concentration. The minimum concentration obtained by the scheme was -0.265 for a
fixed point-source concentration of 1.0.

Note that this is a direct result of 9-point differentiation. Mass lumping or application of the SUPG
method cannot overcome this problem as a mass matrix is notconsidered in steady-state problem.
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Figure 3.50: 2-D point source test for flow field parallel to grid. Inconsistent PETROV-GALERKIN method for 5-point
Finite Element Control Volume discretization.

Fig. 3.50 shows the concentration distribution for the 2-D point-source test with flow parallel to the
grid using the inconsistent PETROV-GALERKIN method for 5-point FECV discretization as explained
in Section 3.3.8.8. The evaluation of advective mass fluxes at element edges avoids oscillations. The
minimum concentration obtained by the scheme was -5.8�10�30, which is within the range of the
computer cut-off error.

Note that the FECV approach is identical to integrated FDM when rectangular grids are used. The
comparison of Figs. 3.49 and 3.50 indicates, as stated in Section 3.5.4, that Finite Differences and
Finite Volume methods are easier to stabilize than Finite Element methods. However, they may be
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problematic if the grid is not oriented in the direction of streamlines.
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Figure 3.51: 2-D point-source test a for flow field diagonal to the grid. Inconsistent PETROV-GALERKIN method for
bilinear Finite Element discretization.

Fig. 3.51 shows the concentration distribution for the 2-D point-source test with flow diagonal to the
grid using bilinear FEM discretization. As in the case of grid-parallel flow, oscillations occur. The
minimum concentration obtained by the method was -0.097.

However, the plume caused by the point source is rather narrow. After initial spreading directly near
the point source the maximum concentration in the plume decreases slowly along the pathline. This
good approximation of transverse dispersivity is due to the 9-point differentiation included in the
scheme.

Fig. 3.52 shows the concentration distribution for the 2-D point-source test with flow diagonal to the
grid using 5-point FECV discretization. As in the case of the grid-parallel flow the scheme preserves
monotonicity. The minimum concentration obtained by the method was -1.1�10�10. However, the
method introduces excessive transverse diffusion. The maximum concentration in the plume decreases
rapidly along the pathline.

This excessive transverse diffusion is due to the combined effect of upwinding and 5-point differen-
tiation. Proper upwinding leads to artificial longitudinal diffusion which results in a dense diffusion
tensor if the direction of advective transport is not aligned with the grid. In FEM with bilinear ele-
ments this dense tensor can be approximated properly owing to the underlying 9-point differentiation
for advective transport. In the case of 5-point differentiation this is not possible. Only diagonal ten-
sors can be approximated. Note that this is independent of the method used to approximate diffusive
transport.
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Figure 3.52: 2-D point-source test for a flow field diagonal to the grid. Inconsistent PETROV-GALERKIN method for
5-point FECV discretization.
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Figure 3.53: 2-D point source-test for a flow field diagonal to the grid. FCT method, low-order method: inconsistent
PETROV-GALERKIN method for 5-point FECV discretization, high-order method: Standard GALERKIN.
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In order to combine monotonicity preservation of the 5-point FECV method with the good approxi-
mation of diagonal mass flux in bilinear FEM discretization, the FCT method was used. As the FCT
method is restricted to transient problems the 2-D point-source test was modified to a transient test.
In Fig. 3.53 the resulting concentration distribution is shown for 60 time steps after the start of the
simulation. Since the grid-oriented COURANT numberCrx = vx�t=�x was 1.0, Fig. 3.53 represents
the steady-state solution of the problem.

Inconsistent upwinding using 5-point FECV discretization was used in the low-order method, while
the standard GALERKIN method was the high-order method. The overall scheme combines the advan-
tages of the two sub-schemes. The minimum concentration obtained by the method was -7.7�10�9.
The maximum concentration in the plume decreases slowly along the pathline.
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Figure 3.54: 2-D point source-test for a flow field diagonal to the grid.Minmodslope limiter.

Figs. 3.54 + 3.55 show the results for the slope limiter techniques described in Section 3.2.4.2.2. As
in the one-dimensional test case the scheme is free of oscillations. Again the ROE’s Superbeelimiter
(see Fig. 3.55) leads to a sharper front than theminmodlimiter. However, the computational effort
was very high.

3.6.3 Rotating Prism

A classical test for multi-dimensional numerical schemes is the rotating-cone test [6, 9], in which
a concentration peak of GAUSSIAN shape is moved in a rotating flow field. The results after one
rotation are compared to analytical solutions. In the case of pure advective transport the concentration
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Figure 3.55: 2-D point source-test for a flow field diagonal to the grid.Superbeeslope limiter.
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Figure 3.56: 2-D point-source test for a flow field diagonal to the grid. Finite Difference Flux-Corrected-Transportmethod,
low-order method: full upwinding, high-order method: central differentiation.
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distribution after one rotation must correspond with the initial condition. In [28] the test is modified
by adopting a cylindrical concentration distribution as the initial condition. In the present study a
hexahedral prism was used. The problem statement is illustrated by 3.57.
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Figure 3.57: Rotating prism 2-D test; Problem statement.

The grid spacing was 1m both in the x and y directions with a discretization of 50 by 50 nodes.
The rotational velocity was 1 rotation in 105s. The longitudinal dispersivity�l was 0.01m, whereas
the transverse dispersivity�t was 0.001m. The time discretization was taken to be 250s, so that the
COURANT number does not exceed unity anywhere in the domain. In the initial state a block of 7 by
7 nodes was set to unity while all other nodes were set to zero. Figs. 3.58-3.64 show concentration
distributions after one rotation (400 time steps) for different discretization schemes.

The test was carried out only for FEM discretization schemes. In order to minimize boundary effects
the weak formulation of total mass flux was used. No mass flux was permitted across the boundary of
the domain.

Figs. 3.58 and 3.59 show concentration distributions after one rotation for the standard GALERKIN

and the TAYLOR-GALERKIN method, respectively. Standard GALERKIN discretization leads to dra-
matic oscillations. The TAYLOR-GALERKIN scheme is oscillatory as well but to a lower extent. These
findings are in good agreement with the oscillations observed near the moving discontinuity in the 1-D
point-source test.

Figs. 3.60 and 3.61 show the results with artificial diffusion according to the approach of NOOR-
ISHAD ET AL. as well as the inconsistent PETROV-GALERKIN method with upwinding derived from
the steady-state solution. Although both schemes exhibit excessive artificial diffusion they are unable
to suppress oscillations. This is an effect of multi-dimensionality. In the one-dimensional test both
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Figure 3.58: Rotating prism 2-D test; Standard GALERKIN (CRANK-NICOLSON time integration).
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Figure 3.59: Rotating prism 2-D test; TAYLOR-GALERKIN (CRANK-NICOLSON time integration).
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schemes were free of oscillations near the moving discontinuity. As was shown in Section 3.5.1, FEM
fluxes between two nodes are dependent on neighbouring nodes. The only way to balance these fluxes
near discontinuities is to introduce over- and under-shooting concentrations. Streamline-oriented ar-
tificial diffusion is not able to smear this out completely.
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Figure 3.60: Rotating prism 2-D test; artificial diffusion (CRANK-NICOLSON time integration).

The results for the SUPG method are shown in Fig. 3.62. Allthough the scheme is non-diffusive,
as in the 1-D point-source test, it nevertheless introduces spurious oscillations. For the purpose of
conservative transport these oscillations may be tolerable. In the case of reactive transport, however,
they are not.

Fig. 3.63 shows the concentration distribution for the FECV approach using 5-point differentiation
and steady-state upwinding. The results are almost free of oscillations. Remaining undershoots are a
result of 9-point differentiation for diffusive fluxes.

For the tested linear methods the FECV approach is the only possible choice for the low-order method
in the FCT algorithm. The reason for this is that the FCT method preserves monotonicity only pro-
vided the low-order method also preserves monotonicity. Fig. 3.64 shows the concentration distribu-
tion after one rotation for the FCT method using FECV as the low-order method and the TAYLOR-
GALERKIN scheme as the high-order method. This scheme introduces only minimal artificial diffu-
sion and no oscillations. The shape of the original prism is still discernable after one rotation.

As a concluding remark on the tested schemes, it may be stated that classical FEM schemes are not
suitable for advection-dominated transport if oscillations cannot be tolerated. If spurious oscillations
are acceptable the SUPG method is an efficient approach, introducing limited oscillations and no
artificial diffusion. The FECV approach, which was the only monotonic scheme, should be seen as a
Finite Volume technique. The FCT approach allows the combination of FECV with a high-order FE
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Figure 3.61: Rotating prism 2-D test; inconsistent PETROV-GALERKIN (CRANK-NICOLSON time integration).
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Figure 3.62: Rotating prism 2-D test; Streamline Upwind PETROV-GALERKIN (CRANK-NICOLSON time integration).
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Figure 3.63: Rotating prism 2-D test; FECV with 5-point differentiation and steady-state upwinding (CRANK-NICOLSON

time integration).
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method, thus leading to non-oscillatory high-order solutions. Unfortunately, however, the combination
of FECV with the SUPG method is inpractical since the mass matrix is significantly changed in the
SUPG method.



Chapter 4

Calculation of Reactive Processes

As explained in Chapter 2, the governing equations describing reactive processes can be:

� Systems of (nonlinear) algebraic equations (AES) if thermodynamic equilibrium is assumed
locally,

� Systems of (nonlinear) ordinary differential equations (ODES) if reactions are controlled by
kinetics, or

� Systems of (nonlinear) differential algebraic equations (DAES) if both types of reactions occur.

The solution of nonlinear DAES is the most general case and will be delat with here. The following
requirements have to be fulfilled by an appropriate solution scheme:

� Nonlinearity requires stable linearization.

� Stiffness requires fully implicit integration in time.

� Accuracy requires a multistep approach to obtain an order of consistency exceeding one.

� For reasons of stability and efficiency, adaptivity in time discretization and choice of order is
preferable.

These stringent requirements can only be fulfilled by schemes specially developed for DAES. If a
loss of accuracy can be tolerated, decoupling of algebraic and differential equations will be efficient
[41, 27]. In CONTRACT only the first strategy is adopted.

4.1 Coupled Solution of DAES by DASSL

In the following a brief introduction is given concerning the algorithms implemented in the DAES-
solver DASSL [50]. A more detailed description of the underlying concepts can be found in [4].
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DASSL solves DAES of the general form (4.1.1):

F

 
t; y;

@y

@t

!
= 0

y(t0) = y0

@y

@t

�����
t0

= y00

(4.1.1)

The solution strategy follows backward differentiation. In a simple first order approach the DAES
given by (4.1.1) may be converted to (4.1.2):

F

 
tn+1; yn+1;

yn+1 � yn
�tn+1

!
= 0 (4.1.2)

This nonlinear system is then usually solved using some variant of NEWTON’s method. (4.1.2) is the
implicit EULER scheme. Instead of linear interpolation in time, DASSL useskth order polynomial
interpolation, wherek ranges from 1 to 5. Dependent on the behaviour of the solution, a new choice
of the orderk and the stepsize�tn+1 is done on every step.

DASSL employs a variable stepsize/variable order fixed leading coefficient implementation of back-
ward differentiation formulae, based on a predictor-corrector algorithm. For a given orderk and step-
size�tn+1 an initial estimate ofyn+1 andy0n+1 is evaluated by polynomial extrapolation of the last
k + 1 solutions. The predictor polynomial fulfills (4.1.3):

!P
n+1(tn�i) = yn�i i = 0; 1; :::; k (4.1.3)

and the initial estimate is evaluated by:

y
(0)
n+1 = !P

n+1(tn+1)

y
;(0)
n+1 = !;P

n+1(tn+1)

(4.1.4)

In general this approximation will not fulfill (4.1.1). The finally accepted solution is the solution to
the corrector formula. This corrector formula is no longer a direct polynomial interpolation of the new
timestep and the lastk solutions, but a polynomial which interpolates the predictor polynomial atk
equally spaced points beforetn+1:

!C
n+1(tn+1) = yn+1
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n+1(tn+1 � i�tn+1) = !P
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�
= 0

(4.1.5)
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Figure 4.1: Principle of the variable stepsize fixed leading coefficient backward differentiation approach. Upper figure:
Construction of the predictor polynomial. Lower figure: Constraints on the corrector polynomial. Squares: Solutions of
previous time steps, triangle (upwards): Initial estimate of new time step, triangle (downwards): Equally spaced points
beforetn+1. Dots coincide with triangles (downwards) except fortn+1.
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The principle of the scheme is illustrated in Fig. 4.1. After some rearrangements it is evident that the
corrector iteration must solve:

F

 
tn+1; yn+1; y

;(0)
n+1 �

�s
�tn+1

(yn+1 � y
(0)
n+1)

!
= 0 (4.1.6)

for yn+1, where�s is defined by:

�s = �
kX

j=1

1

j
(4.1.7)

(4.1.6) may be rewritten as:

F (t; y; �y + �) = 0 (4.1.8)

in which� = ��s=�tn+1 and� = y
;(0)
n+1 � �y

(0)
n+1. Provided the order and time step do not change,

� remains constant and� only has to be evaluated once per time step. (4.1.8) is solved by a modified
NEWTON iteration given by:

y(m+1) = y(m) � cJ�1F (t; y(m); �y(m) + �) (4.1.9)

in which m is the iteration index,y(0) is the initial estimate of (4.1.4), and c is a scalar correction
factor which is applied if the stepsize or order has changed since the last update of the JACOBIAN J
as defined by:

J = �
@F

@y0
+
@F

@y
(4.1.10)

The rate of convergence� is estimated by (4.1.11) whenever two or more corrector iterations have
been applied.

� =

 ky(m+1) � y(m)k
y(1) � y(0)

!1=m

(4.1.11)

The final convergence criterion is given by:

�

1� �
ky(m+1) � y(m)k < 0:33 (4.1.12)
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If � > 0:9 or m > 4, and the iteration has not yet converged, the JACOBIAN must be reevaluated
and/or the stepsize to be reduced. See [4] for the selection strategy of the order of approximation. The
norm used in (4.1.11) and (4.1.12) is a weighted root-mean-square norm:

kyk =
 
1

N

NX
i=1

�
yi
wi

�!1=2

(4.1.13)

in which wi are ith component weightings, which are based on user-defined relative and absolute
tolerances"i;rel and"i;abs:

wi = "i;reljyij+ "i;abs (4.1.14)

The original DASSL library solves the resulting linear equations by direct solution techniques in the
LINPACK package. It requires either a full or banded JACOBIAN matrix. The new solver DASPK
[7], which is based on the iterative GMRES, algorithm can handle a sparse matrix definition of the
JACOBIAN.

Note that the DAES solver requires consistent initial conditions including time derivatives. The latter
is trivial in the case of first-order ODES but it is not in nonlinear DAES. Furthermore, the performance
of the solver increases with increasing time steps (the first time step can only be of first-order and is
automatically set to a very small size,). Hence, solving frequently restarted small problems may take
a longer time than solving a large problem only once. This is of particular relevance in the discussion
of methods for the coupling of chemistry and transport.



Chapter 5

Coupling of Chemistry and Transport

5.1 Operator Split Approach

The basic idea of the operator split approach as introduced in general by YANENKO [71] is to split
the coupled problem into a transport problem and a reactive problem, both of which are solved inde-
pendently and sequentially (5.1.1):

c(tn+1) = c(tn) + �ctrans +�cchem (5.1.1)

This yields the following scheme:

1. Takec(tn) as the initial condition and solve:

~cn+1 =

tn+1Z
tn

transp: without chem: dt

2. Take~cn+1 as the initial condition and solve:

c(tn+1) =

tn+1Z
tn

chem: without transp: dt

3. Goto next time step.

One linear PDE per mobile compound has to be solved in the transport step and one nonlinear DAES
per node or cell in the chemistry step.

It should be mentioned that certain variations of the method exist, e.g. the three-step approach of
STRANG [61] in which a transport step over the first half time step is followed by a chemistry step
over the entire time step and a second transport step over the second half time step.
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The operator split approach has some obvious advantages. It is easy to implement, computational
costs are low, and the transport scheme can be optimized independently of the scheme for reactive
processes.

The main problem of the approach lies in the introduction of an unknown coupling error. Allthough
the modelled processes interact and occur in parallel, they are in fact treated independently in se-
quence. By choosing a sufficiently small time step, instabilities may be avoided. To the knowledge of
the author corresponding error estimators exist only for simplified situations such as linear decay or
single MICHAELIS-MENTEN kinetics [37, 46].

The operator-split approach is implemented in CONTRACT-3.

5.2 Iterative Two-Step Approach

Introducing iteration into the operator split approach can limit the coupling error of the scheme below
a definite level. KINZELBACH ET AL . [39] applied a reactive sink-source term in the transport step,
which is iteratively updated by the chemistry step. As for the operator split approach, the intermediate
concentration~c was taken as the initial condition for the chemistry step.

CIRPKA & H ELMIG [14] modified this method so that the concentration at the previous time step is
applied as the initial condition in both half-steps. This requires the definition of an explicit transport
rate in the chemistry step. The basic principle may be explained by (5.2.2):

ci(tn+1) =

tn+1Z
tn

�i + ri dt (5.2.2)

where�i is the transport rate for compoundi at the node of interest andri is the reactive source-sink
term. In the transport step�i is calculated implicitly andri explicitly, whereas in the chemistry step,
�i is an explicit zero-order term andri is calculated implicitly. This leads to the following scheme:

1. For initialization of the new time step take the old reactive sink-source term as the initial esti-
mate:

r
(0)
i;n+1 = ri;n

2. Takeci(tn) as the initial condition for the transport step:

c
trans;(�)
i;n+1 =

tn+1Z
tn

trans � r
(��1)
i;n+1 dt

3. Calculate an explicit transport rate for iteration step�:

�
(�)
i;n+1 =

c
trans;(�)
i;n+1 � ci(tn)

tn+1 � tn
+ r

(��1)
i;n+1
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4. Takec(tn) as the initial condition for the chemistry step:

c
chem;(�)
i;n+1 =

tn+1Z
tn

chem + �
(�)
i;n+1

5. Calculate an explicit reactive sink-source term for iteration step�:

r(�)i;n+1 =
c
chem;(�)
i;n+1 � ci(tn)

tn+1 � tn
� � (�)i;n+1

6. Check convergence:
kcchem;(�)

i;n+1 � c
trans;(�)
i;n+1 k < "i ?

7. Either return to the transport step with� = � + 1 or advance to the next time step.

This scheme is implemented in CONTRACT-FEM.

As in the operator split approach, one linear PDE per each mobile compound has to be solved in every
transport step, and one nonlinear DAES per each node or cell in every chemistry step.

The main advantage over the operator-split method is the control of the coupling error. This advantage
is at the expense of the multiple evaluation of both half-steps, leading to higher computational effort.
The two methods can still be optimized almost independently of each other. As the implementation is
fairly simple, almost every EULERIAN transport model can be extended to reactive multi-component
transport.

A problem of the approach is that convergence of the scheme is not guaranteed for an arbitrary choice
of time step. Besides the CFL condition, which is stated for many conservative transport schemes,
a limitation of the stepsize arises from the convergence behaviour of coupling. In order to achieve
efficiency this should be done in an adaptive way. A possible criterion for reducing the stepsize could
be a specified maximum number of iterations or the rate of convergence. At present CONTRACT-
FEM includes no adaptivity in time discretization.

Note that the iterative two-step method includes two linearizations, one for coupling and one imple-
mented in the chemistry scheme. If a nonlinear scheme is applied in the transport step even a third
linearization is necessary. Under certain circumstances this can be less efficient than a direct coupling
scheme with consistent linearization of the entire set of equations.

5.3 Direct Coupling

In the direct coupling approach the PDE for transport and the DAES for chemistry are solved simulta-
neously. MACQUARRIE ET AL.[44] acieved this by adding a nonlinear first-order term for chemistry
to the transport equation, which was then solved by the FEM technique. Linearization was performed
by PICARD iteration. In a three-dimensional application [22] they simplified the approach by explicit
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treatment of the reaction terms. CELIA ET AL . [10] added a first-order and a zero-order term for
chemistry to the transport equation, which was then solved by the localized adjoint FEM method. The
reactive terms were calculated from a projection of nodal concentrations based on the previous two
time steps.

Rather than adding chemistry-related terms to a transport scheme in CONTRACT-2, a classical
method of lines (MOL) approach for the coupled system is used. This was applied e.g. by REICHERT

[51] in a code for reactive transport problems in general aquatic environments.

The transport equation is discretized in space by an EULERIAN scheme, so that thencomp PDE’s for
transport are transformed into a system ofncomp �nnod ODE’s. These are then combined with thennod
DAES’s for chemistry, leading to a large DAES of orderncomp � nnod. The DAES is integrated by the
solver DASPK [7].

This scheme allows consistent linearization of the entire problem. Properties of the DAES solver, such
as adaptive time stepping and adaptive choice of order, are applied to the coupled set of equations.
Consistent initialization must be performed only once for the entire simulation.

The computational effort of the approach is quite high, however, since large, nonlinear and stiff sys-
tems must be handled. In the decoupled approaches transport and chemistry schemes can be optimized
independent of each other. As the large system of equations arising from transport is linear in these
approaches, linearization concerns many small systems related to chemistry at every node. In contrast
to this one large system must be linearized in the direct coupled approach, which requires longer CPU
times. As less iterations are necessary, however, the overall CPU time may even be shorter than in the
decoupled approach.

The resulting linear equations are highly nonsymmetric and must be solved by costly computational
solvers. In CONTRACT-2 a BiConjugate Gradient solver is used. If the solver fails, a GMRES solver
is used. Both solvers are available in the SLAP library [56]



Chapter 6

Reactive Model Systems Recently
Implemented

6.1 Aerobic Degradation

Aerobic degradation is probably the most important microbial transformation process applied for
bioremediation. Besides petroleum hydrocarbons such as BTEX1 compounds, which are known to be
highly degradable under aerobic conditions [29, 31], there have also been reports of success for many
other contaminants including creosote-related compounds [32, 30].

Although for most practical applications mixtures of several contaminants must be remediated, the
reactive model for aerobic degradation implemented in CONTRACT assumes a single contaminant.
The model equations were taken from [2]. These are equivalent to the Equations stated in Section 2.4
with oxygen as the electron acceptor and an undefined substrate as the electron donor.

Sorption is assumed to be at equilibrium. ThefOCKOC concept (2.3.19) is used to determine the
linear partitioning coefficientKd.

Aerobic degradation is the only transformation process considered. Biomass growth follows a dou-
ble MICHAELIS-MENTEN law. Biomass grows exclusively due to the process, whilst its decay is
described by a first-order expression. No transport of microbes is considered.

kgr = �max
cO

cO +KO

cS
cS +KS

@X

@t
= (kgr � kdec)X

(6.1.1)

In the above expressions,kgr andkdec are the growth and decay coefficients for the biomassX,�max is
the maximum growth rate, andKO andKS are the MONOD coefficients for oxygen and the substrate,
respectively.

1Benzene, Toluene, Ethyl Benzene, Xylene
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Reaction rates are proportional to biomass growth. For oxygen and the substrate a definition of the
reactive source-sink term in the transport equation (2.2.5) is given by:

kgr = �max
cO

cO +KO

cS
cS +KS

rO = �kgrX
YO

rS = �kgrX
YS

(6.1.2)

in whichYO andYS are yield coefficients.

Note that the model is based on simplifying assumptions. More sophisticated models may include
NAPL dissolution [45], mass transfer kinetics [19], multiple electron acceptor utilization [39], addi-
tional limitations due to nutrient availability, transport of microbes [62, 59] or fouling of the aquifer
due to microbial activity [63].

6.1.1 ”Macrodispersion” and Bioremediation

Despite the experience gained from numereous site and laboratory studies, prediction ofin-situbiore-
mediation is limited by the high uncertainty in the quantitative description of contaminant transport
and transformation processes in the subsurface. The highest uncertainty may lie in microbial activity
itself owing to uncertainties in the conceptual model, the need to adopt simplifying assumptions, and
the fact that parameters are difficult to obtain. However, forin-situapplications the spatial variability
of hydraulic parameters may have an even greater influence on the ability to predict bioremediation.

Various investigation techniques are available to characterize the hydraulic properties of an aqui-
fer. Regarding the design of a bioremediation application in which the transport of compounds must
be predicted, the inter-well tracer test is recommended as an appropriate site characterization tech-
nique. In this tracer test a conservative tracer is introduced into an injection well and monitored in
an extraction well. The objective of this study was to interprete such tracer tests in the context of
bioremediation.

Since the distribution of hydraulic properties is difficult to obtain in the field, the study was restricted
to numerical modelling. Therefore, a 2-D simulation for tracer transport and biodegradation in a
heterogeneous domain was carried out and taken as a reference for interpreting the data.

All of the results shown in the following Sections were obtained from CONTRACT-3. Comparative
calculations using CONTRACT-FEM and CONTRACT-2, however, showed no significant differences
in qualitative behaviour.

6.1.1.1 Two-Dimensional Model Problem

The two-dimensional domain was a confined aquifer, 100m in length and 20m in width. The domain
was divided into 100 by 40 cells over the length and width, respectively.
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A stochastical distribution of hydraulic conductivities was generated with the software package GSLIB
[18]. The geometric mean of hydraulic conductivity is10�3 m/s, with a standard deviation of logarith-
mic hydraulic conductivity�lnkf of 1.0. This is a typical value for sandy aquifers [23]. A GAUSSIAN

semivariogram with a longitudinal correlation length�l of 5m and an anisotropy factor of 2 was
chosen. The generated distribution is shown in Fig. 6.1a.

0 20 40 60 80 100
0

5

10

15

20

(a) Distribution of Hydraulic Conductivity [m/s]

1.00x10-2

3.16x10-3

1.00x10-3

3.16x10-4

1.00x10-4

0 20 40 60 80 100
0

5

10

15

20
No Flow

No Flow

F
ix

ed
 H

ea
d

F
ix

ed
 H

ea
d

(b) Piezometric Heads and Pathlines

0 20 40 60 80 100
0

5

10

15

20

C
on

tin
uo

us
 In

je
ct

io
n

O
ut

flo
w

 B
ou

nd
ar

y

(c) Tracer Distribution 20 Days after Begin of Injection
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Figure 6.1: (a): Two-dimensional distribution of hydraulic conductivity for the model calculation. (b): Resulting piezo-
metric heads and pathlines; head difference between two contours: 0.05 m. (c): Snapshot of tracer distribution 20 days
after start of injection.

Rather than modelling flow between two wells, a quasi-parallel flow field was investigated. This
permits analytical solutions to be matched to the breakthrough curve obtained.

The hydraulic head is fixed at the left- and right-hand boundaries with a head difference of 1m. The
upper and lower boundaries are impermeable. The longitudinal and transverse dispersivities are 0.01m
and 0.001m, respectively. DARCY velocities vary from7:5 � 10�7 m/s to9:2 � 10�5 m/s. Piezometric
heads and pathlines are illustrated in Fig. 6.1b. Hydraulic aquifer properties are summarized in Table
6.1.

6.1.1.1.1 Modelling of a Conservative Tracer A continuous tracer injection over the entire in-
flow boundary was simulated. The inflow concentration is homogeneous over the boundary. Fig. 6.1c
shows the tracer distribution in the model aquifer 20 days after the start of injection. It is apparent that
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Table 6.1: Hydraulic aquifer properties for the two-dimensional model problem.

Geostatistical parameters of the hydraulic conductivity field
kf = 10�3 m/s �lnkf = 1.0 �l = 5.0m �t = 2.5m
Boundary conditions for the flow field
hinflow - houtflow = 1.0m
Homogeneous transport properties
ne = 0.3 �l = 0.01m �t = 0.001m Dm = 10�9 m2/s

the tracer is transported faster in the high permeability zones than in the low permeability zones, thus
resulting in an irregular front.

In a field study the tracer distribution in the subsurface is unknown unless numereous sampling points
are monitored. As a rule, only the outflow concentration in the extraction well is monitored. Integrated
outflow concentrations from the numerical simulation were therefore used for the interpretation. The
resulting breakthrough curve is illustrated in Fig. 6.2.
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Figure 6.2: Breakthrough curve for a conservative tracer. Averaged outflow concentration based on the two-dimensional
model calculation.

Breakthrough of the tracer takes place over a long period of time. Breakthrough starts at day 21 and is
complete at day 50. From Fig. 6.1c it can be seen that spreading is mainly caused by spatial variations
in velocity. A length profile along a single streamline would yield a tracer front extending only a few
meters. The fact that the position of the front varies from streamline to streamline over a range of at
least 40m reflects the distribution of hydraulic conductivity. As the transverse dispersivity is low there
is little interaction between fast and slow streamtubes.

Since the breakthrough curve in Fig. 6.2 was evaluated by integration over all streamtubes, spreading
occurs. This well-known scaling effect is refered to as macrodispersion [21].
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6.1.1.1.2 Modelling of Bioremediation Initial conditions for the simulation of bioremediation
were specified as: homogeneous distribution of the contaminant, no oxygen present and low biomass
concentrations. At time zero, water containing oxygen enters the domain. Even though oxygen is
not retarded, the retardation coefficient of the substrate is 5. The parameters adopted in the model
are summarized in Table 6.2. The difference in sorption behaviour is the main reason for mixing of

Table 6.2: Microbiological parameters, including boundary and initial conditions for the two-dimensional bioremediation
model.

Microbiological parameters
YO = 0.032 YS = 0.09 KO = 0.2 mg/l KS = 2.0 mg/l
�max = 5/d kdec = 0.5/d
Sorption properties
fOC = 0.002 � = 2600 kg/m3 KS

OC = 330 l/kg KOOC = 0 l/kg
Boundary conditions
Inflow concentrations cO = 5 mg/l cS = 0 mg/l
Outflow condition Pure advection
Initial conditions
cO = 0 mg/l cS = 2 mg/l X = 10�3 mg/l

oxygen and the substrate. In regions where high oxygen and substrate concentrations overlap, the
growth of microbial biomass occurs consuming both oxygen and the contaminant. This leads to self-
sharpening of the concentration fronts.

Fig. 6.3 illustrates the distribution of concentrations 50 days after the start of injection. The effect
of self-sharpening can clearly be seen: although oxygen is more mobile than the substrate, the con-
centration patterns show almost perfect separation. In the small mixing zone between the substrate
and oxygen-containing areas microbial activity is the highest. Here the entire mass flux of oxygen is
consumed.

The corresponding breakthrough curves at the outlet are illustrated in Fig. 6.4. They show no sharp
fronts. Significant breakthrough of oxygen starts on day 75 and is completed by day 140. Decrease of
the substrate is observed in the same time period. As in the tracer experiment, this spreading can be
explained by integration over fast and slow streamtubes. Spreading of the breakthrough curves does
not correspond to any mixing process on the local scale.

6.1.1.2 Tracer Test Interpretation Using the Macrodispersion Model

Fitting of macro-dispersivity to the breakthrough curve was chosen as a first approach for the hy-
draulic characterization of the domain. This would be the first choice for most practical applications
if the breakthrough curve for the tracer, the head difference between inlet and outlet and the total
discharge were the only data available.

For the macrodisperion model the hydraulic conductivity was assumed to be homogeneous over
the entire domain. DARCY’s law was applied to determine an effective hydraulic conductivitykef
of 1.09�10�3m/s from the total discharge, the length of the domain and the difference in hydraulic
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Figure 6.3: Two-dimensional modelling of bioremediation. Snapshot of concentration distributions 50 days after the start
of injection.
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Figure 6.4: Two-dimensional modelling of bioremediation. Breakthrough curves for oxygen and substrate with averaged
outflow concentrations.
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head between the inlet and outlet. As in the two-dimensional simulation, a uniform porosity of 0.3
was assumed in the macrodispersion model.

In the macrodispersion model spreading of the breakthrough curve is attributed to FICKIAN -type
dispersion. For the given boundary conditions the model reduces to a one-dimensional advection-
dispersion HEAVISIDE problem. The analytical solution for this problem by OGATHA & BANKS [48]
is given in (3.6.148). A dispersivity� of 2.94m was determined by a LEVENBERG- MARQUARDT

algorithm implemented in the data analysis package SigmaPlot [36].

0.0

0.2

0.4

0.6

0.8

1.0

c/
c

 [-
]

in

15 20 25 30 35 40 45 50

t [d]

Macrodispersion Model

2D Calculation

Figure 6.5: Breakthrough curve for a conservative tracer. Outflow concentration for the one-dimensional macrodosper-
sion model compared with averaged outflow concentrations for the two-dimensional model calculation. Dispersivity� =
2.94m.

Fig. 6.5 illustrates the good agreement obtained between the breakthrough curves based on the two-di-
mensional calculation and the macrodispersion model. The breakthrough curve based on two-dimen-
sional modelling shows some tailing whereas the macrodisperion breakthrough curve is almost sym-
metrical. This difference was assumed to be of minor significance, however.

Using the macro-dispersivity parameter obtained from the tracer breakthrough curve, a simulation of
bioremediation was performed. Reactive parameters as well as the boundary and initial conditions
were identical to those adopted in the two-dimensional calculation.

Fig. 6.6 shows the resulting breakthrough curves for oxygen and the substrate. Unlike the two-dimen-
sional calculations shown in Fig. 6.4, the breakthrough curve for oxygen obtained from the macrodis-
persion model is very sharp. Significant breakthrough starts on day 96 and is completed by day 112.
Substrate concentrations also drop off more sharply.

6.1.1.3 Tracer Test Interpretation Using the Two-Domain Model

The two-domain approach is described in Section 2.2.3. An analytical solution for a step-input tracer
test is given by [66]. In the present study, however, the fitting parameterskm$i andnimm=ne were
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Figure 6.6: Breakthrough curves for oxygen and substrate. Outflow concentrations for the one-dimensional macrodisper-
sion model.

obtained by trial and error. Good agreement with the breakthrough curve obtained from the two-di-
mensional model was observed forkm$i = 5.8�10�7/s andnimm=ne = 0.36. As in the macrodispersion
model, the effective hydraulic conductivitykef was 1.09�10�3 m/s and the total porosityne was 0.3.
The dispersivity� was 0.01m. A comparison of the two breakthrough curves is illustrated in Fig. 6.7.
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Figure 6.7: Breakthrough curve for a conservative tracer. Outflow concentrations for the two-domain model compared with
averaged outflow concentrations for the two-dimensional model calculation. Fraction of immobile porositynimm=ne =
0.36, mass transfer coefficientkm$i = 5.8�10�7/s.

Note that the results of the two-domain model agree more closely with the tracer breakthrough curve
than those of the macrodispersion model, particularly with regard to tailing of the breakthrough curve.
This advantage of the two-domain approach is also referred to in the literature [38].

The parameters obtained by fitting the results of the two-domain model to those of the conservative
tracer test were used for simulating bioremediation. It was hereby assumed that retardation coeffi-
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cients and microbiological parameters are identical in both domains.
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Figure 6.8: Breakthrough curves for oxygen and substrate. Outflow concentrations obtained from the two-domain model.

Fig. 6.8 shows the resulting breakthrough curves for oxygen and the substrate. Although the break-
through curve obtained from the two-domain model is slightly more spread out than that btained from
the macrodispersion model, the extend of spreading is far less than in the case of the two-dimensional
model.

6.1.1.4 Tracer Test Interpretation Using the Parallel Streamtube Model

The basic assumption in the parallel streamtube model is to neglect transverse dispersivity. Solutes
are thus assumed to be transported along non-interacting parallel streamtubes. Considering homoge-
neous effective hydraulic conductivity for each streamtube, the breakthrough curve at the outlet of the
entire domain is related to the probability density function of effective hydraulic conductivityp(kef)
according to:

c(x; t) =

1Z
0

c(x; t; kef) p(k
e
f) dk

e
f (6.1.3)

in which c(x; t; kef) is the analytical solution for the breakthrough curve obtained for a streamtube
with homogeneous effective hydraulic conductivitykef . Inserting (3.6.148) into (6.1.3) yields:

c(x; t) =
cin
2

1Z
0

erfc

0
BBBBBB@

x� kef t�h

nex

2

vuut �lkef�h
nex

+Dm

!
t

1
CCCCCCA
p(kef) dk

e
f (6.1.4)
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In order to obtain the probability density function of effective hydraulic conductivity (6.1.4) must be
inverted. The procedure may be simplified by neglecting hydrodynamic dispersion. This simplifica-
tion is valid provided dispersivities are very low compared to the spreading effect of spatial variability.
Note that this assumption is frequently made for the stochastical description of transport in heteroge-
neous porous media [17].

In this approach the breakthrough curve for the tracer reflects the distribution of arrival timestarr
due to advective transport in independent streamtubes [58]. Arrival times are inversely proportional
to length-averaged seepage velocities and effective hydraulic conductivities.

c(x; t) = cin

tZ
0

p(tarr)dt with tarr =
x

ve
=

nex
2

�hkef
(6.1.5)

A tracer test based on a DIRAQ pulse would yield the non-integrated probability density function of
arrival times, whereas the step-input tracer test yields the integrated probability function.

The parallel streamtube concept was used for predicting bioremediation using the following proce-
dure:

1. Given the conservative tracer breakthrough curve, normalize the breakthrough curve on the
basis of the inflow concentration.

~c = c=cin

2. Convert travel times into length-averaged seepage velocities and effective hydraulic conductiv-
ities.

ve =
x

tarr
kef =

nex
2

�htarr

3. Divide the resulting probability function~c(kef) into classes.

4. Calculate bioremediation for every class of effective hydraulic conductivity assuming the mid-
point value of each class to represent homogeneous hydraulic conductivity and neglecting dis-
persion.

5. Weight the obtained breakthrough curves with the probability of the class.

6. Summate all weighted breakthrough curves to obtain the final prediction of reactive break-
through.

Fig. 6.9 illustrates the breakthrough curves for oxygen and the substrate for a single streamtube with
hydraulic conductivity of 10�3 m/s, which is equivalent to a seepage velocity of 3.3�10�5 m/s. The
curve shows a first oxygen peak around day 33, reflecting initial breakthrough after one pore volume.
The low initial biomass in the system limits oxygen consumption until biomass has grown, thus
allowing a slowly decreasing oxygen peak to move through the domain [13]. The final breakthrough of
oxygen around day 110 corresponds to a sharp decrease in substrate concentrations, thereby indicating
remediation of the aquifer.
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Figure 6.9: Breakthrough curves for oxygen and substrate. Outflow concentrations for a single one-dimensional stream-
tube with a hydraulic conductivity of10�3 m/s.
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Figure 6.10: Probability of effective hydraulic conductivity classes resulting from interpretation of the tracer breakthrough
curve.



6.1. AEROBIC DEGRADATION 123

Fig. 6.10 illustrates the probability of effective hydraulic conductivity classes in independent parallel
streamtubes obtained by the procedure explained above. Note that this distribution is not the real
distribution of kf for the two-dimensional calculation. The distribution of Fig. 6.10 was obtained
without any knowledge of the real parameter field. The real distribution ofkf is likely to be more
widespread, sincekef is an effective parameter averaged over the length of the streamtube.

Bioremediation was simulated for all the 20 classes shown in Fig. 6.10. The resulting breakthrough
curves were weighted with the probability of the classes and summated thus leading to the break-
through curves illustrated in Fig. 6.11.
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Figure 6.11: Breakthrough curves for oxygen and substrate. Outflow concentrations integrated over all weighted one-
dimensional streamtubes with the hydraulic conductivity distribution as shown in Fig. 6.10.

A comparison of the reactive breakthrough curves given by the parallel streamtube model to those
obtained from the two-dimensional model shows rather fair agreement. In contrast to the macrodis-
persion and the two-domain model, spreading of the breakthrough curves is in the correct range.
Total remediation of the aquifer was achieved after 140 days and 150 days in the case of the two-
dimensional model and the parallel streamtube model, respectively. This difference may be due to the
neglection of transverse mixing in the parallel streamtube model.

6.1.1.5 Discussion

It it apparent that both the macrodispersion model and the two-domain model give inadequate predic-
tions of bioremediation if their hydraulic parameters are obtained by fitting breakthrough curves for
a conservative tracer.

In the two-dimensional calculation the compounds are not mixed due to spatial variability. Spatial
variability leads to irregular-shaped but sharp fronts. Integrating over the cross-section at the outlet of
the domain leads to spreading in the breakthrough curve. This spreading does not reflect local-scale
mixing processes.

Although the distinction between local-scale mixing and large-scale spreading is not necessary for
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describing conservative tracer transport, it is necessary for the transport of interacting compounds
[65]. As microbial activity takes place on the local scale, oxygen and the substrate must thus be mixed
on the local scale to stimulate the latter. Compounds in parallel streamtubes cannot react unless they
are mixed by transverse exchange.

In the macrodispersion model the effect of local-scale spatial variability on large-scale behaviour is
modelled as diffusion. As a consequence, oxygen and the substrate are mixed and react with each
other. This reaction leads to self-sharpening of the fronts.

In the two-domain model the same process is modelled as kinetic sorption. Although kinetic mass
transfer is viewed as a possible limitation for bioremediation under certain circumstances [5], it re-
sults in a mixing process in the context of the stated model problem and may therefore enhance
biodegradation.

Both the macrodispersion model and the two-domain model do not distinguish between local-scale
mixing and spreading due to integration over the cross-section of the domain. One may assume that
this is an effect of dimensionality, since a two-dimensional problem is solved by a one-dimensional
model. However, the boundary conditions imply one-dimensional treatment. In [43] it was shown
that a two-dimensional macrodispersion model for biodegradation in an aquifer differs from a model
based on a heterogeneous hydraulic conductivity distribution. Therefore the most signifant simplifi-
cation of the macrodispersion and two-domain models is that a heterogeneous problem is treated as a
homogeneous one.

In the context of perturbation theory this may be interpreted as an anticorrelation effect. Simplifying
the reaction rate to a term proportional to the productcO � cS and dividing these concentrations into
width-averaged valuescO, cS and deviations from these averagesc0O, c0S yields:

r � cO � cS = (cO + c0O) � (cS + c0S) = cO � cS + c0O � cS + cO � c0S + c0O � c0S =
cO � cS + c0O � c0S

(6.1.6)

where the correlation termc0O � c0S is negative for the given model problem. Therefore reaction rates
are overestimated by models based on width-averaged tracer data.

The parallel streamtube model overcomes this problem. Concentrations are not averaged over the
cross-section of the domain until they reach the outlet. Since local dispersivities are quite low, and
mixing is dominated by differences in the sorption properties of the two compounds, the assumption
of pure advective transport is qualitatively valid.

However, local-scale mixing is not completely independent of spatial variability. Scaling laws for
mixing as given in [65] require geostatistical parameters of the hydraulic conductivity field. It is not
possible to derive local-scale mixing coefficients from macro-dispersivity, since macro-dispersivity
increases with increasing correlation length whereas mixing decreases with increasing correlation
lengths.

For the parallel streamtube model hydraulic conductivity was assumed to be homogeneous in each
streamtube. Considering the real distribution of hydraulic conductivity in the two-dimensional model,
this assumption is not valid. However, the variation of hydraulic conductivity along a streamtube can-
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not be derived from the tracer test data. For the stated model problem this simplification introduced no
significant error. This may be different if non-linear or kinetic mass transfer processes are considered.

The geometry and boundary conditions of the model problem are unrealistic for practical applications.
For an inter-well tracer test a three-dimensional divergent/convergent flow field has to be considered.
However, if the length of the streamtubes do not differ too much, the parallel streamtube model may
be directly used for more complex geometries, assuming an averaged length for all streamtubes.
The concept may be modified by assuming idealized homogeneous horizontal layers with different
homogeneous hydraulic conductivities. In this context (6.1.3) has to be inverted using the analytical
or numerical solution of arrival times for an injection-extraction well couple rather than for a one-
dimensional streamtube.

6.1.1.6 Concluding Remarks

Macrodispersion or large-scale spreading, and local-scale mixing are two different processes which
should not be confused. If integrated data obtained for example from pumping tests and inter-well
tracer tests are the only available data for the hydraulic characterization of an aquifer, the parallel
streamtube concept may give the best interpretation for predicting the transport of interacting com-
pounds.

A problem which has not been addressed in this study arises from the unknown distribution of the
contaminant. For the model calculations a homogeneous substrate distribution was assumed. For most
practical applications the contaminant will not be equally distributed over high and low permeability
areas, and hence a correlation between contamination and hydraulic conductivity would have to be
considered for the evaluation of scaling laws.

Whereever possible, the true spatial distribution of hydraulic parameters should be investigated. Dis-
tributed data are preferable to integrated data in the context of reactive transport. Latest developments
in geophysical site characterization techniques such as electrical tomography applied to salt tracer
tests raise hopes that high resolution hydraulic characterization may be achieved without taking nu-
mereous samples. However, a prediction of bioremediation is dependent on the hydraulic and microbi-
ological characterization of the process itself. Uncertainties in the description of microbial transport,
degradation kinetics and mixed-culture microbial ecology limits the prediction of bioremediation. At
the current state-of-the-art numerical simulation may be considered as a tool for the interpretation of
measured data and the identification of relevant processes in coupled problems rather than as a tool
for reliable predictions.

6.2 Reductive Dechlorination of Tetrachloroethene

Chlorinated ethenes are among the most important contaminants in the subsurface due to their wide-
spread use as solvents. Until the mid-80’s chlorinated hydrocarbons were believed to be non-bio-
degradable. This is certainly in the case of aerobic degradation of highly chlorinated hydrocarbons
such as tetrachloroethene (PCE). Yet these contaminants were found to be degradable under reductive
conditions [68].
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Fig. 6.12 shows the pathway for complete reductive dechlorination of PCE. The chlorinated ethenes
act as electron acceptors while the electron donor can be as shown in Fig. 6.12 molecular hydrogen
or other compounds such as glucose, formate, methanol, lactate, propionate or ethanol. This variety
might be explained by the initial transformation of these compounds to molecular hydrogen, which
acts then as the direct reducing compound for the chlorinated ethenes [60].
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Figure 6.12: Degradation pathway for reductive dechlorination of tetrachloroethene (PCE).

Note that the first two reduction steps are preferred not only due to the higher free enthalpy of reaction
but also due to kinetic effects. Although several successful isolations of microorganisms catalyzing
the first two reactions are reported in the literature [34, 54], no pure culture has yet been isolated
which is capable of catalyzing the entire reduction chain.

Up to now we do not konw, how many microbes actually participe in the complete reductive dechlori-
nation of PCE. There is strong evidence that at least two organisms are necessary. The model system
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is therefore simplified for one specific type of biomassX i per reduction step. These biomasses are
model measures which need not necessarily reflect specific organisms.

The work of SCHOLZ-MURAMATSU ET AL.[54] in particular indicates that dechlorinating organisms
can grow specifically on the dechlorination process. As a consequence, the model assumes that the
specific biomasses grow exclusively on reductive dechlorination. For this reason double MONOD

terms are adopted to express the dependence of biomass growth on concentrations (6.2.7).

kigr = �imax

[CHCi]

[CHCi] +KCHCi
m

� [Edon]

[Edon] +KEdon
m

[X i] (6.2.7)

in which kigr is the growth rate of biomassX i, �imax is its maximum relative growth rate,CHC1

is tetrachloroethene (PCE),CHC2 is trichloroethene (TCE),CHC3 is cis-dichloroethene (DCE),
CHC4 is chloroethene (VC) andCHC5 is ethene (ETH),Edon is a non-specified electron donor,X1

is the biomass catalyzing the reduction from PCE to TCE,X2 catalyzes the reduction from TCE to
DCE,X3 catalyzes the reduction from DCE to VC, andX4 catalyzes the reduction from VC to ETH.

The reactive source-sink termsri in the transport equation (2.2.5) are defined for the mobile com-
pounds by adding the microbial consumption and production terms to a kinetic mass transfer term:

rEdon
= �
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Yi
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d
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KCHCi
d

!
(6.2.9)

in which Yi are yield coefficients for the reduction stepi. Note that in the model one molecule of
Edon is oxidized by one molecule ofCHCi. For different stoicheometry, additional factors have to be
included.

The first term in (6.2.8) reflects additional competitive consumption of the electron donor expressed
by simple first-order kinetics.kcomp is the coefficient of first-order decay due to this process.

For reasons of simplification the sorbed concentrations are related to the liquid volume. Kinetic mass
transfer is the only process considered for sorbed compounds:

@[CHCsorb
i ]

@t
= ksorb
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d

!
(6.2.10)
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The development of biomasses is expressed by the growth term of (6.2.7) and a linear decay term:

@[X i]

@t
= kigr � kidec[X

i] (6.2.12)

6.2.1 Comparison of Batch Experiments and 1-D Reactive Transport

Classical microbiological laboratory studies on biodegradation are carried out in mixed systems.
These can be batch experiments in which all substrates are introduced into the reactor at the start
of the experiment, or continuous stirred reactor experiments in which substrates are added contin-
uously or in pulses. The objective of these studies is to determine degradation pathways as well as
degradation kinetics and their relationship to chemical and microbial parameters such as type and
concentration of substrates and biomass.

In the context of bioremediation these studies are carried out using soil material from a contaminated
site. These give an indication as to whether indigenous microbes capable of degrading the contami-
nants are present and what kind of chemical environment they require for optimal stimulation. How-
ever, as shown in the present study, successful stimulation in a batch experiment is no guarantee for a
successfulin-situapplication.

Note that the experiments in the present study are numerical simulations. Although the numerical
simulations of batch experiments yield results in good agreement with laboratory experiments [55],
the underlying conceptual and/or mathematical model may be erroneous. Therefore this study should
be viewed as an illustration of system behaviour rather than as a quantitative prediction ofin-situ
dechlorination.

In this study a batch system is compared to a one-dimensional reactive transport system. The results
of a two-dimensional simulation can be found in [12].

6.2.1.1 Modelling of Batch Experiments

In order to make comparisons as easily as possible most parameters were identical in the batch model
and the 1-D model. This includes porosity, even though in bioreactor studies the soil would be dilluted
to a slurry. The model equations are described above. Parameters are summarized in Table 6.3. The
kinetic parameters for the first two reduction steps lie within the range of values obtained in [54] for
laboratory studies using a pure culture. The kinetic parameters for dechlorination steps 3 and 4 are
extrapolations based on the experience that dechlorination rates decrease with decreasing number of
chloro groups in the molecule [68].

For the batch experiments an initial electron donor concentration of 10 mmol/L was chosen. PCE was
the only ethene derivative present at a concentration of 200�mol/L in equilibrium with the sorbed
phase. Initial biomass concentrations were low (0.01 mg/L). The mass transfer coefficient was set to
a moderate value of 1/day.
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Table 6.3: Parameters for the model calculations of the test case.
Compound related parameters

Edon PCE TCE cis-DCE VC ETH
Ki
m [�mol/L] 100 100 100 100 100 100

Ki
OC [L/kg] 2.2 364 126 59 8.2 6.0

kcomp [1/s] 10�6

Biomass related parameters
Step 1 Step 2 Step 3 Step 4

�max;i [1/s] 7:7 � 10�5 5:0 � 10�5 2:5 � 10�5 1:0 � 10�5
Yi [mg/�mol] 0.001 0.001 0.001 0.001
kdec [1/s] 1:0 � 10�6 1:0 � 10�6 1:0 � 10�6 1:0 � 10�6
Xinitial [mg/L] 0.01 0.01 0.01 0.01
Soil properties
� = 2.6 kg/L fOC = 0.2% ne = 0.3 ksorb = 1/d =1:157 � 10�5/s

Fig. 6.13 shows the time profiles of all dissolved compounds. It is apparent that dissolved PCE is
consumed very fast being visually undetectable after 2 days. TCE is the first metabolite and is also
consumed quite fast. On day 4 almost no dissolved TCE is detectable. The second metabolite in
the reduction chain iscis-DCE which persists in the dissolved phase for about one week. The third
dechlorination product VC persists much longer. Around day 12 it is visually undetectable. However,
the overall dechlorination is not yet complete as the dissolved ethene concentrations continues to
increase until the end of the simulation on day 20.

The electron donor is partly consumed by the dechlorination process and partly by the competitive
first-order process. However, the initial concentration was chosen high enough to guarantee complete
reductive dechlorination. This was not the case for a simulation in which the initial electron donor
concentration was set to 1 mmol/L.

Fig. 6.14 shows the time profiles of all sorbed compounds. In contrast to the dissolved phase, PCE
remains in the sorbed phase over the entire duration of the simulation. This is an effect of kinetic
desorption. The effects of desorption kinetics have less influence on the time profiles for the other
sorbed chlorinated ethenes. Note that the definition of the mass transfer term in (6.2.10) leads to a
half-life for desorption proportional to the partitioning coefficientKd. As Kd values decrease with
decreasing chlorination of ethene, desorption of PCE is limited to a greater extend by kinetics than
TCE, DCE and VC. The TCEsorb time profile still shows extensive tailing, whereas tailing of the
DCEsorb profile is much weaker. In the case of VCsorb, hardly any tailing occurs.

Fig. 6.15 shows time profiles for the biomasses. Differences in growth are apparent which reflect the
availability of the corresponding electron acceptor (= the chlorinated ethene degraded by the type
of biomass) and mainly the maximum growth rate. In particular, the relationship between biomass
growth and electron acceptor concentration can clearly be seen for the biomass catalyzing the last
reduction step. From day 11 onwards dissolved VC concentrations are very low. This is the time
when the decay of biomass 4 exeeds growth.

Summarizing Figs. 6.13-6.15 lead to the following conclusions:
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Figure 6.13: Reductive dechlorination of PCE. Model calculation of a batch test. Time profiles of dissolved compounds.
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Figure 6.15: Reductive dechlorination of PCE. Model calculation of a batch test. Time profiles of biomasses.

1. Complete reductive dechlorination can be achieved in 20 days.

2. If the initial electron donor concentration is high enough, limitations due to competitive con-
sumption of the electron donor can be avoided.

3. Differences in maximum biomass growth and related dechlorination rates for the different
dechlorination steps lead to longer persistence of the lower chlorinated ethenes than the higher
chlorinated ethenes.

4. From day 11 onwards the complete reduction chain is controlled by desorption kinetics of PCE.
During this period the dissolved concentrations are so small that biomass decay exceeds growth
for all types of biomass. Nevertheless, the remaining biomass concentrations are high enough
to guarantee rapid transformation of dissolved PCE into ethene.

6.2.1.2 Modelling of Reductive Dechlorination Coupled to One-Dimensional Transport

The parameters in the batch experiment (Table 6.3) were adopted for the simulation of reactive trans-
port in a one-dimensional streamtube of 100m length. The DARCY velocity ~v was10�5 m/s with a
dispersivity of 0.01m, corresponding to an effective diffusion coefficient of3:3 � 10�7m2/s. Homo-
geneous contamination of the domain by 200�mol/L PCE was chosen as the initial condition in the
absence of any other ethene derivative or electron donor. The input concentration of the electron donor
was 10 mmol/L.

Fig. 6.16-6.19 show length profiles of the dissolved compounds obtained from CONTRACT-2. The
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model was used to compare different coupling schemes. As reported in [15], no significant differ-
ences could be observed between the results obtained from CONTRACT-FEM, CONTRACT-2 or
CONTRACT-3.
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Figure 6.16: Reductive dechlorination of PCE in a 1-D model system. Concentration length profiles of dissolved com-
pounds 10 days after the electron donor injection.
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Figure 6.17: Reductive dechlorination of PCE in a 1-D model system. Concentration length profiles of dissolved com-
pounds 20 days after the electron donor injection.
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Figure 6.18: Reductive dechlorination of PCE in a 1-D model system. Concentration length profiles of dissolved com-
pounds 30 days after the electron donor injection.
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Figure 6.19: Reductive dechlorination of PCE in a 1-D model system. Concentration length profiles of dissolved com-
pounds 40 days after the electron donor injection.
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The length profiles of Fig. 6.16-6.19 indicate that the entire mass flux of the electron donor is con-
sumed in a small mixing zone where the electron donor and all chlorinated ethenes are present. Due to
the first order decay an exponential length profile develops between the system inlet and the reactive
mixing zone.

10 days after start of injection (see Fig. 6.16) the peaks of all ethenes overlap. All chlorinated ethenes
are thus mixed with the electron donor, thereby stimulating growth of the reducing biomasses. Al-
though ethene is the compound with the highest solubility in water its concentrations are the lowest.
This is an effect of the low transformation rates from VC to ethene.

The mobility of the chlorinated ethenes increases with decreasing chlorination. As a consequence,
VC advances faster than the other chlorinated compounds. Already after 20 days (see Fig. 6.17) a
separation of the VC peak can be observed. This has dramatic consequences for the ability to reduce
VC since the VC peak moves out of the region where the electron donor is available. As can be seen
in Fig. 6.18 and 6.19 the VC peak remains unchanges up to the end of the simulation on day 40.

Note that the transformation rates of reductive dechlorination and the related growth rates of the re-
sponsible biomasses decrease with decreasing chlorination. Together with the increasing mobility this
leads to a limitation of complete reductive dechlorination. The reduction of low chlorinated ethenes
requires a longer mixing time with the electron donor than the reduction of highly chlorinated ethenes.
Due to their higher mobility, however, they are mixed for a shorter time. An accumulation of DCE
and VC thus occurs.

6.2.1.3 Discussion

The qualitative behaviour of reductive dechlorination is different between a batch system, as shown in
Section 6.2.1.1, and a reactive transport system, as shown in Section 6.2.1.2. Complete reduction can
be achieved in a batch system if the initial electron donor concentrations are high enough, whereas
reductive dechlorination is not complete in the case of reactive transport.

This is clearly an effect of the interaction between mixing and mobility. As the metabolites are more
mobile than the original contaminant and the electron donor is completely consumed in a small mixing
zone, the fast moving metabolites tend to move out of the reactive region.

Kinetic sorption, which was limiting in the case of the mixed reactor, may enhance mixing of the
electron donor and the metabolites and therefore enhance complete reductive dechlorination.

Note that the assumption of increasing mobility with decreasing chlorination is based on the premise
that sorption controls mobility. This needn’t be the case in reductive systems. Methanogenesis can
lead to entrapped gas bubbles in highly reductive aquifers. Since the volatility of the chlorinated
ethenes increases with decreasing chlorination the mobility may increase as well in highly reductive
systems. In this case the separation of a fast moving VC peak would not take place. In fact, complete
reductive dechlorination in the field has been reported mostly for methanogenic aquifers [57].



Appendix A

Description of Input Files

The name of the input files must have the extension*.cmd . The files may be structured using com-
ment lines. Comment lines can be inserted at anywhere exept in the first line containing the header. A
comment line is marked by ”C” in the first column.

Note, that the variable names are identical to the variable names in the source code and correspond to
German expressions.

A.1 CONTRACT-FEM

CONTRACT-FEM requires the solution of the flow field by the flow model ROCKFLOW-SM2 [69].
Flow parameters as well as geometry and grid informations must be defined in the SM2 input files.
A description of the corresponding file format is given in [70]. Note that data exchange between
ROCKFLOW-SM and CONTRACT-FEM is performed using binary files.

I. Header

Column Variable Type Comment
1-80 UEB CHARACTER*80 Header;

appears in all output files

II. Main Control Lines

II.1. First Main Control Line

Column Variable Type Comment
1-5 FLG INTEGER (1)
6-15 TSTART REAL (2)
16-20 NZKURV INTEGER (3)

135
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21-25 RESTART INTEGER (4)
26-30 CHEMART INTEGER (5)
31-35 DCHECK INTEGER (6)
35-40 VM INTEGER (7)
41-45 BATCH INTEGER (8)
46-55 TINT REAL (9)
56-60 MSTR INTEGER (10)
61-65 GSSFLG INTEGER (11)
66-75 RELAX REAL (12)

(1) Flag for time step control

FLG = 1 : Steady state flow, constant time steps for transport;
Requires 1 control line of type A

FLG = 2 : variable time steps for transport;
Requires control lines of types B,C and D
(see program manual of SM)

FLG = 3 : Time stepping controlled by flow model SM
FLG = 4 : Internal Flag
FLG = 5 : Time step control starting at TSTART
FLG = 6 : Steady-state

(2) Starting time of simulation

(3) Number of time curves for transient boundary conditions

(4) RESTART-Flag

RESTART = 0 : Normal calculation
RESTART = 1 : RESTART of previous calculation

(5) Flag for chemistry model

CHEMART = 0 : No chemistry; sorption at equilibrium
CHEMART = 1 : Aerobic degradation; sorption at equilibrium
CHEMART = 2 : No chemistry; two-domain approach
CHEMART = 3 : Reductice dechlorination of PCE
CHEMART = 4 : Aerobic degradation + two-domain approach

(6) Flag for check run

DCHECK = 0 : Normal run
DCHECK = 1 : Data check

(7) Control parameters for velocity model

VM = 0 : Velocity field calculated by flow model SM
VM = 3 : Counterclockwise rotation
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VM = 4 : Parallel flow

(8) Batch run ?

BATCH = 0 : No
BATCH = 1 : Yes

(9) Time discretization for output

TINT = 0.0 : Every time step is protocoled

(10) *.cme output

MSTR = 0 : Output of concentrations and mass fluxes in *.cme
MSTR = 1 : Output of concentrations only
MSTR = 2 : No *.cme output

(11) Flag for GSS or TECPLOT output

GSSFLG ¿ 0 : No GSS-file
GSSFLG = 1 : GSS-file in ASCII
GSSFLG = 2 : Binary GSS-file
GSSFLG = 3 : GSS-file in encoded-ASCII
GSSFLG = 4 : output in TECPLOT-format

(12) Relaxation factor

II.2. Second Main Control Line

Column Variable Type Comment
1-9 THETA REAL (1)
11-15 MLSXCH INTEGER (2)
16-20 UPMETH INTEGER (3)
21-25 IPLG INTEGER (4)
26-30 IWFO INTEGER (5)
31-40 THELO REAL (6)
41-45 MLLO INTEGER (7)
46-50 UPLO INTEGER (8)
51-60 THEHI REAL (9)
61-65 MLHI INTEGER (10)
66-70 GSSFLG INTEGER (11)

(1) Weighting of implicit terms in time discretization

THETA = 0 : Fully explicit
THETA = 0.5 :Crank-Nicolson integration
THETA = 1 : Fully implicit
If FLG=6 then THETA=1
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(2) Flag for mass lumping

MLSWCH = 0 : No mass lumping
MLSWCH = 1 : Mass lumping

(3) Upwinding method

UPMETH = 0 : Standard Galerkin method
UPMETH = 1 : Taylor-Galerkin method
UPMETH = 2 : Standard-Galerkin with artificial longitudial diffusion
UPMETH = 3 : N+1 Upwinding after Hayakorn & Nilkuha
UPMETH = 4 : N+1 Upwinding with�opt for steady state
UPMETH = 5 : N-1 Upwinding with�opt for steady state
UPMETH = 6 : Flux-Corrected-Transport (FCT)
UPMETH = 7 : FEM Control Volume ”9 Point” differentiation
UPMETH = 8 : FEM Control Volume ”5 Point” differentiation

(4) Flag for solver of linear system of equations

IPCG = 0 : Skyline method
IPCG = 1 : PCG method

(5) Flag for weak formulation

IWFO = 0 : Advective mass flux by strong formulation
IWFO = 1 : Advective mass flux by weak formulation

(6) - (11) are only needed if UPMETH = 6

(6) � of low-order method

(7) MLSWCH of low-order method

(8) UPME of low-order method

(9) � of high-order method

(10) MLSWCH of high-order method

(11) UPME of high-order method

II.2.A. Control Line of Type A

Column Variable Type Comment
1-5 ANZDT INTEGER Number of timesteps to be

(ANZDT¿0) calculated
6-15 DT REAL Timestep increment
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(DT¿0)

For FLG = 2 any number of periods with any number of time steps of constant size can be defined

II.2.B. Control Line of Type B

Column Variable Type Comment
1-5 NPER INTEGER Number of periods with constant

time step
II.2.C. Control Line of Type C

Column Variable Type Comment
1-5 NSPER(1) INTEGER NPER entries for number of time steps
6-10 NSPER(2) INTEGER in corresponding period
... NSPER(NPER) INTEGER

II.2.D. Control Line of Type D

Column Variable Type Comment
1-10 DTPER(1) REAL NPER entries for length of time steps
11-20 DTPER(2) REAL in corrsponding period. Maximum
... DTPER(NPER) REAL number of entries per line : 8
II.2. Third Main Control Line

Column Variable Type Comment
1-5 ANZMOB INTEGER Number of mobile components
6-10 ANZIMM INTEGER Number of immobile components

ANZKOM = ANZMOB + ANZIMM

III. Time Curves

These lines are skipped for NZKURV=0. Each time curve requires at least three lines. Time
curves are described by polygons. Values between two points in the time curve are evaluated by linear
interpolation.

III.1. Line 1
Column Variable Type Comment
1-5 IPKT INTEGER Number of points describing the

time curve
III.2. Line 2

Column Variable Type Comment
1-10 ZEIT(1) REAL Entries for time values of the points
11-20 ZEIT(2) REAL describing the time curve.Maximum
... ZEIT(IPKT) number of entries per line : 8.

For IPKT¿8 a second (third ...) line
has to be added.
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III.3. Line 3

Column Variable Type Comment
1-10 FAKTOR(1) REAL Entries for factor values
11-20 FAKTOR(2) REAL corresponding to the
... FAKTOR(IPKT) time values

IV. Outflow Nodes

Column Variable Type Comment
1-5 NO INTEGER Number of outflow nodes
6-10 KN INTEGER corresponding node numbers

V.1. Name and Accuracy of each Component

Column Variable Type Comment
1-10 NAME CHARACTER Name of component
11-15 CMIN INTEGER Minimum concentration
16-20 CMAX INTEGER Maximum concentration
21-25 RELFEHL INTEGER Maximum relative error
26-30 ABSFEHL INTEGER Maximum absolute error
31-35 CDEF INTEGER Standard initial concentration
36-40 KOC INTEGER Partitioning coefficient between

organic carbon and water

V.2. Number of Initial and Boundary Conditions

Column Variable Type Comment
1-5 NC INTEGER (1)
6-10 NR INTEGER (2)
11-15 NQ INTEGER (3)

(1) Number of nodes with special initial values. Initial values at all other nodes are set to CDEF.

(2) Number of nodes with fixed concentrations.

(3) Number of nodes with definite inflow concentration.

VI. Initial Conditions

Column Variable Type Comment
1-5 KN INTEGER Node number
6-15 C REAL Initial Concentration

Comment: If NC¿0 there are NC lines of this type needed.
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VII. DIRICHLET Boundary Conditions (Fixed Concentration)

Column Variable Type Comment
1-5 KN INTEGER Node number
6-10 ZK INTEGER (1)
11-20 R REAL Boundary condition at node KN
21-25 INKR INTEGER (2)

(1) Number of Time Curve
ZK=0 : Constant fixed concentration of value R.
ZK¿0 :Transient boundary condition. The fixed concentration is evaluated by

multiplication of R with the time curve.
(2) Increment forDIRICHLET boundary condition

NR lines of this type are required.

VIII. Inflow Boundary Condition

Column Variable Type Comment
1-5 KN INTEGER Node number
6-10 ZK INTEGER (1)
11-20 Cin REAL Inflow concentration at node KN

(1) Number of Time Curve
ZK=0 : Constant fixed concentration of value R.
ZK¿0 :Transient boundary condition. The fixed concentration is evaluated by

multiplication of Cin with the time curve.

IX. Soil Properties

IX.1. Porosity and Diffusion/Dispersion Parameters

a)Flow elements (1-D)

Column Variable Type Comment
1-10 POROS REAL (1)
11-15 MNR INTEGER (2)
16-25 alpha1 REAL Longitudinal dispersivity
26-35 Dmolek REAL Molecular diffusion coefficient
36-45 CORG REAL Mass fraction of organic carbon in

dry soil
46-55 TORT REAL Tortuosity (Default:1.0)
56-65 FDICH REAL Density of rock matrix
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b) Flow elements (2-D)

Column Variable Type Comment
1-10 POROS REAL Porosity
11-15 MNR INTEGER Dispersion model(1)
16-25 alpha1 REAL Longitudinal dispersivity
26-35 alpha2 REAL Transverse dispersivity
36-45 Dmolek REAL Molecular diffusion coefficient
46-55 CORG REAL Mass fraction of organic carbon in

dry soil
56-65 TORT REAL Tortuosity (Default:1.0)
66-75 FDICH REAL Density of rock matrix

(1) Model 1: Isotropic diffusion, no dispersion
Model 2:SCHEIDEGGERparametrization of effective diffusion

X. Chemistry-Related Parameters

For CHEMART=0 the following lines can be skipped.

a) CHEMART = 1

Aerobic degradation, sorption at equilibrium.

Column Variable Type Comment
1-10 MUEMAX REAL (1)
11-20 YIELDS REAL (2)
21-30 YIELDO REAL (3)
31-40 KS REAL (4)
41-50 KO REAL (5)
51-60 KSTERB REAL (6)

(1) Maximum growth rate[1/s]
(2) Yield coefficient of substrate[mg/mg]
(3) Yield coefficient of oxygen[mg/mg]
(4) MONOD coefficient of substrate[mg/L]
(5) MONOD coefficient of oxygen[mg/L]
(6) Decay rate of biomass[1/s]

a) CHEMART = 2

Two-domain approach - no chemical transformations.

Column Variable Type Comment
1-10 NIMM REAL Ratio of immobile to total porosity[-]
11-20 ALPHAS REAL Mass transfer coefficient[1/s]
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b) CHEMART = 3

Reductive dechlorination of Tetrachloroethene - kinetic sorption.

X.c.1. First Line

Column Variable Type Comment
1-10 MUEMAX(1) REAL (1)
11-20 MUEMAX(2) REAL (2)
21-30 MUEMAX(3) REAL (3)
31-40 MUEMAX(4) REAL (4)

(1) Maximum growth rate of biomass 1[1/s]
(2) Maximum growth rate of biomass 2[1/s]
(3) Maximum growth rate of biomass 3[1/s]
(4) Maximum growth rate of biomass 4[1/s]

X.c.2. Second Line

Column Variable Type Comment
1-10 YIELD(1) REAL (1)
11-20 YIELD(2) REAL (2)
21-30 YIELD(3) REAL (3)
31-40 YIELD(4) REAL (4)

(1) Yield coefficient of biomass 1[mg/mol]
(2) Yield coefficient of biomass 2[mg/mol]
(3) Yield coefficient of biomass 3[mg/mol]
(4) Yield coefficient of biomass 4[mg/mol]

X.c.3. Third Line

Column Variable Type Comment
1-10 KDEC(1) REAL (1)
11-20 KDEC(2) REAL (2)
21-30 KDEC(3) REAL (3)
31-40 KDEC(4) REAL (4)

(1) Decay rates of biomass 1[1/s]
(2) Decay rates of biomass 2[1/s]
(3) Decay rates of biomass 3[1/s]
(4) Decay rates of biomass 4[1/s]

X.c.4. Fourth Line

Column Variable Type Comment
1-10 KM(1) REAL (1)
11-20 KM(2) REAL (2)



144 APPENDIX A. DESCRIPTION OF INPUT FILES

21-30 KM(3) REAL (3)
31-40 KM(4) REAL (4)
41-50 KM(5) REAL (5)

(1) Monod coefficient of electron acceptor[mol/L]
(2) Monod coefficient PCE[mol/L]
(3) Monod coefficient TCE[mol/L]
(4) Monod coefficient DCE[mol/L]
(5) Monod coefficient VC[mol/L]

X.c.5. Fifth Line

Column Variable Type Comment
1-10 ALPHAS REAL (1)
11-20 KAAB REAL (2)

(1) Mass transfer coefficient[1/s]
(2) First order decay describing competitive consumption of electron donor[1/s]

d) CHEMART = 4

Two-domain approach + aerobic degradation, sorption at equilibrium.

X.d.1. First Line

Column Variable Type Comment
1-10 NIMM REAL Ratio of immobile to total porosity[-]
11-20 ALPHAS REAL Mass transfer coefficient[1/s]

X.d.2. Second Line

Column Variable Type Comment
1-10 MUEMAX REAL (1)
11-20 YIELDS REAL (2)
21-30 YIELDO REAL (3)
31-40 KS REAL (4)
41-50 KO REAL (5)
51-60 KSTERB REAL (6)

(1) Maximum growth rate[1/s]
(2) Yield coefficient of substrate[mg/mg]
(3) Yield coefficient of oxygen[mg/mg]
(4) MONOD coefficient of substrate[mg/L]
(5) MONOD coefficient of oxygen[mg/L]
(6) Decay rate of biomass[1/s]
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A.2 CONTRACT-2 and CONTRACT-3

I. Header

Column Variable Type Comment
1-80 UEB CHARACTER*80 Header;

appears in all output files

II. Main Control Lines

II.1. First Main Control Line

Column Variable Type Comment
1-5 CEMART INTEGER Type of chemistry model
6-10 ANZMOB INTEGER Number of mobile components
11-15 ANZIMM INTEGER Number of immobile components
16-20 ANZX INTEGER Number of cells in x direction
21-25 ANZY INTEGER Number of cells in y direction
26-30 ANZZK INTEGER Number of time curves

II.2. Second Main Control Line

These parameters are used only for CONTRACT-2 (direct coupling). For CONTRACT-3 (operator-
split coupling) use any parameters.

Column Variable Type Comment
1-5 KMP INTEGER (1)
6-10 MAXL INTEGER (2)
11-15 NRMNL INTEGER (3)
16-25 EPLI REAL (4)
26-30 NSAVE INTEGER (5)
31-35 ITMAX INTER (6)
36-40 LJAC INTEGER (7)

(1) Order of KRYLOV subspace for GMRES solver
used for nonlinear solver (DASPK)

(2) Maximum number of iterations (DASPK)

(3) Maximum number of restarts of the GMRES solver
per nonlinear iteration (DASPK)

(4) Convergence criterion of the GMRES solver (DASPK)



146 APPENDIX A. DESCRIPTION OF INPUT FILES

(5) Order of KRYLOV subspace for GMRES solver
used for preconditioning

(6) Maximum number of iterations for GMRES-solver
used for preconditioning

(7) Number of non-zero entries in the JACOBIAN

II.3. Third Main Control Lines

Column Variable Type Comment
1-10 TANF REAL Starting time[s]
11-20 DTFL REAL Size of time steps for flow calculation[s]
21-30 DTOUT REAL Size of time steps for output protocol[s]
31-40 TEND REAL End time[s]

III. Time Curves

These lines are skipped for ANZZK=0 . Each time curve requires at least two lines. Time curves are
described by polygons. Values between two points in the time curve are evaluated by linear interpo-
lation.

III.1. Line 1

Column Variable Type Comment
1-5 IPKT INTEGER (1)

(1) Number of points describing the time curve

III.2. Line 2

Column Variable Type Comment
1-10 ZEIT() REAL Time value of the point[s]
11-20 WERT() REAL Factor of the point

Line III.2. must be repeated IPKT times.

IV. Spatial Discretization

IV.1 x Direction

Column Variable Type Comment
1-10 DELTA-X(1) REAL (1)
11-20 DELTA-X(2) REAL
.....
61-70 DELTA-X(7) REAL
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(1) Each line contains 7 entries. INT(ANZX/7)+1 lines are required.
The last line contains (ANZX MOD 7) entries.[m]

IV.1 y Direction

Column Variable Type Comment
1-10 DELTA-Y(1) REAL (1)
11-20 DELTA-Y(2) REAL
.....
61-70 DELTA-Y(7) REAL

(1) Each line contains 7 entries. INT(ANZY/7)+1 lines are required.
The last line contains (ANZY MOD 7) entries.[m]

V. Soil Properties

V.1. Number of Data Sets and Accuracy

Column Variable Type Comment
1-5 ANZMAT INTEGER (1)
6-10 ANZDI INTEGER Number of nodes with fixed head
11-15 ANZNE INTEGER Number of nodes with fixed volume flux
16-25 HRELEPS REAL Relative error in H
26-35 HABSEPS REAL Absolute error in H[m]

(1) Number of different data sets of soil properties

V.2. Soil Properties per Data Set

The following block of two lines must be repeated for each data set of soil properties.

V.2.1 First Line

Column Variable Type Comment
1-10 KFM REAL (1)
11-20 KFT REAL (2)
21-30 KFAN REAL (3)
31-40 S REAL (4)
41-50 NE REAL (5)

(1) Hydraulic conductivity in principal direction[m/s]
(2) Hydraulic conductivity in transverse direction[m/s]
(3) Angle between principal direction of hydraulic conductivity and x direction[Æ].
(4) Storativity[-]
(5) Porosity[-]
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V.2..2 Second Line

Column Variable Type Comment
1-10 DZ REAL Cell thickness[m]
11-20 AL REAL Longitudinal dispersivity[m]
21-30 AT REAL Transverse dispersivity[m]
31-40 CORG REAL (1)

(1) Mass fraction of organic carbon in dry soil.[-]

V.3. Definition of Data Set Number for Each Cell

Column Variable Type Comment
1-10 IMAT(1) INTEGER (1)
11-20 IMAT(2) INTEGER
....
99-100 IMAT(10) INTEGER

(1) Each line contains 10 entries. INT(ANZX*ANZY/10)+1 lines are required.
The last line contains (ANZX*ANZY MOD 10) entries.

VI. Boundary Conditions for the Flow Calculation

VI.1. Fixed Hydraulic Head (DIRICHLET Boundary Condition)

Column Variable Type Comment
1-5 CN INTEGER Cell number
6-10 TC INTEGER Number of time curve(1)
11-20 R REAL Value[m]

(1) The value R is multiplied by the factor of the time curve.
The factor of the time curve is 1.0 for TC=0

VI.2. Fixed Volumetric Flux ( NEUMANN Boundary Condition)

Column Variable Type Comment
1-5 CN INTEGER Cell number
6-10 TC INTEGER Number of time curve(1)
11-20 R REAL Factor [m3/s]

(1) The value R is multiplied by the time curve factor.
The time curve factor is 1.0 for TC=0
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VII. Component Related Parameters

VII.1. Name and Accuracy of Each Component

Column Variable Type Comment
1-10 NAME CHARACTER*10 Name of component
11-20 AMFEHL REAL Maximum absolute error
21-30 RMFEHL REAL Maxunum relative error
31-40 CDEF REAL Initial concentration
41-50 DM REAL Molecular diffusion coefficient
51-60 KOC REAL Partitioning coefficient Corg-Water

VII.2. Number of Initial and Boundary Conditions

Column Variable Type Comment
1-5 NR(I) INTEGER (1)
6-10 NQ(I) INTEGER (2)
11-15 NC(I) INTEGER (3)

(1) Number of cells with fixed concentration of compound I.
(2) Number of cells with fixed input concentration of compound I.
(3) Number of cells with special initial conditions for compound I.
This line must be repeated ANZKOM times.

VIII. DIRICHLET Boundary Conditions (Fixed Concentration)

The following line must be repeated NR(I) times for compound I.
ANZKOM blocks are requested.

Column Variable Type Comment
1-5 CN INTEGER Cell number
6-10 TC INTEGER Number of time-curve(1)
11-19 R REAL Value

(1) The value R is multiplied by the time curve factor.
The time curve factor is 1.0 for TC=0

IX. Inflow Boundary Conditions

The following line must be repeated NQ(I) times for compound I.
ANZKOM blocks are requested.

Column Variable Type Comment
1-5 CN INTEGER Cell number
6-10 TC INTEGER Number of time curve(1)
11-19 R REAL Value
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(1) The value R is multiplied by the time curve factor.
The time curve factor is 1.0 for TC=0

X. Initial Conditions

The following line must be repeated NC(I) times for compound I.
ANZKOM blocks are requested.

Column Variable Type Comment
1-5 CN INTEGER Cell
6-15 R REAL Value

XI. Chemistry Related Parameters

For CHEMART=0 the following lines can be skipped.

a) CHEMART = 1

Aerobic degradation, sorption at equilibrium.

Column Variable Type Comment
1-10 MUEMAX REAL (1)
11-20 YIELDS REAL (2)
21-30 YIELDO REAL (3)
31-40 KS REAL (4)
41-50 KO REAL (5)
51-60 KSTERB REAL (6)

(1) Maximum growth rate[1/s]
(2) Yield coefficient of substrate[mg/mg]
(3) Yield coefficient of oxygen[mg/mg]
(4) MONOD coefficient of substrate[mg/L]
(5) MONOD coefficient of oxygen[mg/L]
(6) Decay rate of biomass[1/s]

a) CHEMART = 2

Two-domain approach - no chemical transfomations.

Column Variable Type Comment
1-10 NIMM REAL Ratio of immobile to total porosity[-]
11-20 ALPHAS REAL Mass transfer coefficient[1/s]

b) CHEMART = 3

Reductive dechlorination of Tetrachloroethene - kinetic sorption.
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XI.c.1. First Line

Column Variable Type Comment
1-10 MUEMAX(1) REAL (1)
11-20 MUEMAX(2) REAL (2)
21-30 MUEMAX(3) REAL (3)
31-40 MUEMAX(4) REAL (4)

(1) Maximum growth rate of biomass 1[1/s]
(2) Maximum growth rate of biomass 2[1/s]
(3) Maximum growth rate of biomass 3[1/s]
(4) Maximum growth rate of biomass 4[1/s]

XI.c.2. Second Line

Column Variable Type Comment
1-10 YIELD(1) REAL (1)
11-20 YIELD(2) REAL (2)
21-30 YIELD(3) REAL (3)
31-40 YIELD(4) REAL (4)

(1) Yield coefficient of biomass 1[mg/mol]
(2) Yield coefficient of biomass 2[mg/mol]
(3) Yield coefficient of biomass 3[mg/mol]
(4) Yield coefficient of biomass 4[mg/mol]

XI.c.3. Third Line

Column Variable Type Comment
1-10 KDEC(1) REAL (1)
11-20 KDEC(2) REAL (2)
21-30 KDEC(3) REAL (3)
31-40 KDEC(4) REAL (4)

(1) Decay rates of biomass 1[1/s]
(2) Decay rates of biomass 2[1/s]
(3) Decay rates of biomass 3[1/s]
(4) Decay rates of biomass 4[1/s]

XI.c.4. Fourth Line

Column Variable Type Comment
1-10 KM(1) REAL (1)
11-20 KM(2) REAL (2)
21-30 KM(3) REAL (3)
31-40 KM(4) REAL (4)
41-50 KM(5) REAL (5)
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(1) Monod coefficient of electron acceptor[mol/L]
(2) Monod coefficient PCE[mol/L]
(3) Monod coefficient TCE[mol/L]
(4) Monod coefficient DCE[mol/L]
(5) Monod coefficient VC[mol/L]

XI.c.5. Fifth Line

Column Variable Type Comment
1-10 ALPHAS REAL (1)
11-20 KAAB REAL (2)

(1) Mass transfer coefficient[1/s]
(2) First order decay describing competitive consumption of electron donor[1/s]

d) CHEMART = 4

Two-domain approach + aerobic degradation, sorption at equilibrium.

XI.d.1. First Line

Column Variable Type Comment
1-10 NIMM REAL Ratio of immobile to total porosity[-]
11-20 ALPHAS REAL Mass transfer coefficient[1/s]

XI.d.2. Second Line

Column Variable Type Comment
1-10 MUEMAX REAL (1)
11-20 YIELDS REAL (2)
21-30 YIELDO REAL (3)
31-40 KS REAL (4)
41-50 KO REAL (5)
51-60 KSTERB REAL (6)

(1) Maximum growth rate[1/s]
(2) Yield coefficient of substrate[mg/mg]
(3) Yield coefficient of oxygen[mg/mg]
(4) MONOD coefficient of substrate[mg/L]
(5) MONOD coefficient of oxygen[mg/L]
(6) Decay rate of biomass[1/s]



Appendix B

How to Extend the Reactive Model Systems

For the definition of the reactive sub-problem three subroutines must be provided: The subsroutine
RESincluding the definition of the DAES, the subroutineJAC including the JACOBIAN of the DAES,
and the subroutineCONSINI where time derivatives are initialized. Additionally the input routine
CHEMREADand the chemistry related common-block filechemcmn.inc may be changed.

A detailed definition of the routinesRESandJAC is given in the source-code of DASSL. The fol-
lowing additional requirement must be met: The first ANZMOB equations are related to mobile com-
pounds, the transport related terms are added by other routines. These equations should be ODE’s.

In the following the definition of the reaction related subroutines are documented in their current state.

SUBROUTINE RES(T,Y,YPRIME,CJ,DELTA,IRES,RPAR,IPAR)
C=======================================================================
Ca Mnemonic : FUNCTION FOR DDASSL
C ------------------------------------------------------------------
Cb Topic : DEFINITION OF DAES RELATED TO REACTIVE
C PROCESSES
C ------------------------------------------------------------------
Cd Programmer : O. CIRPKA
C ------------------------------------------------------------------
Cf Parameter(s) :
C<->R T : TIME
C<->R Y : CONCENTRATIONS
C<->R YPRIME : TIME DERIVATIVES OF Y
C<- R DELTA : RESIDUE
C<->I IRES : INTEGER-FLAG
C ->R RPAR : REAL PARAMETER FIELD (DUMMY)
C ->I IPAR : INTEGER PARAMETER FIELD (DUMMY)
C ------------------------------------------------------------------
Ch Commons :
C FOR AEROBIC DEGRADATION (CHEMART=1)
C I KD : PARTITIONING COEFFICIENT FOR SUBSTRATE
C I YIELDS : YIELD COEFFICIENT FOR SUBSTRATE

153
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C I YIELDO : YIELD COEFFICIENT FOR OXYGEN
C I MUEMAX : MAXIMUM GROWTH RATE
C I KS : MONOD-COEFFICIENT FOR SUBSTRATE
C I KO : MONOD-COEFFICIENT FOR OXYGEN
C FOR TWO-DOMAIN APPROACH (CHEMART=2)
C I ALPHAS : MASS TRANSFER COEFF. IMM. <-> MOB.
C I KD : PARTITIONING COEFFICIENT
C FOR REDUCTIVE DECHLORINATION (CHEMART=3)
C I MUE1 : MAXIMUM GROWTH RATE FOR BIOMASS 1
C I MUE2 : MAXIMUM GROWTH RATE FOR BIOMASS 2
C I MUE3 : MAXIMUM GROWTH RATE FOR BIOMASS 3
C I MUE4 : MAXIMUM GROWTH RATE FOR BIOMASS 4
C I YIE1 : YIELD COEFFICIENT FOR STEP 1
C I YIE2 : YIELD COEFFICIENT FOR STEP 2
C I YIE3 : YIELD COEFFICIENT FOR STEP 3
C I YIE4 : YIELD COEFFICIENT FOR STEP 4
C I KD1 : PARTITIONING COEFFICIENT FOR ELECTRON DONOR
C I KD2 : PARTITIONING COEFFICIENT FOR PCE
C I KD3 : PARTITIONING COEFFICIENT FOR TCE
C I KD4 : PARTITIONING COEFFICIENT FOR DCE
C I KD5 : PARTITIONING COEFFICIENT FOR VC
C I KD6 : PARTITIONING COEFFICIENT FOR ETHENE
C I K1 : MONOD-COEFFICIENT FOR ELECTRON DONOR
C I K2 : MONOD-COEFFICIENT FOR PCE
C I K3 : MONOD-COEFFICIENT FOR TCE
C I K4 : MONOD-COEFFICIENT FOR DCE
C I K5 : MONOD-COEFFICIENT FOR VC
C I K6 : MONOD-COEFFICIENT FOR ETHENE
C I ALPHAS : MASS TRANSFER COEFF. DISS. <-> SORB.
Cz3456==================================================================

INCLUDE ’common.inc’
INCLUDE ’chemcmn.inc’
INTEGER*4 IRES,IPAR
REAL*8 T,Y(1:ANZKOM),YPRIME(1:ANZKOM),DELTA(1:ANZKOM),RPAR,CJ

C AEROBIC DEGRADATION SORPTION AT EQUILIBRIUM
C Y(1): SUBSTRATE DISSOLVED
C Y(2): OXYGEN DISSOLVED
C Y(3): SUBSTRATE SORBED
C Y(4): BIOMASS

IF (CHEMART.EQ.1) THEN
DELTA(1) = -MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(4)
+ -YPRIME(1)-YPRIME(3)
DELTA(2) = -MUEMAX/YIELDO*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(4)
+ -YPRIME(2)
DELTA(3) = KD*Y(1)-Y(3)
DELTA(4) = (MUEMAX*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)-KSTERB)*Y(4)
+ -YPRIME(4)

C NO TRANSFORMATIONS TWO-DOMAIN APPROACH
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C Y(1): MOBILE COMPONENT
C Y(2): IMMOBILE COMPONENT

ELSE IF (CHEMART.EQ.2) THEN
DELTA(1) = -YPRIME(1)+ALPHAS*(Y(2)/KD-Y(1))
DELTA(2) = -YPRIME(2)+ALPHAS*(Y(1)-Y(2)/KD)

C PCE-DECHLORINATION AND KINETIC SORPTION
C TWO ELCTRONS TRANSFERED PER ELECTRON DONOR
C Y(1): E-DONOR DISSOLVED
C Y(2): PCE DISSOLVED
C Y(3): TCE DISSOLVED
C Y(4): DCE DISSOLVED
C Y(5): VC DISSOLVED
C Y(6): ETHENE DISSOLVED
C Y(7): E-DONOR SORBED
C Y(8): PCE SORBED
C Y(9): TCE SORBED
C Y(10): DCE SORBED
C Y(11): VC SORBED
C Y(12): ETHENE SORBED
C Y(13): BIOMASS 1
C Y(14): BIOMASS 2
C Y(15): BIOMASS 3
C Y(16): BIOMASS 4

ELSE IF (CHEMART.EQ.3) THEN
DELTA(1) = -YPRIME(1) - KABB*Y(1)

+ -MUE1/YIE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)
+ -MUE2/YIE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)
+ -MUE3/YIE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
+ -MUE4/YIE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)
+ +ALPHAS*(Y(7)/KD1-Y(1))

DELTA(2) = -YPRIME(2)
+ -MUE1/YIE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)
+ +ALPHAS*(Y(8)/KD2-Y(2))

DELTA(3) = -YPRIME(3)
+ +MUE1/YIE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)
+ -MUE2/YIE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)
+ +ALPHAS*(Y(9)/KD3-Y(3))

DELTA(4) = -YPRIME(4)
+ +MUE2/YIE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)
+ -MUE3/YIE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
+ +ALPHAS*(Y(10)/KD4-Y(4))

DELTA(5) = -YPRIME(5)
+ +MUE3/YIE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
+ -MUE4/YIE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)
+ +ALPHAS*(Y(11)/KD5-Y(5))
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DELTA(6) = -YPRIME(6)
+ +MUE4/YIE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)
+ +ALPHAS*(Y(12)/KD6-Y(6))

DELTA(7) = -YPRIME(7) + ALPHAS*(Y(1)-Y(7)/KD1)

DELTA(8) = -YPRIME(8) + ALPHAS*(Y(2)-Y(8)/KD2)

DELTA(9) = -YPRIME(9) + ALPHAS*(Y(3)-Y(9)/KD3)

DELTA(10) = -YPRIME(10) + ALPHAS*(Y(4)-Y(10)/KD4)

DELTA(11) = -YPRIME(11) + ALPHAS*(Y(5)-Y(11)/KD5)

DELTA(12) = -YPRIME(12) + ALPHAS*(Y(6)-Y(12)/KD6)

DELTA(13) = -YPRIME(13) - KSTERB1*Y(13)
+ +MUE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)

DELTA(14) = -YPRIME(14) - KSTERB2*Y(14)
+ +MUE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)

DELTA(15) = -YPRIME(15) - KSTERB3*Y(15)
+ +MUE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)

DELTA(16) = -YPRIME(16) - KSTERB4*Y(16)
+ +MUE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)

C AEROBIC DEGRADATION PLUS TWO-DOMAIN APPROACH
C Y(1): SUBSTRATE MOBILE
C Y(2): OXYGEN MOBILE
C Y(3): SUBSTRATE IMMOBILE
C Y(4): OXYGEN IMMOBILE
C Y(5): SUBSTRATE SORBED MOBILE
C Y(6): SUBSTRATE SORBED IMMOBILE
C Y(7): BIOMASS MOBILE
C Y(8): BIOMASS IMMOBILE

ELSE IF (CHEMART.EQ.4) THEN

DELTA(1) = -MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(7)
+ +ALPHAS*(Y(3)-Y(1))
+ -YPRIME(1)-YPRIME(5)

DELTA(2) = -MUEMAX/YIELDO*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(7)
+ +ALPHAS*(Y(4)-Y(2))
+ -YPRIME(2)

DELTA(3) = -MUEMAX/YIELDS*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)*Y(8)
+ -(1.D0-NIMM)/NIMM*ALPHAS*(Y(3)-Y(1))
+ -YPRIME(3)-YPRIME(6)

DELTA(4) = -MUEMAX/YIELDO*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)*Y(8)
+ -(1.D0-NIMM)/NIMM*ALPHAS*(Y(4)-Y(2))
+ -YPRIME(4)
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DELTA(5) = KD*Y(1)-Y(5)
DELTA(6) = KD*Y(3)-Y(6)
DELTA(7) = (MUEMAX*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)-KSTERB)*Y(7)

+ -YPRIME(7)
DELTA(8) = (MUEMAX*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)-KSTERB)*Y(8)

+ -YPRIME(8)

ENDIF
RETURN
END

SUBROUTINE JAC(T,Y,YPRIME,PD,CJ,RPAR,IPAR)
C ==================================================================
Ca Mnemonic : DEFENITION OF THE JACOBIAN FOR DDASSL
C ------------------------------------------------------------------
Cb Topic : ANALYTICAL CALCULATION OF JACONIAN
C FOR REACTIVE PROCESSES
C ------------------------------------------------------------------
Cd Programmer : O. CIRPKA 9/93
C ------------------------------------------------------------------
Cf Parameter(s) :
C<->R T : TIME
C<->R Y : CONCENTRATIONS
C<->R YPRIME : TIME DERIVATIVES OF Y
C<->I IRES : INTEGER-FLAG
C ->R RPAR : REAL PARAMETER FIELD (DUMMY)
C ->I IPAR : INTEGER PARAMETER FIELD (DUMMY)
C<-> R PD : JAKOBIMATRIX
C -> R CJ : WICHTUNG DER ZEITABLEITUNG
C ------------------------------------------------------------------
Ch Commons :
C FOR AEROBIC DEGRADATION (CHEMART=1)
C I KD : PARTITIONING COEFFICIENT FOR SUBSTRATE
C I YIELDS : YIELD COEFFICIENT FOR SUBSTRATE
C I YIELDO : YIELD COEFFICIENT FOR OXYGEN
C I MUEMAX : MAXIMUM GROWTH RATE
C I KS : MONOD-COEFFICIENT FOR SUBSTRATE
C I KO : MONOD-COEFFICIENT FOR OXYGEN
C FOR TWO-DOMAIN APPROACH (CHEMART=2)
C I ALPHAS : MASS TRANSFER COEFF. IMM. <-> MOB.
C I KD : PARTITIONING COEFFICIENT
C FOR REDUCTIVE DECHLORINATION (CHEMART=3)
C I MUE1 : MAXIMUM GROWTH RATE FOR BIOMASS 1
C I MUE2 : MAXIMUM GROWTH RATE FOR BIOMASS 2
C I MUE3 : MAXIMUM GROWTH RATE FOR BIOMASS 3
C I MUE4 : MAXIMUM GROWTH RATE FOR BIOMASS 4
C I YIE1 : YIELD COEFFICIENT FOR STEP 1
C I YIE2 : YIELD COEFFICIENT FOR STEP 2
C I YIE3 : YIELD COEFFICIENT FOR STEP 3
C I YIE4 : YIELD COEFFICIENT FOR STEP 4
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C I KD1 : PARTITIONING COEFFICIENT FOR ELECTRON DONOR
C I KD2 : PARTITIONING COEFFICIENT FOR PCE
C I KD3 : PARTITIONING COEFFICIENT FOR TCE
C I KD4 : PARTITIONING COEFFICIENT FOR DCE
C I KD5 : PARTITIONING COEFFICIENT FOR VC
C I KD6 : PARTITIONING COEFFICIENT FOR ETHENE
C I K1 : MONOD-COEFFICIENT FOR ELECTRON DONOR
C I K2 : MONOD-COEFFICIENT FOR PCE
C I K3 : MONOD-COEFFICIENT FOR TCE
C I K4 : MONOD-COEFFICIENT FOR DCE
C I K5 : MONOD-COEFFICIENT FOR VC
C I K6 : MONOD-COEFFICIENT FOR ETHENE
C I ALPHAS : MASS TRANSFER COEFF. DISS. <-> SORB.
Cz3456==================================================================

INCLUDE ’common.inc’
INCLUDE ’chemcmn.inc’
INTEGER*4 IPAR
REAL*8 T,Y(1:ANZKOM),YPRIME(1:ANZKOM),PD(1:ANZKOM,1:ANZKOM),

+ CJ,RPAR

C AEROBIC DEGRADATION SORPTION AT EQUILIBRIUM
C Y(1): SUBSTRATE DISSOLVED
C Y(2): OXYGEN DISSOLVED
C Y(3): SUBSTRATE SORBED
C Y(4): BIOMASS

IF (CHEMART.EQ.1) THEN
C PARTIAL DERIVATIVES FOR SUBSTRATE

PD(1,1)=-MUEMAX/YIELDS*KS/(Y(1)+KS)/(Y(1)+KS)*
+ Y(2)/(Y(2)+KO)*Y(4) - CJ

PD(1,2)=-MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*
+ KO/(Y(2)+KO)/(Y(2)+KO)*Y(4)

PD(1,3)= -CJ
PD(1,4)=-MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)

C PARTIAL DERIVATIVES FOR OXYGEN
PD(2,1)=-MUEMAX/YIELDO*KS/(Y(1)+KS)/(Y(1)+KS)*

+ Y(2)/(Y(2)+KO)*Y(4)
PD(2,2)=-MUEMAX/YIELDO*Y(1)/(Y(1)+KS)*

+ KO/(Y(2)+KO)/(Y(2)+KO)*Y(4) - CJ
PD(2,4)=-MUEMAX/YIELDO*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)

C PARTIAL DERIVATIVES FOR SORBED SUBSTRATE
PD(3,1)= KD
PD(3,3)= -1.D0

C PARTIAL DERIVATIVES FOR BIOMASS
PD(4,1)=MUEMAX*KS/(Y(1)+KS)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(4)
PD(4,2)=MUEMAX*Y(1)/(Y(2)+KS)*KO/(Y(2)+KO)/(Y(2)+KO)*Y(4)
PD(4,4)=MUEMAX*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)-KSTERB-CJ

C NO TRANSFORMATIONS TWO-DOMAIN APPROACH
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C Y(1): MOBILE COMPONENT
C Y(2): IMMOBILE COMPONENT

ELSE IF (CHEMART.EQ.2) THEN

C PARTIAL DERIVATIVES FOR MOBILE COMPONENT
PD(1,1)= -ALPHAS -CJ
PD(1,2)= ALPHAS/KD

C PARTIAL DERIVATIVES FOR IMMOBILE COMPONENT
PD(2,1)= ALPHAS
PD(2,2)= -ALPHAS/KD -CJ

C PCE-DECHLORINATION AND KINETIC SORPTION
C TWO ELCTRONS TRANSFERED PER ELECTRON DONOR
C Y(1): E-DONOR DISSOLVED
C Y(2): PCE DISSOLVED
C Y(3): TCE DISSOLVED
C Y(4): DCE DISSOLVED
C Y(5): VC DISSOLVED
C Y(6): ETHENE DISSOLVED
C Y(7): E-DONOR SORBED
C Y(8): PCE SORBED
C Y(9): TCE SORBED
C Y(10): DCE SORBED
C Y(11): VC SORBED
C Y(12): ETHENE SORBED
C Y(13): BIOMASS 1
C Y(14): BIOMASS 2
C Y(15): BIOMASS 3
C Y(16): BIOMASS 4

ELSE IF (CHEMART.EQ.3) THEN

C PARTIAL DERIVATIVES FOR DISSOLVED ELECTRON DONOR
PD(1,1) = -CJ -KABB -ALPHAS

+ -MUE1/YIE1*K1/(Y(1)+K1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)
+ -MUE2/YIE2*K1/(Y(1)+K1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)
+ -MUE3/YIE3*K1/(Y(1)+K1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
+ -MUE4/YIE4*K1/(Y(1)+K1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)

PD(1,2) =
+ -MUE1/YIE1*Y(1)/(Y(1)+K1)*K2/(Y(2)+K2)/(Y(2)+K2)*Y(13)

PD(1,3) =
+ -MUE2/YIE2*Y(1)/(Y(1)+K1)*K3/(Y(3)+K3)/(Y(3)+K3)*Y(14)

PD(1,4) =
+ -MUE3/YIE3*Y(1)/(Y(1)+K1)*K4/(Y(4)+K4)/(Y(4)+K4)*Y(15)

PD(1,5) =
+ -MUE4/YIE4*Y(1)/(Y(1)+K1)*K5/(Y(5)+K5)/(Y(5)+K5)*Y(16)

PD(1,7) = +ALPHAS/KD1
PD(1,13)= -MUE1/YIE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)
PD(1,14)= -MUE2/YIE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)
PD(1,15)= -MUE3/YIE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)
PD(1,16)= -MUE4/YIE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)
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C PARTIAL DERIVATIVES FOR DISSOLVED PCE
PD(2,1) = -MUE1/YIE1*K1/(Y(1)+K1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)
PD(2,2) = -MUE1/YIE1*Y(1)/(Y(1)+K1)*K2/(Y(2)+K2)/(Y(2)+K2)*Y(13)

+ -ALPHAS - CJ
PD(2,8) = ALPHAS/KD2
PD(2,13)= -MUE1/YIE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)

C PARTIAL DERIVATIVES FOR DISSOLVED TCE
PD(3,1) = +MUE1/YIE1*K1/(Y(1)+K1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)

+ -MUE2/YIE2*K1/(Y(1)+K1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)
PD(3,2) = +MUE1/YIE1*Y(1)/(Y(1)+K1)*K2/(Y(2)+K2)/(Y(2)+K2)*Y(13)
PD(3,3) = -MUE2/YIE2*Y(1)/(Y(1)+K1)*K3/(Y(3)+K3)/(Y(3)+K3)*Y(14)

+ -ALPHAS -CJ
PD(3,9) = ALPHAS/KD3
PD(3,13)= +MUE1/YIE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)
PD(3,14)= -MUE2/YIE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)

C PARTIAL DERIVATIVES FOR DISSOLVED DCE
PD(4,1) = +MUE2/YIE2*K1/(Y(1)+K1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)

+ -MUE3/YIE3*K1/(Y(1)+K1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
PD(4,3) = +MUE2/YIE2*Y(1)/(Y(1)+K1)*K3/(Y(3)+K3)/(Y(3)+K3)*Y(14)
PD(4,4) = -MUE3/YIE3*Y(1)/(Y(1)+K1)*K4/(Y(4)+K4)/(Y(4)+K4)*Y(15)

+ -ALPHAS -CJ
PD(4,10)= ALPHAS/KD4
PD(4,14)= +MUE2/YIE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)
PD(4,15)= -MUE3/YIE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)

C PARTIAL DERIVATIVES FOR DISSOLVED VC
PD(5,1) = +MUE3/YIE3*K1/(Y(1)+K1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)

+ -MUE4/YIE4*K1/(Y(1)+K1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)
PD(5,4) = +MUE3/YIE3*Y(1)/(Y(1)+K1)*K4/(Y(4)+K4)/(Y(4)+K4)*Y(15)
PD(5,5) = -MUE4/YIE4*Y(1)/(Y(1)+K1)*K5/(Y(5)+K5)/(Y(5)+K5)*Y(16)

+ -ALPHAS -CJ
PD(5,11)= ALPHAS/KD5
PD(5,15)= +MUE3/YIE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)
PD(5,16)= -MUE4/YIE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)

C PARTIAL DERIVATIVES FOR DISSOLVED ETHENE
PD(6,1) = +MUE4/YIE4*K1/(Y(1)+K1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)
PD(6,5) = +MUE4/YIE4*Y(1)/(Y(1)+K1)*K5/(Y(5)+K5)/(Y(5)+K5)*Y(16)
PD(6,6) = -ALPHAS -CJ
PD(6,12)= ALPHAS/KD6
PD(6,16)= +MUE4/YIE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)

C PARTIAL DERIVATIVES FOR SORBED ELECTRON DONOR
PD(7,1) = ALPHAS
PD(7,7) = -CJ -ALPHAS/KD1

C PARTIAL DERIVATIVES FOR SORBED PCE
PD(8,2) = ALPHAS
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PD(8,8) = -CJ -ALPHAS/KD2

C PARTIAL DERIVATIVES FOR SORBED TCE
PD(9,3) = ALPHAS
PD(9,9) = -CJ -ALPHAS/KD3

C PARTIAL DERIVATIVES FOR SORBED DCE
PD(10,4) = ALPHAS
PD(10,10)= -CJ -ALPHAS/KD4

C PARTIAL DERIVATIVES FOR SORBED VC
PD(11,5) = ALPHAS
PD(11,11)= -CJ -ALPHAS/KD5

C PARTIAL DERIVATIVES FOR SORBED ETHENE
PD(12,6) = ALPHAS
PD(12,12)= -CJ -ALPHAS/KD6

C PARTIAL DERIVATIVES FOR BIOMASS 1
PD(13,1) = +MUE1*K1/(Y(1)+K1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)
PD(13,2) = +MUE1*Y(1)/(Y(1)+K1)*K2/(Y(2)+K2)/(Y(2)+K2)*Y(13)
PD(13,13)= -CJ -KSTERB1 +MUE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)

C PARTIAL DERIVATIVES FOR BIOMASS 2
PD(14,1) = +MUE2*K1/(Y(1)+K1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)
PD(14,3) = +MUE2*Y(1)/(Y(1)+K1)*K3/(Y(3)+K3)/(Y(3)+K3)*Y(14)
PD(14,14)= -CJ -KSTERB2 +MUE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)

C PARTIAL DERIVATIVES FOR BIOMASS 3
PD(15,1) = +MUE3*K1/(Y(1)+K1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
PD(15,4) = +MUE3*Y(1)/(Y(1)+K1)*K4/(Y(4)+K4)/(Y(4)+K4)*Y(15)
PD(15,15)= -CJ -KSTERB3 +MUE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)

C PARTIAL DERIVATIVES BIOMASS 4
PD(16,1) = +MUE4*K1/(Y(1)+K1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)
PD(16,5) = +MUE4*Y(1)/(Y(1)+K1)*K5/(Y(5)+K5)/(Y(5)+K5)*Y(16)
PD(16,16)= -CJ -KSTERB4 +MUE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)

C AEROBIC DEGRADATION PLUS TWO-DOMAIN APPROACH
C Y(1): SUBSTRATE MOBILE
C Y(2): OXYGEN MOBILE
C Y(3): SUBSTRATE IMMOBILE
C Y(4): OXYGEN IMMOBILE
C Y(5): SUBSTRATE SORBED MOBILE
C Y(6): SUBSTRATE SORBED IMMOBILE
C Y(7): BIOMASS MOBILE
C Y(8): BIOMASS IMMOBILE

ELSE IF (CHEMART.EQ.4) THEN

C PARTIAL DERIVATIVES FOR MOBILE SUBSTRATE
PD(1,1)=-MUEMAX/YIELDS*KS/(Y(1)+KS)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(7)
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+ -ALPHAS - CJ
PD(1,2)=-MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*KO/(Y(2)+KO)/(Y(2)+KO)*Y(7)
PD(1,3)=ALPHAS
PD(1,5)=-CJ
PD(1,7)=-MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)

C PARTIAL DERIVATIVES FOR MOBILE OXYGEN
PD(1,2)=-MUEMAX/YIELDO*KS/(Y(1)+KS)/(Y(1)+KS)/(Y(2)+KO)*Y(7)
PD(2,2)=-MUEMAX/YIELDO*Y(1)/(Y(1)+KS)*KO/(Y(2)+KO)/(Y(2)+KO)*Y(7)

+ -ALPHAS - CJ
PD(2,4)= ALPHAS
PD(2,7)=-MUEMAX/YIELDO*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)

C PARTIAL DERIVATIVES FOR IMMOBILE SUBSTRATE
PD(3,1)= (1.D0-NIMM)/NIMM*ALPHAS
PD(3,3)=-MUEMAX/YIELDS*KS/(Y(3)+KS)/(Y(3)+KS)*Y(4)/(Y(4)+KO)*Y(8)

+ -(1.D0-NIMM)/NIMM*ALPHAS -CJ
PD(3,4)=-MUEMAX/YIELDS*Y(3)/(Y(3)+KS)*KO/(Y(4)+KO)/(Y(4)+KO)*Y(8)
PD(3,6)=-CJ
PD(3,8)=-MUEMAX/YIELDS*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)

C PARTIAL DERIVATIVES FOR IMMOBILE OXYGEN
PD(4,2)= (1.D0-NIMM)/NIMM*ALPHAS
PD(4,3)=-MUEMAX/YIELDO*KS/(Y(3)+KS)/(Y(3)+KS)*Y(4)/(Y(4)+KO)*Y(8)
PD(4,4)=-MUEMAX/YIELDO*Y(3)/(Y(3)+KS)*KO/(Y(4)+KO)/(Y(4)+KO)*Y(8)

+ -(1.D0-NIMM)/NIMM*ALPHAS -CJ
PD(4,8)=-MUEMAX/YIELDO*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)

C PARTIAL DERIVATIVES FOR MOBILE SUBSTRATE SORBED
PD(5,1)= KD
PD(5,5)= -1.D0

C PARTIAL DERIVATIVES FOR IMMOBILE SUBSTRATE SORBED
PD(6,3)= KD
PD(6,6)= -1.D0

C PARTIAL DERIVATIVES FOR MOBILE BIOMASS
PD(7,1)= MUEMAX*KS/(Y(1)+KS)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(7)
PD(7,2)= MUEMAX*Y(1)/(Y(1)+KS)*KO/(Y(2)+KO)/(Y(2)+KO)*Y(7)
PD(7,7)= MUEMAX*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)-KSTERB - CJ

C PARTIAL DERIVATIVES FOR IMMOBILE BIOMASS
PD(8,3)= MUEMAX*KS/(Y(3)+KS)/(Y(3)+KS)*Y(4)/(Y(4)+KO)*Y(8)
PD(8,4)= MUEMAX*Y(3)/(Y(3)+KS)*KO/(Y(4)+KO)/(Y(4)+KO)*Y(8)
PD(8,8)= MUEMAX*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)-KSTERB - CJ

ENDIF
RETURN
END
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SUBROUTINE CONSINI(Y,YPRIME)
C=======================================================================
Ca Mnemonic : CONSISTENT INITIAL CONDITION FOR DDASSL
C ------------------------------------------------------------------
Cb Topic : CONSISTENT INITIAL CONDITIONS FOR DAES
C RELATED TO REACTIVE PROCESSES
C ------------------------------------------------------------------
Cd Programmer : O. CIRPKA
C ------------------------------------------------------------------
Cf Parameter(s) :
C<->R Y : CONCENTRATIONS
C<->R YPRIME : TIME DERIVATIVES OF Y
C ------------------------------------------------------------------
Ch Commons :
C FOR AEROBIC DEGRADATION (CHEMART=1)
C I KD : PARTITIONING COEFFICIENT FOR SUBSTRATE
C I YIELDS : YIELD COEFFICIENT FOR SUBSTRATE
C I YIELDO : YIELD COEFFICIENT FOR OXYGEN
C I MUEMAX : MAXIMUM GROWTH RATE
C I KS : MONOD-COEFFICIENT FOR SUBSTRATE
C I KO : MONOD-COEFFICIENT FOR OXYGEN
C FOR TWO-DOMAIN APPROACH (CHEMART=2)
C I ALPHAS : MASS TRANSFER COEFF. IMM. <-> MOB.
C I KD : PARTITIONING COEFFICIENT
C FOR REDUCTIVE DECHLORINATION (CHEMART=3)
C I MUE1 : MAXIMUM GROWTH RATE FOR BIOMASS 1
C I MUE2 : MAXIMUM GROWTH RATE FOR BIOMASS 2
C I MUE3 : MAXIMUM GROWTH RATE FOR BIOMASS 3
C I MUE4 : MAXIMUM GROWTH RATE FOR BIOMASS 4
C I YIE1 : YIELD COEFFICIENT FOR STEP 1
C I YIE2 : YIELD COEFFICIENT FOR STEP 2
C I YIE3 : YIELD COEFFICIENT FOR STEP 3
C I YIE4 : YIELD COEFFICIENT FOR STEP 4
C I KD1 : PARTITIONING COEFFICIENT FOR ELECTRON DONOR
C I KD2 : PARTITIONING COEFFICIENT FOR PCE
C I KD3 : PARTITIONING COEFFICIENT FOR TCE
C I KD4 : PARTITIONING COEFFICIENT FOR DCE
C I KD5 : PARTITIONING COEFFICIENT FOR VC
C I KD6 : PARTITIONING COEFFICIENT FOR ETHENE
C I K1 : MONOD-COEFFICIENT FOR ELECTRON DONOR
C I K2 : MONOD-COEFFICIENT FOR PCE
C I K3 : MONOD-COEFFICIENT FOR TCE
C I K4 : MONOD-COEFFICIENT FOR DCE
C I K5 : MONOD-COEFFICIENT FOR VC
C I K6 : MONOD-COEFFICIENT FOR ETHENE
C I ALPHAS : MASS TRANSFER COEFF. DISS. <-> SORB.
C ------------------------------------------------------------------
Ch Local Variable :
C R SGES : TOTAL MASS OF SUBSTRATE
Cz3456==================================================================

INCLUDE ’common.inc’
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INCLUDE ’chemcmn.inc’
REAL*8 Y(1:ANZKOM),YPRIME(1:ANZKOM),SGES

C AEROBIC DEGRADATION SORPTION AT EQUILIBRIUM
C Y(1): SUBSTRATE DISSOLVED
C Y(2): OXYGEN DISSOLVED
C Y(3): SUBSTRATE SORBED
C Y(4): BIOMASS

IF (CHEMART.EQ.1) THEN

C SORPTION EQUILIBRIUM
SGES=Y(1)+Y(3)
Y(1)=SGES/(1.D0+KD)
Y(3)=SGES-Y(1)

C TIME DERIVATIVES
YPRIME(1) = (-MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(4))

+ /(1.D0+KD)
YPRIME(2) = -MUEMAX/YIELDO*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(4)
YPRIME(3) = (-MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(4))

+ *KD/(1.D0+KD)
C YPRIME(3) = YPRIME(1)*KD

YPRIME(4) = (MUEMAX*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)-KSTERB)*Y(4)

C NO TRANSFORMATIONS TWO-DOMAIN APPROACH
C Y(1): MOBILE COMPONENT
C Y(2): IMMOBILE COMPONENT

ELSE IF (CHEMART.EQ.2) THEN
YPRIME(1) = ALPHAS*(Y(2)/KD-Y(1))
YPRIME(2) = ALPHAS*(Y(1)-Y(2)/KD)

C PCE-DECHLORINATION AND KINETIC SORPTION
C TWO ELCTRONS TRANSFERED PER ELECTRON DONOR
C Y(1): E-DONOR DISSOLVED
C Y(2): PCE DISSOLVED
C Y(3): TCE DISSOLVED
C Y(4): DCE DISSOLVED
C Y(5): VC DISSOLVED
C Y(6): ETHENE DISSOLVED
C Y(7): E-DONOR SORBED
C Y(8): PCE SORBED
C Y(9): TCE SORBED
C Y(10): DCE SORBED
C Y(11): VC SORBED
C Y(12): ETHENE SORBED
C Y(13): BIOMASS 1
C Y(14): BIOMASS 2
C Y(15): BIOMASS 3
C Y(16): BIOMASS 4

ELSE IF (CHEMART.EQ.3) THEN
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YPRIME(1) = - KABB*Y(1)
+ -MUE1/YIE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)
+ -MUE2/YIE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)
+ -MUE3/YIE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
+ -MUE4/YIE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)
+ +ALPHAS*(Y(7)/KD1-Y(1))

YPRIME(2) =
+ -MUE1/YIE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)
+ +ALPHAS*(Y(8)/KD2-Y(2))

YPRIME(3) =
+ +MUE1/YIE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)
+ -MUE2/YIE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)
+ +ALPHAS*(Y(9)/KD3-Y(3))

YPRIME(4) =
+ +MUE2/YIE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)
+ -MUE3/YIE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
+ +ALPHAS*(Y(10)/KD4-Y(4))

YPRIME(5) =
+ +MUE3/YIE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
+ -MUE4/YIE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)
+ +ALPHAS*(Y(11)/KD5-Y(5))

YPRIME(6) =
+ +MUE4/YIE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)
+ +ALPHAS*(Y(12)/KD6-Y(6))

YPRIME(7) = ALPHAS*(Y(1)-Y(7)/KD1)

YPRIME(8) = ALPHAS*(Y(2)-Y(8)/KD2)

YPRIME(9) = ALPHAS*(Y(3)-Y(9)/KD3)

YPRIME(10) = ALPHAS*(Y(4)-Y(10)/KD4)

YPRIME(11) = ALPHAS*(Y(5)-Y(11)/KD5)

YPRIME(12) = ALPHAS*(Y(6)-Y(12)/KD6)

YPRIME(13) = - KSTERB1*Y(13)
+ +MUE1*Y(1)/(Y(1)+K1)*Y(2)/(Y(2)+K2)*Y(13)

YPRIME(14) = - KSTERB2*Y(14)
+ +MUE2*Y(1)/(Y(1)+K1)*Y(3)/(Y(3)+K3)*Y(14)

YPRIME(15) = - KSTERB3*Y(15)
+ +MUE3*Y(1)/(Y(1)+K1)*Y(4)/(Y(4)+K4)*Y(15)
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YPRIME(16) = - KSTERB4*Y(16)
+ +MUE4*Y(1)/(Y(1)+K1)*Y(5)/(Y(5)+K5)*Y(16)

C AEROBIC DEGRADATION PLUS TWO-DOMAIN APPROACH
C Y(1): SUBSTRATE MOBILE
C Y(2): OXYGEN MOBILE
C Y(3): SUBSTRATE IMMOBILE
C Y(4): OXYGEN IMMOBILE
C Y(5): SUBSTRATE SORBED MOBILE
C Y(6): SUBSTRATE SORBED IMMOBILE
C Y(7): BIOMASS MOBILE
C Y(8): BIOMASS IMMOBILE

ELSE IF (CHEMART.EQ.4) THEN

SGES=Y(1)+Y(5)
Y(1)=SGES/(1.D0+KD)
Y(5)=SGES-Y(1)
SGES=Y(3)+Y(6)
Y(3)=SGES/(1.D0+KD)
Y(6)=SGES-Y(3)
YPRIME(1) =(-MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(7)

+ +ALPHAS*(Y(3)-Y(1)))/(1.D0+KD)
YPRIME(2) = -MUEMAX/YIELDO*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(7)

+ +ALPHAS*(Y(4)-Y(2))
YPRIME(3) =(-MUEMAX/YIELDS*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)*Y(8)

+ -(1.D0-NIMM)/NIMM*ALPHAS*(Y(3)-Y(1)))/(1.D0+KD)
YPRIME(4) = -MUEMAX/YIELDO*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)*Y(8)

+ -(1.D0-NIMM)/NIMM*ALPHAS*(Y(4)-Y(2))
YPRIME(5) =(-MUEMAX/YIELDS*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)*Y(7)

+ +ALPHAS*(Y(3)-Y(1)))*KD/(1.D0+KD)
YPRIME(6) =(-MUEMAX/YIELDS*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)*Y(8)

+ -(1.D0-NIMM)/NIMM*ALPHAS*(Y(3)-Y(1)))*KD/(1.D0+KD)
YPRIME(7) = (MUEMAX*Y(1)/(Y(1)+KS)*Y(2)/(Y(2)+KO)-KSTERB)*Y(7)
YPRIME(8) = (MUEMAX*Y(3)/(Y(3)+KS)*Y(4)/(Y(4)+KO)-KSTERB)*Y(8)

ENDIF
RETURN
END



Appendix C

Notation

Vectors are underlined, tensors are underlined twice.

Spatial derivatives
r Gradient (note: gradient of a vector is a second order tensor)
rx Gradient in global coordinates
rs Gradient in local coordinates
r � () Divergence of a vector

Dimensions
L Length
M Mass
T Time

Variable Physical Meaning Dimension
A Matrix of nodal coordinates [L]
A Mobility matrix (FEM) [L3/T]
� Dispersivity (1D) [L]
�l Longitudinal dispersivity (2D/3D) [L]
�sorb Mass transfer coefficient of sorption [1/T]
�t Transverse dispersivity (2D/3D) [L]
AEC Antidiffusive element contribution to a node (FCT, FEM ) [M/T]
c Concentration [M/L3]
ĉ Nodal concentrations [M/L3]
cA Electron acceptor concentration [M/L3]
c� Conc. evaluated by weighting of upwind and central differentiation [M/L3]
ccd Concentration evaluated by central differentiation [M/L3]
cD Electron donor concentration [M/L3]
c 1
2

Half concentration of sorption (LANGMUIR isotherm) [M/L3]
cin Input concentration [M/L3]
cO Oxygen concentration [M/L3]
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cP Concentration of primary carbon source [M/L3]
cS Substrate concentration [M/L3]
c�sorb Concentration of sorbed compound related to pore volume [M/L3]
cmax
sorb Maximum sorption capacity (LANGMUIR isotherm) [M/L3]
cup Upwind concentration [M/L3]
cw Concentration in water [M/L3]
[CHCi] Concentration of chlorinated hydrocarbon [M/L3]
Cr COURANT number [-]
D Effective diffusion tensor [L2/T]
Dl Effective longitudinal diffusion coefficient [L2/T]
Dm Molecular diffusion coefficient [L2/T]
Dt Effective transverse diffusion coefficient [L2/T]
�t Size of time step [T]
�x Grid spacing in x-direction [L]
�y Grid spacing in y-direction [L]
�z Grid spacing in z-direction [L]
e Truncation error (index indicates order) [M/T/L3]
" Residue (FEM) [M/T/L3]
[Edon] Concentration of electron donor [M/L3]
� Slope relative to central differentiation slope (slope limiter approach) [-]
� Weighting function (FEM) [-]
Fad Antidiffusive flux (FCT approach, FDM discretization) [M/T]
fOC Organic carbon content of dry soil [M/L3]
Fh High order flux (FCT approach, FDM discretization) [M/T]
Fl Low order flux (FCT approach, FDM discretization) [M/T]
� Boundary of the domain [L2]
h Piezometric head [L]
HEC High order element contribution to a node (FCT, FEM discretization) [M/T]
J JACOBIAN matrix [L]
Jm Mass flux [M/L2/T]
K Parameter of the FREUNDLICH isotherm [-]
Kd Partitioning coefficient sorbed$ aqueous phase [-]
k
f

Hydraulic conductivity tensor [L/T]
L Differential operator
L� Adjoint differential operator
kdec Decay rate [1/T]
kgr Growth rate [1/T]
Ki Inhibition concentration (MONOD-HALDANE kinetics) [M/L3]
Kinh Inhibition concentration (general kinetics) [M/L3]
Km MICHAELIS-MENTEN or MONOD coefficient [M/L3]
KO MICHAELIS-MENTEN coefficient for oxygen [M/L3]
KS MICHAELIS-MENTEN coefficient for substrate [M/L3]
km$i Mass transfer coefficient mobile$ immobile porosity [1/T]
KOC Partitioning coefficient organic carbon$ water [-]
� First-order decay coefficient [1/T]
LEC Low-order element contribution to a node (FCT, FEM discretization) [M/T]
M Mass matrix (FEM) [L3]
�max Maximum growth rate [1/T]
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n Parameter of the FREUNDLICH isotherm [-]
n Unit vector normal to surface [-]
ne Effective porosity [-]
nimm Immobile porosity [-]
nmob Mobile porosity [-]
� Iteration index
Ne NEUMANN number [-]

 Shape function [-]
!C Corrector polynomial (multistep time integration)
!P Predictor polynomial (multistep time integration)
P�

i;j Sum of positive/negative antidiffusive fluxes (FCT approach) [M/T]
Pe PECLET number [-]
Q�

i;j Maximum/minimum allowable antidiffusive fluxes (FCT approach) [M/T]
qin;out Volumetric source-sink term related to volume [1/T]
r Reaction rate [M/L3/T]
r̂ Nodal reaction rates [M/L3/T]
� Soil density [M/L3]
� Convergence rate (multistep time integration)
R�i;j Ratio ofQ�

i;j=P
�

i;j (FCT approach) [M/T]
~rmax Maximum reaction rate related to biomass [1/T]
s Innercell slope of concentration (slope limiter approach) [M/L2]
si Local coordinate in directioni (FEM) [-]
S0 Storativity [-]
t Time [T]
T Correction factor for antidiffusive mass flux (FCT approach) [-]
� Curvature (slope limiter approach) [-]
� Weighting of implicit terms in FD time integration scheme [-]
� Upwind coefficient (SUPG approach) [-]
� Transport rate (Iterative two-step coupling) [M/L3/T]
V Volume [L3]
va Seepage velocity [L/T]
vf DARCY velocity [L/T]
X Biomass concentration related to pore volume [M/L3]
Y Yield coefficient [-]
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