

Motivation

Cluster of Excellence

Modelling flow and transport processes across complex interfaces separating a free-flow and a porous-medium region \rightarrow focus on interface structure and processes

SimTech

Applications: transvascular exchange (Junqueira et al. 2002), evaporation influenced by a wind field, water management in fuel cells influenced by the gas-channel/diffusion-layer interface

Coupling concept: Mortar Method

Coupling concept based on thermodynamic equilibrium using the mortar method:

Stokes equation (free-flow region):

$\int_{B_{\rm ff}}$	$\frac{\partial \varrho \mathbf{v}}{\partial t} \mathrm{d}B_{\mathrm{ff}} +$	$\int_{\partial B_{\mathrm{ff}i}}$	$[p\mathbf{I} -$	$\mu(abla \mathbf{v}$	$+ \nabla \mathbf{v}^T$)]• n	$\mathrm{d}s +$	$\int_{\frac{\partial I}{\partial I}}$
							+	ſ

Mass balance (porous medium, \mathbf{v}_{lpha} given by Darcy's I $\int_{B_{\rm pm}} \sum_{\alpha} \phi \frac{\partial \varrho_{\alpha} S_{\alpha}}{\partial t} \, \mathrm{d}B_{\rm pm} - \int_{\partial B_{\rm pm}} \sum_{\alpha} (\varrho_{\alpha} \mathbf{v}_{\alpha}) \cdot \mathbf{n} \, \mathrm{d}s - \int_{\partial B_{\rm pm}} \int_{\partial B_{\rm pm}} \sum_{\alpha} (\varphi_{\alpha} \mathbf{v}_{\alpha}) \cdot \mathbf{n} \, \mathrm{d}s - \int_{\partial B_{\rm pm}} \int_{\partial B_{\rm pm}} \int_{\partial B_{\rm pm}} \int_{\partial B_{\rm pm}} \sum_{\alpha} (\varphi_{\alpha} \mathbf{v}_{\alpha}) \cdot \mathbf{n} \, \mathrm{d}s - \int_{\partial B_{\rm pm}} \int_{\partial$

Transport equation, Lagrange multiplier enforce contin $\int_{B} \sum_{\alpha} \phi \frac{\partial \varrho_{\alpha} S_{\alpha} x_{\alpha}^{\kappa}}{\partial t} \, \mathrm{d}B - \int_{\partial B_{i}} F^{\kappa} \cdot \mathbf{n} \, \mathrm{d}s - \int_{\partial B_{\Gamma}} \sum_{\alpha} (\varrho_{\alpha} \mathbf{v}_{\alpha} x_{\alpha}^{\kappa} - D_{\alpha}^{\kappa} \varrho_{\alpha} \nabla x_{\alpha}^{\kappa}) \cdot \mathbf{v}_{\alpha} \nabla x_{\alpha}^{\kappa} + D_{\alpha}^{\kappa} \varphi_{\alpha} \nabla x_{\alpha}^{\kappa} + D_{\alpha}^{\kappa} +$

Energy balance, Lagrange multiplier enforce continuity $\int_{\Sigma} \sum \phi \frac{\partial \left(\varrho_{\alpha} u_{\alpha} S_{\alpha} \right)}{\partial t} + (1 - \phi) \frac{\partial \left(\varrho_{s} c_{s} T \right)}{\partial t} \mathrm{d}B - \int_{\partial B} F^{T} \cdot \mathbf{n} \, d\theta$

Coupling free flow and flow in porous media using mortar elements

Katherina Baber, Klaus Mosthaf, Bernd Flemisch, Steffen Müthing, Rainer Helmig Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart

Numerical example: Evaporation from soil

$$\int_{\partial B_{\rm ff\,\Gamma}} \underbrace{([p\mathbf{I} - \mu(\nabla \mathbf{v} + \nabla \mathbf{v}^T)] \cdot \mathbf{n})_{\mathbf{n}}}_{\lambda_p} \, \mathrm{d}s$$
$$\int_{\partial B_{\rm ff\,\Gamma}} \underbrace{([p\mathbf{I} - \mu(\nabla \mathbf{v} + \nabla \mathbf{v}^T)] \cdot \mathbf{n})_{\mathbf{t}}}_{\lambda_{v_x}} \, \mathrm{d}s = \int_{B_{\rm ff}} \mathbf{f} \, \mathrm{d}B_{\rm f}$$

$$\sum_{\alpha} (\varrho_{\alpha} \mathbf{v}_{\alpha}) \cdot \mathbf{n} \, \mathrm{d}\boldsymbol{s} = \int_{B_{\mathrm{pm}}} \sum_{\alpha} \mathbf{q}_{\alpha} \, \mathrm{d}B_{\mathrm{pm}}$$

nuity of component fluxes:

$$x_{\alpha}^{\kappa} - D_{\alpha}^{\kappa} \varrho_{\alpha} \nabla x_{\alpha}^{\kappa}) \cdot \mathbf{n} \, \mathrm{d}s = \int_{B} \sum_{\alpha} \mathbf{q}_{\alpha}^{\kappa} \, \mathrm{d}B$$

$$\mathbf{d}s - \int_{\partial B_{\Gamma}} \underbrace{\sum_{\alpha} (\varrho_{\alpha} h_{\alpha} \mathbf{v}_{\alpha} - \lambda \nabla T) \cdot \mathbf{n}}_{\alpha} \, \mathbf{d}s = \int_{B} \mathbf{q}^{T} \, \mathbf{d}B$$

Local mechanical equilibrium Continuity of normal forces:

$$\int_{\Gamma} \boldsymbol{\lambda}_{p} \, \mathrm{d}\boldsymbol{s} - \int_{\Gamma} p_{g}^{\mathrm{pm}} \, \mathrm{d}\boldsymbol{s} = 0$$

$$\int_{\Gamma} \boldsymbol{\lambda}_{\boldsymbol{v}_{\boldsymbol{x}}} \, \mathrm{d}\boldsymbol{s} - \int_{\Gamma} \frac{\sqrt{k_{i}}}{\alpha_{\mathrm{BJ}} \mu} \boldsymbol{\tau} \, \mathbf{n} \cdot \mathbf{t} \, \mathrm{d}\boldsymbol{s} = 0$$

Continuity of normal fluxes:

$$\int_{\Gamma} \lambda_{\mathbf{v} \cdot \mathbf{n}} \, \mathrm{d}s$$

$\left[x_g^w\right]^{\mathrm{ff}} \mathrm{d}$

Local thermal equilibrium:

Beavers-Joseph-Saffman condition:

$$-\int_{\Gamma} [\varrho \mathbf{v} \cdot \mathbf{n}]^{\mathrm{ff}} \mathrm{d}\boldsymbol{s} = 0$$

Local chemical equilibrium: Continuity of mole fractions:

$$s - \int_{\Gamma} [x_g^w]^{\mathrm{pm}} \mathrm{d}s = 0$$

$$\int_{\Gamma} [T]^{\rm pm} \mathrm{d}\boldsymbol{s} = 0$$

Outlook: Water management in fuel cells

Water management is crucial for the performance of PEM-fuel-cells.² The water transport is significantly influenced by the processes at the interface between gas channel (GC) and gas-diffusion layer (GDL):

Goals:

a consistent GC-GDL coupling strategy using the developed coupling concept to account for evaporation and condensation ^{1,3} the prediction of droplet formation on the GDL-surface

Interface Model: Bundle-of-Tubes

One-phase, three-component non-isothermal Stokes flow

Two-phase, three-component non-isothermal Darcy flow

 \rightarrow the top layer of the GDL is approximated by a bundle-of-tubes description

 \rightarrow the Young-Laplace equation is used to determine which tubes are filled with water: $2\sigma cos \alpha$ $p_c =$

Coupling concept for the one-phase micro-/macro-model:

$$\int_{\Gamma} \lambda_p \, \mathrm{d}s - \frac{1}{A^{\mathrm{tubes}}} \sum_i \left(\underbrace{\frac{\int_{\Gamma}}{\sum_i}}_{i} \right)^{-1}$$

$$\int_{\Gamma} \lambda_{\mathbf{v} \cdot \mathbf{n}} \, \mathrm{d}\boldsymbol{s} - \sum_{i} -K_{i}^{\mathrm{tubes}}(d\boldsymbol{s}) \, d\boldsymbol{s} -$$

Literature:

- University, 2012.
- compositional free flow, Water Resources Research, 2011.

[1] Baber, K., Mosthaf, K., Flemisch, B., Helmig, R., Müthing, S. and Wohlmuth, B.: Numerical scheme for coupling two-phase compositional porous-medium flow and one-phase compositional free flow, accepted in IMA Journal of Applied Mathematics, 2011. [2] Qin, C.: Numerical investigations on two-phase flow in polymer electrolyte fuel cells, Utrecht

[3] Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I. and Wohlmuth, B.: A coupling concept for two-phase compositional porous-medium and single-phase