Interfacial Area Based Modelling:

CO.-Storage Simulation & Multiphysics Outlook
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Carbon Capture & Storage (CCS) Simulation Description
* Storage of Carbon Dioxide may be necessary for short term slowdown of * Injection of CO» in the middle of the domain
climate change * Leakage through a second well
Inclusion of Interfacial Area (|a) » Hydrostatic Dirichlet conditions on the lateral sides
* First step towards rational thermodynamics description of multiphase flow * No-flow conditions at top / bottom
in porous media S\ awn
* Quantification of kinetic energy and mass transfer between phases [1] 0200 0400 0600  0.800 200 400 600 800
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First Goal

* Validation of model against Benchmark 1.1 and 1.2 [2] _ﬁ e
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Figure 3: Modelling results showing saturation (left) and interfacial area (right). Depicted
region is a 2560m-350m zoom of the 1000m-1000m base area.

injection well leaky well

aquitard 100 m

o 1 Future Work

aquifer
o Obstacle
100 m = 0. 0. -0.f

,s | | * Root of partial derivative of
interfacial area w.r.t. capillary
pressure

* Model breaks down at those nodes
hitting the root

CO2 plume - | —

f
'

!
'

10000

Figure 1. Schematic depiction of the leaky well scenatrio.
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* Use of the most simple model including interfacial area

Governing Equations [3]:
9 qa(g ) = = Deal with the occuring problems
o Qo

o,V (0aVsa) = 0aQa numerically

O wn 05, = Use thermodynamically :
ot - V- (awnvwn) — Wewn(sfw;pc)
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Figure 4: Partial derivative of a,,, (S.,p.)

with = description of hysteresis w.r.t. capillary pressure. The root of the
Voo — —KS 0ad ( Po z) primary drainage curve is highlighted.
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o 9un | Ouwn Op * Inclusion of compositional (2c) effects
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* Inclusion of non-isothermal (ni) effects

Multiphysics Approach

* Adjust model complexity to occuring processes

* Interfacial area — capillary pressure — saturation surface a.n (Sw, pc) * Save computational time
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Figure 5: Conceptual model for multiphysics appoach.
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Figure 2: Constitutive relation between interfacial area, capillary pressure and saturatin. Red Points
mark a point close to the injection well.
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