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Abstract We derive a set of analytical solutions for the
transport of adsorbing solutes in an immiscible, incom-
pressible two-phase system. This work extends recent
results for the analytical description for the movement
of inert tracers due to capillary and viscous forces
and dispersion to the case of adsorbing solutes. We
thereby obtain the first known analytical expression for
the description of the effect of adsorption, dispersion,
capillary forces and viscous forces on solute movement
in two-phase flow. For the purely advective transport,
we combine a known exact solution for the descrip-
tion of flow with the method of characteristics for
the advective transport equations to obtain solutions
that describe both co- and spontaneous counter-current
imbibition and advective transport in one dimension.
We show that for both cases, the solute front can be lo-
cated graphically by a modified Welge tangent. For the
dispersion, we derive approximate analytical solutions
by the method of singular perturbation expansion. The
solutions reveal that the amount of spreading depends
on the flow regime and that adsorption diminishes the
spreading behavior of the solute. We give some illustra-
tive examples and compare the analytical solutions with
numerical results.

K. S. Schmid (B) · S. Geiger · K. S. Sorbie
Institute of Petroleum Engineering, Heriot-Watt University,
Edinburgh, EH14 4AS, UK
e-mail: karen.schmid@pet.hw.ac.uk

S. Geiger
e-mail: sebastian.geiger@pet.hw.ac.uk

K. S. Sorbie
e-mail: ken.sorbie@pet.hw.ac.uk

Keywords Analytical solutions · Two-phase flow ·
Mixing · Transport · Adsorption · Dispersion ·
Spontaneous imbibition · Perturbation expansion ·
Welge tangent

1 Introduction

In many reservoir engineering and environmental ap-
plications, the unsteady flow of the two phases and at
the same time miscible displacement within each phase
occur. For example, if water is pumped into a reservoir
to recover oil, the ionic composition of the connate
water is often different from that of the injected brine.
The changing ionic composition can enhance recovery
[2, 29, 65], or the mixing of the two different brines
leads to the precipitation of minerals and formation of
scale [41, 58] that hinder production. For the purpose of
enhanced oil recovery and the bioremediation of conta-
minant non-aqueous phase liquids, chemical floods are
designed where understanding the brine composition is
crucial, since the interfacial activity, phase behavior and
mobility control of the chemical flood depend as much
on the concentration of the chemicals as they depend
on the composition and mixing behavior of the ionic
environment itself [37]. Another example is carbon
sequestration. In this case, CO2 occurs as a component
dissolved in the water phase, and the mixing with the
brine triggers a number of aqueous reactions which trap
the CO2 in the minerals [63]. In all these cases, a proper
understanding of miscible displacement and dispersive
mixing is fundamental to properly assess the amount
of reactive solutes involved in chemical reactions (e.g.
[12, 17–19, 21]).
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Contrary to the significant body of literature on
mixing and spatial heterogeneity (for a recent review,
see [19]), investigations for two-phase systems so far
focus on the spreading of the phases themselves only
[14, 38, 50, 51] and omit transport which can be ex-
plained by the complexity of the governing equations
where both capillary, viscous and dispersive terms are
coupled in a highly non-linear way.

Clearly, for gaining a full understanding of all the
mechanisms and effects involved, numerical simula-
tions are important, and in recent years, there has been
a substantial progress in the development of numerical
methods (e.g. [7, 24, 30, 31, 40, 55]). But analytical
solutions are needed as a possible benchmark tool.
Also, analytical solutions often act as ‘building blocks’
for numerical methods themselves (e.g. [7, 39]).

For the growth of the dispersive zone, the adsorption
behavior of a solute plays a particularly important role
since it affects the way, how the dispersive zone grows.
Adsorption leads to a retardation of a component
behind the fluid front of the carrying phase, and as
a consequence, the fluid field which determines the
component’s dispersive behavior is different from the
one of an inert component.

In this paper, we therefore extend an earlier work
[56] where an analytical description for the movement
of inert solutes in two-phase flow was given, in three
ways: (1) We solve the case of pure advection, i.e. if
dispersion can be ignored and if the tracers are not inert
but rather interact with the rock through adsorption.
We show that for specific cases, the solution can be
represented by a modified Welge tangent even in the
presence of capillarity. These are the first known ex-
pressions for the description of the movement of solutes
due to capillarity, viscous forces and adsorption. (2) We
show that for the viscous limit, i.e. the case of negligible
capillarity, the solutions given in [32] are approached.
(3) We derive closed form analytical expressions for
hydrodynamic dispersion and show analytically how
the growth rate of the dispersive zone depends on
the adsorption behavior of the solute. These solutions
are the first known analytical expressions for hydro-
dynamic dispersion, capillarity and adsorption in two-
phase flow. For all the extensions (1)–(3), we addition-
ally show that our earlier solutions for the inert case are
recovered as a special case.

The remainder of this paper is structured as follows:
First, we introduce the mathematical model and basic
notation and give a short overview over existing so-
lutions for immiscible two-phase flow without trans-
port. Then, we solve the advection problem exactly
by two different methods: Based on a known integral
solution for two-phase flow, we first combine a vari-

able transformation with the physical notion that for
the dispersion-free limit, the solutes can be written
as functions of their carrying fluid only; second, we
use the method of characteristics. We show that if the
boundary and initial conditions of the flow problem
satisfy the McWhorter and Sunada problem [45], the
solution to the transport equation can be represented
by a modified Welge tangent [60]. Subsequently, we use
a perturbation expansion to derive analytical expres-
sions for hydrodynamic dispersion for the case where
the dispersion coefficient is small compared to the char-
acteristic length of the system. Based on these equa-
tions, we are able to obtain an analytical expression for
the growth rate of the dispersive mixing zone. Then,
we compare the obtained solutions against numerical
references solution for the cases of co- and counter-
current imbibition and for the capillary-free limit, the
Buckley–Leverett problem [9] and finish with some
conclusions.

2 Mathematical model

We consider immiscible, incompressible, isothermal
two-phase flow through a homogeneous, horizon-
tal, one-dimensional porous medium where the fluid
phases additionally transport components. Material
balance for the two phases leads to the equations [4]

φ
∂Sw

∂t
= − ∂

∂x
(qw) , (1)

and

Sn + Sw = 1, (2)

where Sw is the wetting phase saturation, Sn the non-
wetting phase saturation and φ is porosity which is
assumed to be constant throughout the whole do-
main. Furthermore, we assume that the volume flux of
the wetting phase and the non-wetting phase, qw and
qnw, can be described by the multiphase extension of
Darcy’s equation [48] which describes the volume flux
due to a gradient in the phase pressures pw and pnw,

qw = −K
kw

μw

∂

∂x
pw,

qnw = −K
knw

μnw

∂

∂x
pnw.

(3)

Here, K is the absolute permeability, μw is the viscosity
of the wetting phase and μnw that of the non-wetting
phase and knw = knw(Sw) and kw = kw(Sw) are the rel-
ative permeability of the non-wetting and wetting fluid,
respectively, that describe the impairment of the one
fluid phase by the other. The two-phase pressures pw



Comput Geosci

and pnw are related through the capillary pressure
pc = pnw − pw. Combining the definition of capillary
pressure with Eqs. 1 and 2, one can rewrite qw as an
expression of the total volume flux qt = qnw + qw which
yields

qw = f (Sw)qt − D
∂Sw

∂x
. (4)

Here, D can be thought of as a capillary dispersion
coefficient for the fluid phases, and together with f , it
describes the capillary hydraulic properties of the fluid-
porous medium system and is defined through

f (Sw) =
(

1 + knwμw

kwμnw

)−1

,

D(Sw) = −K · knw f
μnw

dPc

dSw
. (5)

In the following, we assume that (a) the only chemical
interaction between the components and the porous
medium is through adsorption and otherwise they do
not alter the porous medium, (b) the components do
not change the flow parameters, (c) they do not parti-
tion into the other phase, (d) the solute mass flux due to
hydrodynamic dispersion within a phase is described by
a Fickian model and (e) density effects can be ignored.
Then the n continuity equations for the n different
components can be written as [1, 27]

φ
∂(SwC j)

∂t
+ ∂

∂t
· [

(1 − φ)ρr As, j
] =

− ∂

∂x
(qw ·Cj)+ ∂

∂x
·
(
φSw DH,w

∂Cj

∂x

)
, j= 1, . . . , n (6)

and

φ
∂(Snχk)

∂t
+ ∂

∂t
· [

(1 − φ)ρr Bs,k
] =

− ∂

∂x
(qn · χk) + ∂

∂x
·
(

φSn DH,n
∂χk

∂x

)
, k = 1, . . . , m,

(7)

where we denoted the adsorption per unit mass of rock
of component C j and χk by As, j and Bs,k, respectively,
and the rock density by ρr.

As stated above, the components are assumed to
not change the flow field. If chemical flooding with
surfactants, polymers, foams etc. is considered, the
constitutive relationships depend on both saturation
and component concentration. For this case, analytical
solutions can be derived, if both capillarity and hydro-
dynamic dispersion are ignored. This leads to a system
of hyperbolic conservation laws, and the method of
characteristics or the method of chromatography can be
used to derive analytical solutions (e.g. [32, 33, 36, 53,
54, 57]). As explained in the introduction, our primary
interest is the mixing of the adsorbing but otherwise
inert components (Fig. 1). We hence assume the cap-
illary hydraulic properties to be functions of saturation
only. For the solutes in the water phase, Eq. 6 assumes
that the volume fraction of the components is small
compared to that of the wetting phase which for most
practical applications, like different ion compositions,
is an excellent approximation [53]. The solutes in the
non-wetting phase can consume any arbitrary fraction
of the non-wetting phase volume [39]. DH,γ is the

Fig. 1 Schematic
representation of
one-dimensional,
uni-directional displacement
of a non-wetting phase by a
wetting phase with an initial
wetting saturation Si. Behind
the wetting front, a mixing
zone between the ‘old’
composition of the wetting
phase and the ‘new’ one of
length δ(t) develops. Note
that the solute front always
trails the saturation front if
Swr > 0, see Fig. 3 1 2

2

1
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hydrodynamic dispersion coefficient and for the one-
dimensional case becomes [4]

DH,γ = αl,γ
qγ

φ
+ Dmol, γ ∈ {n, w} (8)

where αl,γ is the coefficient of hydrodynamic dispersion
and accounts for effects of the flow field and Dmol is the
effective molecular diffusion coefficient. In the analysis
that follows, we will assume j = 1, but the entire analy-
sis immediately carries over to the case where more
than one component is present. Similarly, we mainly
will focus on the case where the non-wetting phase has a
homogeneous composition, i.e. k = 1, and is completely
described by the restriction Eq. 2. Again, the analysis
that follows can easily be extended to multiple solutes
χ j, j = 1, . . . , m. To simplify notation, we will write DH

instead of DH,w. We set

	 := (1 − φ)

φ
ρr As. (9)

For thermodynamic equilibrium, the isotherm is a func-
tion of C only, i.e. 	 = 	(C) [5], and for small C can be
approximated by a linear isotherm [5]

	 = 	(C) =
(

d	

dC

)
· C =: Ds · C. (10)

Ds can be thought of as a ‘retardation’ term. Both
the conservation equation for the fluid phase and the
solutes are of parabolic type, and consequently, the re-
sulting solutions are smooth. Therefore, we can expand
Eq. 6 to arrive at

φ(Sw + Ds)
∂C
∂t

= −qw
∂C
∂x

+ ∂

∂x
·
(

φSw DH
∂C
∂x

)
. (11)

We denote the Peclet number of phase γ by Peγ =
qγ · L/(φDmol), γ ∈ {n, w}, where L is the length char-
acteristic for hydrodynamic dispersion. For advection
dominated problems with a Peclet number Peγ > 10,
molecular diffusion becomes negligible compared to
mechanical dispersion [4] and thus is ignored in the
following. The transport of a component thus consist of
an advective part which according to Eq. 4 has a viscous
and a capillary component and a dispersive one.

We derive an analytical solution for the transport
Eq. 6 that fully considers linear adsorption, capillary
effects and hydrodynamic dispersion. Thus, all the
physical mechanisms that account for solute transport
and mixing in a homogeneous two-phase system are
taken into account. The solution is obtained from two
main ideas. First, we note that for cases where Sw

and qw in the conservation equation for C (Eq. 6) are
known either from analytical or numerical solutions,
the problem of solving the conservation equation for

Sw (Eq. 1), together with equations for qw, f (Sw)

and D(Sw) (Eqs. 4, 5 and 6), reduces to solving one
advection–dispersion–reaction equation (ADRE) for
the concentration C. Sw and qw are fully determined by
Eqs. 1 together with Eqs. 4 and 5 and are not affected
by the adsorption of the solute. The highly non-linear
term due to capillary forces in Eq. 4 poses a main math-
ematical difficulty for deriving analytical solutions, and
thus, only few exact solutions are known (see [56]
for an overview). We choose the ones derived in [45]
since they allow for both general capillary hydraulic
properties and the consideration of co- and counter-
current flow. Also, it can be shown that their solution
given for counter-current flow situation is equivalent to
the common situation of spontaneous, counter-current
imbibition [56]. Thus, our solutions contain the com-
mon situation where a sorbing solute is transported
during spontaneous, counter-current imbibition. The
only time when we make specific use of the special
form of these solutions, however, is for the explicit
determination of the saturation level at which the solute
advective front breaks through and in the examples
given in Section 5. The nonlinear expressions derived
for the characteristics and the hydrodynamic dispersion
and reaction are valid for any flow and saturation field
known either from numerical solutions like streamline
simulations [7, 16, 35] or analytical considerations.

Although this significantly reduces the complexity
of the problem, the ADRE Eq. 11 has still time- and
space-dependent coefficients, and no analytical solu-
tions are known. Secondly therefore, to derive a solu-
tion for it, we use the same approximation as in [56]:
We separate the two physical transport mechanisms
in Eq. 6, i.e. the advective motion due to viscous and
capillary forces, and dispersive mixing. The advective
part is solved for exactly by two different approaches:
First, we use the physical notion that if dispersion can
be ignored, i.e. DH = 0 in Eq. 6, C is a function of
Sw only, and an explicit expression for the location of
the solute front can be derived. Secondly, we use the
method of characteristics. Both approaches yield the
same result. We show that if qw and Sw are described
by the McWhorter and Sunada problem, the location
of the solute front can be determined graphically by a
modified Welge tangent [60]. To the best of our knowl-
edge, this is the first analytical solution that accounts
for adsorption and capillary effects on tracer transport.

Next the effect of hydrodynamic dispersion is su-
perimposed on the advective motion via a singular
perturbation expansion around the advective front of
the solute. Singular perturbation techniques have been
used previously for describing dispersion in unsteady
flow fields of a single phase [15, 20, 26, 49, 61, 62]
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and only recently were extended to the description of
dispersion of inert tracers in two-phase flow [56]. We
show that if the dispersion is small compared to a char-
acteristic length of the system, very good agreement
between our analytical approximation and a numerical
reference solution is achieved. While we are mainly
concerned with the combined effects of adsorption,
capillary, viscous and dispersive processes and adsorp-
tion in this paper, the equations derived for the char-
acteristics and the hydrodynamic dispersion are valid
for any given flow field, and for illustration, we also
combine them with the solution for the capillary-free
limit, the Buckley–Leverett problem [9]. To the best of
our knowledge, this is the first analytical solution that
fully describes the complex dependence of the effective
dispersion on adsorption and the simultaneous and
unsteady flow of the two phases. From these analytical
expressions, we finally obtain equations for the growth
rate of the dispersive zone both for the case where
capillary pressure is considered and for the viscous
limit.

3 Solution of the advective problem

We first consider the dispersion-free limit of Eq. 11, i.e.
the case DH = 0. We will show that if an initial wetting
phase is present, the solute front travels behind the
fluid displacement front and breaks through at a certain
saturation value S∗

w. We will show that the retardation is
due to the combination of the initial wetting saturation
that acts as a storage for the solute and the adsorption,
i.e. that adsorption alone cannot explain the retardation
of solutes.

Two possibilities exist for deriving an analytical so-
lution. The first one uses the physical notion that C
is carried by the respective fluid phase, and thus, we
can write C = C(Sw). This together with a variable
transformation leads to a simple ordinary differential
equation (ODE) for C. From this, we obtain an explicit
expression for the saturation value S∗

w at which the ad-
vective front occurs that can be represented graphically
by a modified Welge tangent [60]. We can obtain the
same result for the location of the jump, if we employ
the method of characteristics for solving Eq. 11. This
has two advantages: First, it gives a mathematically
rigorous justification for the physical notion that for
the dispersion-free limit, C must be a function of Sw.
Second, we obtain analytical expressions for the char-
acteristic coordinates. They will prove to be central for
the derivation of the dispersion approximation. Fur-
thermore, if the solute is inert, i.e. we have Ds = 0, the

obtained solutions reduce to the ones derived in [56] for
the advective case.

3.1 Preliminaries

For the solute, we consider the boundary and initial
conditions

C(x = 0, t) = C0,

C(∞, t) = Ci,

C(x, 0) = Ci, (12)

and for qw and Sw, we use the initial and boundary
conditions

q0 = qw(x = 0, t) = At−1/2, (13a)

Sw(x = 0, t) = S0, (13b)

Sw(∞, t) = Si, (13c)

Sw(x, 0) = Si, (13d)

where the parameter A is a constant that cannot be
chosen freely but depends on the capillary hydraulic
properties according to [45]

A2 = φ

2(1 − fi R)2

∫ S0

Si

(Sw − Si)D(Sw)

(F − fn)(Sw)
dSw, (14)

where fn = ( f − fi)R · (1 − fi R)−1 is the normalized
fractional flow function, fi = f (Swi), and R = qt/q0.
For unidirectional displacement, qt = q0 and conse-
quently R = 1, and for counter-current flow, qt = R =
0. The maximally possible value for S0 is 1 − Snr, where
Snr is the residual saturation of the non-wetting phase.
We introduce the modified fractional flow function
[44, 52]

F(x, t) = qw/q0 − fi R
1 − fi R

, (15)

F has the physical meaning of the ratio of the net
wetting phase flux at (x, t) to the net influx of a wetting
phase. In contrast to the classical fractional flow func-
tion f , F fully incorporates the influence of capillary
pressure and is given by the non-linear equation [45]

F(Sw) = 1 −
(∫ S0

Sw

(β − Sw)D(β)

F(β) − fn(β)
dβ

)

·
(∫ S0

Si

(γ − Si)D(γ )

F(γ ) − fn(γ )
dγ

)−1
. (16)
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Before we proceed to transform the conservation
Eq. 6 for C into an equivalent integrable ODE, a
remark on the fixed flow rate q0 is in order. Both for
the case of co- and counter-current flow, the situation of
an inflow rate that declines with t−1/2 over time occurs
in many practical settings. For the case of co-current
imbibition (Fig. 2), the flow rate q0 as specified above
corresponds to a pressure drawdown at the inlet accord-
ing to Darcy’s Eq. 3. Possible boundary conditions for
that scenario are, for example, setting p = pw at x = 0
or p = pres < pw at x = ∞.

For the counter-current case, however (Fig. 2), it has
been overlooked until recently [56] that the constant
A in Eq. 14 is exactly such that q0 = qw(x = 0, t) is
determined by the saturation gradients and the result-
ing gradient in capillary pressure only, i.e. there is no
imposed forced inflow rate at the left boundary [56].
The situation is that of spontaneous, counter-current
imbibition and A measures the material’s ability to
spontaneously imbibe the wetting phase [56]. Spon-
taneous, counter-current imbibition is of outstanding
interest since it constitutes one of the main produc-
tion mechanisms in water-wet and mixed wet frac-
tured reservoirs [47] where the wetting phase drawn
from the high permeability fracture into the oil-rich
low permeability rock matrix by capillary action. Note
also that the total amount of fluid injected/imbibed
can be expressed as Qw(t) = ∫ t

0 q0(τ )dτ = 2At1/2. Thus,
although the rate q0 tends towards infinity for early
times, Qw(t) satisfies Qw(t = 0) = 0. Finally, we point
out that boundary conditions with S0 and C0 facilitate
the solution. Physical boundary conditions at x = 0 fix
fluxes for the fluid phases and components, resulting in
mixed 1–2 type boundary conditions.

no flow surfaces

no flow boundary

Fig. 2 Situation of counter-current imbibition (top) and co-
current imbibition (bottom)

Altogether, for the counter-current case, the initial
and boundary conditions reduce to

qw(x, t) = −qn(x, t), (17a)

Sw(x = 0, t) = S0, (17b)

Sw(∞, t) = Si, (17c)

Sw(x, 0) = Si. (17d)

3.2 Solution as a Welge tangent

We introduce the similarity variable

λ = xt−1/2. (18)

Since the saturation profile Sw(x, t) is a monotone
function of (x, t), we have Sw = Sw(λ), or λ = λ(Sw),
respectively. Employing the definition of F, Eq. 15, and
using that q0 = At−1/2, the conservation equation for
Sw, Eq. 1, can be expressed as

−φ
∂Sw

∂t
= At−1/2(1 − fi R)

∂ F
∂x

. (19)

Then, the similarity variable λ allows Eq. 19 to be
written as an ODE [45]

λ(Sw) = 2A(1 − fi R)

φ

dF
dSw

. (20)

Since F is defined in terms of qw and qw depends on Sw,
the ODE Eq. 20 is subject to

F =
{

1 for Sw = S0

0 for Sw = Si.
(21)

The conservation Eq. 11 for C can be rewritten as an
ODE in the same manner

dC
dSw

[
−λ + 2A (F(1 − fi R) + fi R)

φ(Sw + Ds)

]
= 0 (22)

subject to

C =
{

C0 for Sw = S0

Ci for Sw = Si.
(23)

Equation 22 describes the transport of the jump from
the initial concentration Ci to the injected concentra-
tion C0 depending on the saturation and has the simple
solution

C(Sw) =
{

C0 for Sw < S∗
w

Ci for Sw > S∗
w.

(24)

Since the jump C occurs at S∗
w, the value of S∗

w must
occur where the expression in the bracket of the ODE



Comput Geosci

Eq. 22 becomes zero. This yields a non-linear expres-
sion for S∗

w

F(S∗
w)

Ds + S∗
w

+ fi R
(1 − fi R)S∗

w
= dF

dSw
|S∗

w
, (25)

respectively, for Swi = Swr and fw(Swi) = fi = 0:

F(S∗
w)

Ds + S∗
w

= dF
dSw

|S∗
w
. (26)

All the functions and parameters in Eqs. 25 and 26
are known explicitly, and the solution can easily be
obtained by prescribing S0, determining F from Eq. 16
and then solving the non-linear Eq. 25. Any capil-
lary hydraulic properties can be used. For arbitrary
functions, the integrals of the exact solution need to
be solved numerically. Determining S∗

w can also be
performed graphically by drawing a straight line from
(0,

fi R
(1− fi R)

) tangent to the fractional flow curve F, see
Fig. 3. Note that if initially a wetting phase is present,
which is the case for most realistic geological forma-
tions and reservoirs, the component front gets retarded
even if Ds = 0 and does not travel along with the phase
front. This is intuitively obvious, since if the connate
wetting phase has a composition different from the
injected one, the ‘new’ composition needs to fill the
‘old’ phase first and thus breaks through behind the
wetting front (Fig. 1).

Fig. 3 Fractional flow functions for purely viscous, co-current
and counter-current (spontaneous imbibition) flow for different
inlet saturations S0. For the viscous and the counter-current
case, S0 = 1 − Snr, and for the cocurrent case, S0 < 1 − Snr. The
straight lines give the saturation values for the respective cases at
which the component that adsorbs with rate Ds jumps from its
initial value to the injected concentration for the dispersion-free
limit

Spontaneous counter-current imbibition Spontaneous
counter-current imbibition occurs when the wetting
fluid spontaneously imbibes into the porous medium
thus replacing the non-wetting phase which flows
out into the opposite direction, i.e. in our notation
qw = −qo, see Fig. 2, and hence R = fn = 0. As out-
lined above, for the case of counter-current flow, the
boundary condition q0 = A · t−1/2 does not represent a
forced inflow rate, but describes spontaneous imbibi-
tion, where A is a measure of the material’s ability to
imbibe the wetting fluid [56].

In the foregoing analysis, R was not set to a specific
value, and therefore, the respective expressions for A
and F can be obtained immediately from setting R = 0,
and the semi-analytical solution for C directly follows
from Eq. 24 for the thus modified expressions for A and
F with

F(S∗
w)

(S∗
w + Ds)

= dF
dSw

|(S∗
w). (27)

For partly water-wet fractured reservoirs, spontaneous,
counter-current imbibition represents a key recovery
mechanism since there, the water imbibes from the
fracture into the matrix thus replacing the oil that could
not be produced through flooding and thus through vis-
cous effects [6, 47]. Equations 24–26 therefore contain
the important situation where a sorbing solute is trans-
ported by spontaneous, counter-current imbibition.

As stated initially, we mainly focus on solutes in the
wetting phase and merely note that for the case where
S0 < 1, the saturation of the non-wetting phase at the
left boundary is non-zero and we can prescribe the
following initial and boundary conditions for solutes in
the non-wetting phase:

χ(x = 0, t) = χ0,

χ(∞, t) = χi,

χ(x, 0) = χi,

(28)

which immediately gives

χ(Sn) =
{

χ0 for Sn < S∗
n

χi for Sn > S∗
n,

(29)

where S∗
n satisfies

S∗
n = 1 − S∗∗

w , (30)

and

dF
dSw

|(S∗∗
w ) = F(S∗∗

w )

(1 − S∗∗
w + D̃s)

− R(1 − fi)

(1 − fi R)(1 − S∗∗
w + D̃s)

, (31)
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where we use

	̃ :=
(

1 − φ

φ

)
ρr Bs, and 	̃(χ) = D̃s · χ. (32)

3.3 Method of characteristics

Next, we derive the location of the jump in C at S∗
w

by the method of characteristics and show that the
so derived value for S∗

w agrees with the one given in
Eq. 25. The method of characteristics is more tech-
nical and lengthy than the intuitive approach taken
above, where we simply assumed that C is carried along
with the saturation and wrote C as a function of Sw

only. However, it has two advantages: First, it yields
a rigorous mathematical justification for the analytical
solution given in Eqs. 24–26. Second, it results in the
introduction of characteristic coordinates τ and θ that
will prove to be useful when we solve for dispersion in
Section 4.

The equation for characteristics for the Eq. 11 is

qwdt − (φSw + φDs) dx = 0. (33)

Equation 33 has an analytical solution in the sense that
there exists a function η(x, t) such that

−dη = qwdt − (φSw + φDs)dx,

∂η

∂t
= −qw, and

∂η

∂x
= (φSw + φDs)

(34)

if and only if

∂ (φSw + φDs)

∂t
= ∂ (φSw)

∂t
!= −∂qw

∂x
. (35)

The above is simply the continuity equation for the
wetting phase, and thus, η as specified above exists. The
characteristic can be determined from Eq. 34. From the
second equation of Eq. 34, it follows

η(x, t) =
∫ x

0
(φSw(ξ, t) + φDs) dξ + c̃(t). (36)

The function c̃(t) must be determined from the first
equation in Eq. 34. It follows

∂η

∂t
= ∂

∂t

∫ x

0
(φSw(ξ, t) + φDs) dξ + dc̃(t)

dt

=
∫ x

0

∂

∂t
(φSw(ξ, t) + φDs) dξ + dc̃

dt
= −qw

=
∫ x

0
−∂qw

∂x
|ξ dξ + dc̃

dt
.

(37)

Altogether, we arrive at

η(x, t) =
∫ x

0
(φSw(ξ, t) + φDs) dξ

−
∫ t

0
qw(0, α)dα. (38)

In the following it will be useful to transform the first
integral on the right-hand side of η onto the (Sw, t)
coordinate system, i.e. to use the fact that x = x (Sw, t).
By substitution, we thus get

η(Sw, t) =
∫ Sw

S0

(φSw(ξ, t) + φDs)
∂x
∂Sw

|ξ dξ

−
∫ t

0
qw(0, α)dα. (39)

We set

θ(Sw, t) :=
∫ Sw

S0

(φSw(ξ, t) + φDs)
∂x
∂Sw

|ξ dξ, and

τ(t) :=
∫ t

0
qw(0, α)dα. (40)

The characteristic coordinates given in Eq. 39 are valid
for arbitrary initial and boundary conditions, and any
qw, Sw and Sn that satisfy Eqs. 1 and 2. To derive an
explicit expression for the value Sw at which the solute
front occurs in the case where capillary effects are fully
considered, we now capitalize on the features of the
solution derived in [45].

By construction, θ and τ are the coordinates along
which Eq. 6 reduces to the simple form

∂C
∂τ

+ ∂C
∂θ

= 0. (41)

If C is given by the function H(x) at time t = 0, then the
above PDE has the simple solution

C(θ, τ ) = H(θ − τ) (42)

and an initial solute front travels along the curve which

satisfies θ
!= τ , i.e. S∗

w is such that η
!= 0. If the physically

motivated approach of assuming C = C(Sw) is valid,
then the saturation S∗

w is again given by Eqs. 25 and
26, respectively, which follows in the same manner as
in [56].

Before we derive the dispersion approximation, we
discuss some features of the solution for the advective
case.

3.4 Buckley–Leverett limit

It is interesting to note the similarity of Eq. 24 together
with Eq. 26 with the solution obtained for the uni-
directional two-phase, multicomponent viscous case,
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sometimes referred to as extended Buckley–Leverett
problem. The extended Buckley–Leverett problem also
satisfies Eq. 24, where for Si = Swr the constant S∗

w is
given in [32, 53]:

f (S∗
w)

(S∗
w + Ds)

= dF
dSw

|(S∗
w), (43)

i.e. we have the very same structure with the only
difference that the fractional flow function f (Sw) ne-
glects capillary forces where F(Sw) can be viewed as
a ‘modified’ fractional flow function that incorporates
both viscous and capillary effects. Equation 43 can also
be obtained from the method of chromatography, see
[54].

In cases where the imposed injection is large, capil-
lary effects can be neglected and the Buckley–Leverett,
i.e. the viscous, limit is approached. For our setting, this
is reached by making the parameter A large. It can
be shown analytically [11] that limS0→Sm A(S0) = Acr,
where Sm is the maximal achievable value and

Acr =
[ φ

2 (1 − fi)
2

∫ Sm

Si

(Sw − Si)D
F − fn

dSw

]1/2
< ∞. (44)

If the Welge tangent saturation [60] is denoted by Sb,
the fractional flow function F for the limiting case
becomes [45, 46]:

F(Sw) =
{

fn(Sw) for Sw ≥ Sb

fn(Sb)
(

Sw−Si
Sb−Si

)
for Sw ≤ Sb,

(45)

where fn is the normalized fractional flow function

fn = ( f − fi)R
1 − fi R

(46)

This gives Eq. 43 since the component front occurs after
the wetting front, and thus, S∗

w ≥ Sb.

4 Dispersion approximation

The analytical solution derived above is valid if hydro-
dynamic dispersion can be ignored. We will now derive
an approximate analytical solution for the ADRE. The
solution is constructed in the same way the solution to
the linear ADE would be constructed, with the only
difference that the parameters depend on the solution
for the saturation profile. This introduces a strong time
and space dependency of the coefficients, for which no
exact analytical solutions for dispersion are known, and
we will give an approximate analytical solution through
an asymptotic expansion. Although we will focus on
the case where the non-wetting phase is homogeneous

and consists of one component only, the same analyt-
ical procedure can be used for analysing the effect of
hydrodynamic dispersion in the non-wetting phase. To
this end, we first normalize the ADRE by introducing
c := C/C0, x̄ := x/L0, t̄ = t/T0 and q̄w = qw/V0, where
L0, T0 and V0 are a characteristic length, time and ve-
locity, respectively, such that O(T0) = O(L0) = O(V0)

[61]:

(φSw + φDs)
∂c
∂ t̄

= −q̄wν
∂c
∂ x̄

+ εν
∂

∂ x̄

(
Swq̄w

∂c
∂ x̄

)
, (47)

with

ε := αL

L0
and ν := V0T0

L0
.

For the case where dispersion needs to be taken into
account, the only known analytical solutions for the
ADRE are valid for the single-phase case with a con-
stant flow field and constant DH [10].

We therefore employ a different approach: singu-
lar perturbation expansion. Singular perturbation tech-
niques have been used before for treating the effect
of non-uniform flow fields on dispersion of inert and
adsorbing tracers in saturated and unsaturated single-
phase flow through porous media [15, 20, 26, 49, 61, 62].
We recently extended them to the case of inter tracers
in two-phase flow [56]. Its fundamental idea is that for
small ε, dispersion can be thought of as a perturbation
to the advection equation. For ε �= 0, the mathemat-
ical character of Eq. 47 fundamentally changes from
a hyperbolic PDE to a parabolic one, and thus, the
perturbation is of singular nature. The solution (Eq. 24)
to the advection problem (Eq. 11) is viewed as an ‘outer
solution’ to the ADRE that is a good approximation
away from a boundary layer. The boundary layer is
characterized as the zone where dispersive effects are
strong and thus will be located around the advective
front. By ‘magnifying’ this zone through appropriate
coordinate transformations and by using the notion that
around the front, qw and Sw can be approximated by
their values at the front, the PDE (Eq. 11) reduces to
the well-known heat equation. Then inner and outer
solution are matched and a uniformly valid, closed form
analytical solution is obtained.

Obviously, the idea of finding an approximate solu-
tion through a perturbation expansion does not only
apply to hydrodynamic dispersion, but to any situation
where a sharp front described by a hyperbolic PDE is
smeared out by some parabolic terms. Consequently,
earlier attempts to account for solute dispersion and
capillary effects used a perturbation expansion both
around the jump in C and around the Buckley–Leverett
shock in Sw [3, 5, 64].



Comput Geosci

However, this approach is unsatisfactory for two rea-
sons. First, the perturbation expansion for the capillary
part is only an approximation and leads to a loss of
some of the information on the flow field. Second,
to be able to use a perturbation approach, the flow
must develop a discontinuity which can serve as the
outer solution. While for the co-current situation the
outer solution would be the Buckley–Leverett solution,
it is not clear what can serve as outer solution for
the counter-current case. There, one has qt = 0, and
the conservation equation for Sw Eq. 1 only comprises
parabolic terms according to Eq. 4 for qw. Indeed,
none of the earlier attempts account for the situation
of spontaneous, counter-current imbibition despite its
tremendous practical importance for fractured reser-
voirs [47], but rather give an approximate solution for
the co-current case only.

To the best of our knowledge, the solutions we
present here therefore for the first time describe
the situation where all the physical mechanisms—co-
and counter-current imbibition, viscous effects and
dispersion—that account for the transport of a sorbing
solute and mixing in a homogeneous two-phase system
are taken into account.

Dispersive effects are strong around the jump in C
which travels along the characteristic coordinates (θ̄ , τ̄ ),
where the overbar denotes normalized variables. Thus,
to obtain an inner solution, it makes sense to first
transform Eq. 47 onto the (θ̄ , τ̄ ) coordinate system.
Through usage of the Leibnitz rule and the product
rule, we obtain

∂c
∂τ̄

+ ∂c

∂θ̄
= ε

q̄w0

[ 1
(Sw + Ds)(∂ x̄/∂Sw)

∂

∂Sw(
(Sw + Ds)Swq̄w

) ∂c

∂θ̄

+ (
φ(Sw + Ds)Swq̄w

) ∂2c

∂θ̄2

]
.

(48)

Note that if ε = 0 in Eq. 48, we obtain the normalized
version of the hyperbolic advection Eq. 41.

To magnify the region around the solute front, we
introduce the coordinate transformation

ξ = θ̄ − τ̄

εm
. (49)

The exponent m determines the ‘thickness’ of the
boundary layer and can be determined either from
physical or mathematical reasoning. Physically, it needs
to be such that within the boundary layer, dispersive
changes are of same order of magnitude as temporal
changes. Mathematically, it follows from the principle
that it must be possible to match the inner solution
‘around’ the boundary region with the outer one close

to the boundary region. Formally, this leads to Van
Dyke’s principle of least degeneracy [34, 59], which
yields the same boundary-layer thickness as the one
obtained from the physical approach. Transforming
Eq. 48 onto the (τ̄ , ξ) coordinate system yields

∂c
∂τ̄

= 1
q̄w0ε2m−1

[
εm

(Sw + Ds)(
∂ x̄
∂Sw

)

∂

∂Sw

(
(Sw + Ds)Swq̄w

)

× ∂c
∂ξ

+
(
φ(Sw +Ds)Swq̄w

)∂2c
∂ξ 2

]
. (50)

The order of temporal change of the left-hand side of
Eq. 50 needs to be the same as the one of the right hand
side which leads to m = 1/2. This is the same value for
m as for the case without adsorption as expected since
adsorption does not affect the flow field [56]. The PDE
(Eq. 50) was derived through a number of coordinate
transformation and thus is equivalent to Eq. 6.

We now seek an approximate analytical solution for
Eq. 47 through an asymptotic expansion

C(τ̄ , ξ) ∼ C0(τ̄ , ξ) + ε(1/2)C1(τ̄ , ξ) + O(ε). (51)

Inserting this in Eq. 50 with m = 1/2 and only retaining
terms of zeroth order in ε leads to

∂c
∂τ̄

= 1
q̄w0

(
φSw(Sw + Ds)q̄w

) ∂2c
∂ξ 2 . (52)

This is the well-known diffusion equation, and for
the case where the coefficients on the right-hand side
are functions of τ̄ only, many analytical solutions are
known [10, 13]. To arrive at that form of the diffusion
equation, we use the heuristic notion that Sw and q̄w will
undergo small changes around the solute front and thus
can be approximated by their values at the front. For-
mally, this corresponds to a Taylor expansion around
the solute front that is truncated after the first term and
thus gives the same order O(ε1/2) as the perturbation
expansion. Altogether, we arrive at

∂c
∂τ̄

= 1
q̄w0

(
φ(S∗

w + Ds)S∗
wq̄∗

w

) ∂2c
∂ξ 2 , (53)

where ()∗ denotes that the value is taken at the solute
front. The consequences and limitations of this ap-
proximation are discussed below. To be complete, the
diffusion Eq. 53 needs to be supplemented with initial
and boundary conditions. They follow from the inner
and outer solution and for the case of the step profile
coinciding with Eq. 12. The diffusion Eq. 53 together
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with Eq. 12 written in the (x, t)−coordinate system has
the solution [10, 15]

C(x,t) = C0

2
erfc

⎛
⎜⎝

∫ x
0 (φSw(ξ, t)+φDs)dξ −∫ t

0 qw(0, δ)dδ

2α
1/2
l

[∫ τ(t)
0 φ(S∗

w +Ds)S∗
w(

qw(S∗
w)

qw(S0)
)dt

]1/2

⎞
⎟⎠

(54)

By construction, the solution given in Eq. 54 is valid
for the region around the boundary layer, whereas the
solution given through Eq. 24 is valid away from the
boundary layer.

For the initial- and boundary conditions as specified
in Eq. 12, the uniformly valid composite solution for
the zeroth-order approximation coincides with Eq. 54.
This is obtained as follows: To acquire a zeroth-order
approximation that is uniformly valid throughout the
whole region, we need to construct the composite solu-
tion which is given by [34, 59]

ccomp(θ̄ , τ̄ ) = cin(θ̄ , τ̄ ) + cout(θ̄ , τ̄ ) − cmatch(θ̄ , τ̄ ), (55)

where the superscripts comp, in, out and match denote
the composite, the inner, the outer and the matched
solution, respectively. The inner solution cin(θ̄ , τ̄ ) has
been derived above and is given in Eq. 54 in the (x, t)
coordinate system. The outer solution cout(θ̄ , τ̄ ) is the
solution to the hyperbolic PDE and is given by a step
profile, Eq. 42. The matched solution cmatch(θ̄ , τ̄ ) is the
function that overlaps with cout(θ̄ , τ̄ ) in the boundary
layer and with cin(θ̄ , τ̄ ) away from it [34, 59]. Given the
functional form of cout(θ̄ , τ̄ ) and cin(θ̄ , τ̄ ), we therefore
obtain that cmatch(θ̄ , τ̄ ) must be the step function, i.e.
cmatch(θ̄ , τ̄ ) = H(θ̄ − τ̄ ). Altogether, from Eq. 55, we
obtain that ccomp(θ̄ , τ̄ ) = cin(θ̄ , τ̄ ), and thus, the solution
uniformly valid throughout the whole region ccomp(θ̄ , τ̄ )

is given by Eq. 54 in the (x, t) coordinate system.

If the solute is non-adsorbing, i.e. Ds = 0, the so-
lution given in [56] is recovered as a special case. As
in the purely advective case, for the derivation of the
first Eq. 54, no features of the solution derived in [45]
were used. Consequently, this expression is valid for the
initial and boundary conditions given in Eq. 12 and any
qw, Sw and Sn that satisfy Eqs. 1 and 2. The respective
expressions can stem from either analytical solutions or
could be combined with numerical calculations from,
e.g. streamline simulations [7, 16, 35]. In case boundary
and initial conditions other than Eq. 12 are used, the
matching function and the composite solution need to
be modified accordingly.

From Eq. 54, we can obtain an expression for the
growth of the dispersive zone (Fig. 1), δ. Dispersion
only plays a role around the solute front, i.e. where
x = x(S∗

w, t), and thus, δ can be described by the rate
of change around that front. This gives

δ(t) = −
(

∂C/C0

∂x

)−1

x=x(S∗
w,t)

. (56)

5 Applications

In this section, we give some examples where we com-
pare our analytical expressions to some numerical solu-
tions. Furthermore, we discuss the difference between
the growth rate δ(t) of the dispersive zone (Fig. 1) for
the cases with and without capillary pressure and with
adsorption. We have shown earlier that for the case of
spontaneous imbibition, the order of the growth rate,
and thus the rate of dispersive mixing, is smaller than
that for the viscous case by a factor (1/2) [56]. If adsorp-
tion is taken into account, we show that δ(t) grows even
slower. For the numerical simulations, we use the Com-
plex System Modeling Platform (CSMP++), a C++
library for multiphase flow in heterogeneous media,

Fig. 4 Example for the
Brooks–Corey
parametrization: residual
saturations Swr and Snr and
corresponding relative
permeability functions (left)
and capillary pressure
function for λBC = 3 (right)
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which is widely used to model single- and multi-phase
flow in fractured porous media (e.g. [22–25, 42, 43]).

The functions D(Sw), f (Sw) and Pc(Sw) represent
the capillary and hydraulic properties of the fluid–
medium interaction and are either determined from
experimental measurements or described analytically,
see Fig. 4. Several models exist to algebraically describe
them. In the foregoing analysis, no assumptions for
the functions D, f and Pc were used other than what
is known from the underlying physics, and thus, any
description for them can be used in our context. One
common model employed in both hydrological applica-
tions and the petroleum literature [28] uses the effective
wetting saturation

Se = Sw − Swr

1 − Swr − Snr
, 0 ≤ Se ≤ 1, (57)

where Snr is the residual saturation of the non-wetting
phase. Then the Brooks–Corey model [8] uses the rela-
tions

krw(Se) = S(2+3λBC)/λBC
e , (58a)

krn(Se) = (1 − Se)
2(1 − S(2+3λBC)/λBC

e ), (58b)

Pc(Se)/pd = S−1/λBC
e , Pc ≥ pd. (58c)

In the Brooks–Corey model, pd is the entry pressure
for the non-wetting fluid and λBC is the Brooks–Corey
parameter, λBC ∈ [0.2, 3.0], see Fig. 4. In the following
examples, we restrict ourselves to this model, see Fig. 4,
but as already mentioned above, any choice for krw, krn

and Pc is applicable.

Co-current and counter-current imbibition For the
McWhorter and Sunada problem, Eqs. 54 and 56 be-
come

C(x, t) = C0

2
erfc

( ∫ x
0 (φSw + φDs)(ξ, t)dξ − 2At1/2

2α
1/2
l

(
φS∗

w(Ds + S∗
w)

)1/2 (
2At1/2(F(S∗

w)(1 − fi R) + fi R)
)1/2

)

δ(t) = 2
[(

παl

φ

)
·
(

S∗
w

S∗
w + Ds

)
2q∗

wt
]1/2

= 2
[(

παl

φ

)
·
(

S∗
w

S∗
w + Ds

)
2A

√
t(F(S∗

w)(1 − fi R) + fi R)

]1/2

(59)

Figure 5 shows the comparison between numerical so-
lutions and the analytical solution for the cocurrent
flow and transport of solutes derived in this paper
for times t = 0.7, 1.5, 2.5 days and the parameter set
given in Table 2. Figure 6 shows the comparison for
the case of counter-current imbibition for times t =
0.7, 1.7, 17 days and the parameter set given in Ta-
ble 1. The perturbation expansion assumes ε1/2 <<

1, ε = αL/L0. The characteristic length of the system
L0 is the distance between the wetting front and the
point where the concentrations start to break through.
This is different from the perturbation expansions de-
rived for the saturated and under-saturated single-
phase case, where the characteristic length is the dis-
tance traveled by the solute front [15, 20, 26, 49, 61, 62].
Figure 7 shows the comparison for spontaneous imbibi-
tion and the parameter set given in Table 1 for times
t = 2, 17, 34 days. In this case, the connate wetting
saturation is smaller than the ones in the previous two
examples, and Ds = 0, and consequently the retarda-
tion between the wetting front and the point where
the solutes start to break through is smaller. At time
t = 2 days, the distance traveled by the solute front is
already longer than for t = 0.7 days for the case shown
in Fig. 6. However, the perturbation expansion for the

case shown in Fig. 7 overestimates the dispersion for
this time and predicts that the components disperse
ahead of the solute front. This is physically impossible

Fig. 5 Dispersion approximation for cocurrent flow and trans-
port. Parameter set given in Table 2 with Ds = 0.5 m3

fluid/m3
pv

at times t = 0.7 days, 1.5 days, 2.5 days and corresponding ε =
0.12, 0.056, 0.03
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Fig. 6 Dispersion approximation for spontaneous, counter-
current imbibition and transport. Parameter set given in Table
1 with Ds = 0.3 m3

fluid/m3
pv at times t = 0.7, 1.7, 17 days and cor-

responding ε = 0.64, 0.25, 0.044

since there qw = 0 and shows that the characteristic
length for the two-phase system is not the distance
traveled by the solute front but rather the distance be-
tween the wetting front and the point where the solutes
start to break through. For later times, this distance
increases, yielding declining values for ε and a good
agreement between the numerical and the analytical
solution is achieved.

Adsorbing components get retarded and hence, ac-
cording to Eq. 26, ‘see’ a flow field different from the
one for the inert solutes. Consequently, although the
order over time for the growth of the dispersive zone
stays the same, the slope will not. Adsorption results in
a slightly higher S∗

w and thus a slightly higher flow rate.
However, at the same time, δ(t) according to Eq. 59
is diminished by a factor (S∗

w/(S∗
w + Ds)) which is a

Table 1 Parameter sets for counter-current, spontaneous imbibi-
tion as shown in Figs. 6 and 7

Parameter Unit Set I (Fig. 6) Set II (Fig. 7)

Si [−] 0.25 0.11
S0 [−] 0.85 0.85
Swr [−] 0.22 0.1
Snr [−] 0.15 0.15
λBC [−] 3.0 3.0
pd [Pa] 1.5 × 103 1.5 × 103

αL [m] 0.02 0.02
φ [−] 0.25 0.25
μw [Pa s] 1.0 × 10−3 1.0 × 10−3

μn [Pa s] 0.5 × 10−3 0.5 × 10−3

Ds [m3
f /m3

pv] 0.3 0

Fig. 7 Dispersion approximation for spontaneous imbibition
and parameter set II (Table 1) with αL = 0.02 m at times t =
2, 17, 34 days. At time t = 2 days, the distance between the
solute and the wetting front is zero, which yields ε1 = ∞ and
thus the condition ε << 1 is violated. Consequently, the disper-
sion is overestimated and dispersion of the components ahead
of the solute front is wrongly predicted. For t2 = 17 and t3 =
34 days, ε2 = 0.43 and ε3 = 0.2, and the comparisons show good
agreement

stronger effect than the increase in qw, and altogether,
adsorption results in δ(t) growing more slowly com-
pared to the inert case (Fig. 8).

Buckley–Leverett problem For the Buckley–Leverett
problem with constant inflow rate qt and boundary

Fig. 8 Comparison of growth of dispersive zones for sponta-
neous, counter-current imbibition, different adsorption rates Ds
and the parameter set I given in Table 1 and for the viscous limit
for the parameter set given in Table 2 with Ds = 0
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conditions for Sw and C as specified in Eqs. 13 and 12,
respectively, Eq. 54 becomes

C(x,t)= C0

2
erfc

( ∫ x
0 φ(Sw + Ds)dξ − qt · t

2(S∗
w(S∗

w+Ds))1/2
[
φαLqt fw(S∗

w)·t]1/2

)
,

δ(t) = 2
[(

παl

φ

)
·
( S∗

w

S∗
w + Ds

)
· qt fw(S∗

w)t
]1/2

. (60)

We note that for the Buckley–Leverett problem, the
dispersive zone grows with order O(t1/2) compared
to order O(t1/4) for the cocurrent McWhorter–Sunada
problem. This is due to the specific inflow conditions
of the former, and not due to capillary forces. To
evaluate the influence of capillary forces on δ(t), we
have to consider the Buckley–Leverett problem with
inflow condition qt = Ãt−1/2 for some positive constant
Ã. This leads to δ(t) as in Eq. 59 with Ã substituting
A and f (Sw) substituting F(Sw) for the co-current case,
i.e. R = 1. Hence, for the case Ã = A, the difference
in growth over time for the problem with and without
capillarity is quantified through the difference between
F and f at their respective values for S∗

w, where the
same boundary and initial conditions for Sw have been
chosen.

For the counter-current case, the boundary condition
q0 = At1/2 agrees with the one obtained from Eq. 4
for qt = 0 and thus is redundant. Consequently, there
δ(t) as specified in Eq. 59 describes the growth rate
for the standard situation of both laboratory setting of

Fig. 9 Dispersion approximation for viscous limit and transport.
Parameter set given in Table 2 with Ds = 0.3 m3

fluid/m3
pv at times

t = 5, 8, 14 days and corresponding ε = 0.09, 0.02, 0.009

Table 2 Parameter set for cocurrent case and viscous limit
(Buckley–Leverett problem) as shown in Figs. 5 and 9

Parameter Unit Cocurrent case Buckley–Leverett
(Fig. 5) (Fig. 9)

Si [−] 0.22 0.85
S0 [−] 0.81 0.78
Swr [−] 0.22 0.22
Snr [−] 0.15 0.15
pd [Pa] 1.5 × 103 -
λBC [−] 3.0 3.0
αL [m] 0.01 0.00488
qt [m/s] – 2.1 × 10−7

φ [−] 0.25 0.25
μw [Pa s] 1.0 × 10−3 1.0 × 10−3

μn [Pa s] 1.0 × 10−3 0.5 × 10−3

Ds [m3
f /m3

pv] 0.5 0.3

spontaneous imbibition and the situation in the field
where spontaneous, counter-current imbibition is the
dominant process (e.g. for the exchange between high-
and low-permeability regions). In this case, the growth
rate, and thus the rate of dispersive mixing, is smaller
than that for the viscous case by a factor (1/2) (Fig. 8).
Consequently, for cases where the transport of com-
ponents is considered whose mixing triggers reactions
(e.g. wettability changes due to surface reactions), the
amount or reactants available is much smaller than for
viscous dominated processes.

Figure 9 shows the comparison between numeri-
cal solutions and the analytical solution for times t =
5, 8, 14 days and the parameter set given in Table 2.
The characteristic lengths are such that the condition
ε1/2 << 1 is satisfied, and an excellent agreement be-
tween the numerical solution and the analytical one of
this paper is achieved.

6 Summary and conclusions

We extended our earlier work on the analytical descrip-
tion of the movement of inert tracers in two phases
to the case of adsorbing solutes. Thus, the first known
set of semi-analytical solutions for solute transport in
immiscible two-phase systems that describe all physical
mechanisms, i.e. advection due to adsorption, co- and
counter-current imbibition and viscous forces and the
movement due to the time- and space-dependent hy-
drodynamic dispersion, has been obtained.

The analytical solutions for the advective part were
obtained by a heuristic argument and by the method
of characteristics. The effect of time- and space-
dependent dispersion was solved for by a singular
perturbation technique. If the dispersion coefficient is
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small compared to the distance between the wetting
front and the point where the solutes break through, the
analytical approximations are in excellent agreement
with numerical solutions for the cases of cocurrent
flow, counter-current spontaneous imbibition and the
Buckley–Leverett problem.

The presented solutions can serve as a tool for the
verification of new numerical methods. The closed-
form analytical expressions for C(x, t) (Eq. 54) can be
employed in connection with any solution for qw and
Sw. Thus, they also could act as building block for
numerical schemes when numerical approximations for
the flow and saturation field are used.

The solutions allow the following insights:

• For the dispersion-free limit, the solution with cap-
illarity can be represented as a Welge-tangent to
the capillary fractional flow function F (Fig. 3).

• The solutions also contain the important case
of solute transport during spontaneous, counter-
current imbibition (Eqs. 24 together with Eqs. 27
and 59 for R = 0). The constant A (Eq. 14) is then
a measure for the medium’s ability to imbibe.

• The amount of dispersive mixing depends on the
flow regime (Fig. 8). The growth rate δ(t) of the
dispersive zone for the viscous dominated regime
grows with t1/2, and for imbibition with t1/4 (Eqs. 59
and 60). Consequently, the amount of mixing, and
thus if reactive solutes are considered, the amount
of reactants, is far smaller for spontaneous, counter-
current imbibition than for the viscous case.

• The dispersive zone of adsorbing components
grows slower than that of inert ones (Fig. 8)
(Eqs. 59 and 60). The dependence of temporal
order of δ(t) on the flow regime, however, is not
affected by adsorption.

Acknowledgements We thank the following for the financial
support for this work: The Exxon-Mobil Research Alliance ‘Fun-
damental Controls of Flow in Carbonates’ (FC)2 and the Edin-
burgh Collaborative of Subsurface Science and Engineering, a
joint research institute of the Edinburgh Research Partnership
in Engineering and Mathematics. We also thank the anonymous
reviewers whose comments have helped to greatly improve this
paper.

References

1. Acs, G., Doreschall, S., Farkas, E.: General purpose compo-
sitional model. SPE J. 25(4), 543–553 (1985)

2. Austad, T., Standnes, D.C.: Spontaneous imbibition of water
into oil-wet carbonates. J. Pet. Sci. Eng. 39(3–4), 363–376
(2003)

3. Barenblatt, G., Entov, V., Ryzhik, V.: Theory of Fluid Flows
Through Natural Rocks, vol. 3. Springer, New York (1990)

4. Bear, J.: Dynamics of Fluids in Porous Media. Dover, New
York (1972)

5. Bedrikovetsky, P.: Mathematical Theory of Oil and Gas Re-
covery: with Applications to Ex-USSR Oil and Gas Fields,
vol. 4. Kluwer Academic, Dordrecht (1993)

6. Behbahani, H.S., Di Donato, G., Blunt, M.J.: Simulation of
counter-current imbibition in water-wet fractured reservoirs.
J. Pet. Sci. Eng. 50(1), 21–39 (2006)

7. Blunt, M.J., Liu, K., Thiele, M.R.: A generalized streamline
method to predict reservoir flow. Pet. Geosci. 2(3), 259 (1996)

8. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous
media. Hydrological Paper 3, Colorado State University, CO,
USA (1964)

9. Buckley, S.E., Leverett, M.C.: Mechanisms of fluid displace-
ment in sands. Trans. Am. Inst. Min. Metall. Pet. Eng. AIME
146, 107–116 (1942)

10. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids.
Oxford University Press, Oxford (1959)

11. Chen, Z.X., Bodvarsson, G.S., Witherspoon, P.A.,
McWhorter, D.B., Sunada, D.K.: Comment on ‘Exact
integral solutions for two-phase flow’ by David B.
McWhorter and Daniel K. Sunada. Author’s reply. Water
Resour. Res. 28(5), 1477–1479 (1992)

12. Cirpka, O.A.: Choice of dispersion coefficients in reactive
transport calculations on smoothed fields. J. Contam. Hydrol.
58(3–4), 261–282 (2002)

13. Crank, J.: The Mathematics of Diffusion. Oxford University
Press, USA (1979)

14. Cvetkovic, V., Dagan, G.: Reactive transport and immiscible
flow in geological media. II. applications. Proc. Math. Phys.
Eng. Sci. 452(1945), 303–328 (1996)

15. Dagan, G.: Perturbation solutions of the dispersion equation
in porous mediums. Water Resour. Res. 7, 135–142 (1971)

16. Datta-Gupta, A., King, M.J.: A semianalytic approach to
tracer flow modeling in heterogeneous permeable media.
Adv. Water Resour. 18(1), 9–24 (1995)

17. De Simoni, M., Carrera, J., Sanchez-Vila, X., Guadagnini,
A.: A procedure for the solution of multicomponent reac-
tive transport problems. Water Resour. Res. 41(11) (2005).
doi:10.1029/2005WR004056

18. De Simoni, M., Sanchez-Vila, X., Carrera, J., Saaltink,
M.W.: A mixing ratios-based formulation for multicompo-
nent reactive transport. Water Resour. Res. 43(7) (2007).
doi:10.1029/2006WR005256

19. Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mix-
ing, spreading and reaction in heterogeneous media: a
brief review. J. Contam. Hydrol. 120–121, 1–17 (2011).
doi:10.1016/j.jconhyd.2010.05.002

20. Eldor, M., Dagan, G.: Solutions of hydrodynamic dispersion
in porous media. Water Resour. Res. 8, 1316–1331 (1972)

21. Emmanuel, S., Berkowitz, B.: Mixing-induced precipitation
and porosity evolution in porous media. Adv. Water Resour.
28(4), 337–344 (2005)

22. Geiger, S., Driesner, T., Heinrich, C., Matthäi, S.: Multiphase
thermohaline convection in the Earth’s crust: I. A new finite
element–finite volume solution technique combined with a
new equation of state for NaCl–H2O. Transp. Porous Media
63(3), 399–434 (2006)

23. Geiger, S., Matthäi, S.K., Niessner, J., Helmig, R.: Black-oil
simulations for three-component—three-phase flow in frac-
tured porous media. SPE J. 14, 338–354 (2009)

24. Geiger, S., Roberts, S., Matthäi, S.K., Zoppou, C., Burri,
A.: Combining finite element and finite volume methods
for efficient multiphase flow simulations in highly hetero-
geneous and structurally complex geologic media. Geofluids
4(4), 284–299 (2004)

http://dx.doi.org/10.1029/2005WR004056
http://dx.doi.org/10.1029/2006WR005256
http://dx.doi.org/10.1016/j.jconhyd.2010.05.002


Comput Geosci

25. Geiger S., Emmanuel, S.: Non-Fourier thermal transport
in fractured geological media. Water Resour. Res. (2010).
doi:10.1029/2009WR008671, 2010

26. Gelhar, L.W., Collins, M.A.: General analysis of longitudinal
dispersion in nonuniform flow. Water Resour. Res. 7, 1511–
1521 (1971)

27. Gerritsen, M.G., Durlofsky, L.J.: Modelling fluid flow in oil
reservoirs. Annu. Rev. Fluid Mech. 37(1), 211–238 (2005)

28. Helmig, R.: Multiphase Flow and Transport Processes in the
Subsurface. Springer, New York (1997)

29. Hiorth, A., Cathles, L.M., Madland, M.V.: The impact
of pore water chemistry on carbonate surface charge
and oil wettability. Transp. Porous Media (2010).
doi:10.1007/s11242-010-9543-6

30. Hoteit, H., Firoozabadi, A.: Multicomponent fluid flow by
discontinuous Galerkin and mixed methods in unfractured
and fractured media. Water Resour. Res. 41(11) (2005).
doi:10.1029/2005WR004339

31. Huber, R., Helmig, R.: Multiphase flow in heterogeneous
porous media: a classical finite element method versus an im-
plicit pressure-explicit saturation-based mixed finite element-
finite volume approach. Int. J. Numer. Methods Fluids 29(8),
899–920 (1999)

32. Johansen, T., Winther, R.: The solution of the Riemann prob-
lem for a hyperbolic system of conservation laws model-
ing polymer flooding. SIAM J. Math. Analy. 19(3), 541–566
(1988)

33. Juanes, R., Blunt, M.J.: Analytical solutions to multiphase
first-contact miscible models with viscous fingering. Transp.
Porous Media 64(3), 339–373 (2006)

34. Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied
Mathematics. Springer, New York (1981)

35. King, M.J., Datta-Gupta, A.: Streamline simulation: a current
perspective. In Situ 22(1), 91 (1998)

36. LaForce, T., Johns, R.: Analytical solutions for
surfactant-enhanced remediation of nonaqueous phase
liquids. Water Resour. Res. 41(10), W10,420 (2005).
doi:10.1029/2004WR003862

37. Lake, L.W., Helfferich, F.: Cation exchange in chemical
flooding: part 2—the effect of dispersion, cation exchange,
and polymer/surfactant adsorption on chemical flood envi-
ronment. SPE J. 6769, 435–444 (1977)

38. Langlo, P., Espedal, M.S.: Macrodispersion for two-phase,
immiscible flow in porous media. Adv. Water Resour. 17(5),
297–316 (1994)

39. Lie, K., Juanes, R.: A front-tracking method for the simula-
tion of three-phase flow in porous media. Comput. Geosci
9(1), 29–59 (2005)

40. Lunati, I., Jenny, P.: Multiscale finite-volume method for
compressible multiphase flow in porous media. J. Comput.
Phys. 216(2), 616–636 (2006)

41. Mackay, E.: Predicting in situ sulphate scale deposition and
the impact on produced ion concentrations. Chem. Eng. Res.
Bull. 81(3), 326–332 (2003)

42. Matthäi, S., Nick, H., Pain, C., Neuweiler, I.: Simulation of
solute transport through fractured rock: a higher-order ac-
curate finite-element finite-volume method permitting large
time steps. Transp. Porous Media 83(2), 1–30 (2009)

43. Matthäi, S.K., Geiger, S., Roberts, S.G., Paluszny, A.,
Belayneh, M., Burri, A., Mezentsev, A., Lu, H., Coumou,
D., Driesner, T., et al.: Numerical Simulation of Multi-phase
Fluid Flow in Structurally Complex Reservoirs. Geological
Society London Special Publications, vol. 292(1), p. 405.
Geological Society London, London (2007)

44. McWhorter, D.B.: Infiltration affected by flow of air. Hydro-
logical Paper 49, Colorado State University, CO, USA (1971)

45. McWhorter, D.B., Sunada, D.K.: Exact integral solutions for
two-phase flow. Water Resour. Res. 26(3), 399–413 (1990)

46. McWhorter, D.B., Sunada, D.K.: Exact integral solutions
for two-phase flow: reply. Water Resour. Res. 28(5), 1479
(1992)

47. Morrow, N.R., Mason, G.: Recovery of oil by spontaneous
imbibition. Curr. Opin. Colloid Interface Sci. 6(4), 321–337
(2001). doi:10.1016/S1359-0294(01)00100-5

48. Muskat, M.: Physical Principles of Oil Production. McGraw-
Hill, New York (1949)

49. Nachabe, M.H., Islas, A.L., Illangasekare, T.H.: Analytical
solutions for water flow and solute transport in the unsatu-
rated zone. Ground Water 33, 304–310 (1995)

50. Neuweiler, I., Attinger, S., Kinzelbach, W., King, P.: Large
scale mixing for immiscible displacement in heterogeneous
porous media. Transp. Porous Media 51(3), 287–314 (2003)

51. Panfilow, M., Floriat, S.: Nonlinear two-phase mixing in het-
erogeneous porous media. Transp. Porous Media 57(3), 347–
375 (2004)

52. Philip, J.R.: On solving the unsaturated flow equation: 1. The
flux-concentration relation. Soil Sci. 116(5), 328 (1973)

53. Pope, G.: The application of fractional flow theory to en-
hanced oil recovery. SPE J. 20(3), 191–205 (1980)

54. Pope, G.A.: Cation exchange in chemical flooding: part 1—
basic theory without dispersion. SPE 6771, 418–434 (1978)

55. Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A
mixed-dimensional finite volume method for two-phase flow
in fractured porous media. Adv. Water Resour. 29(7), 1020–
1036 (2006)

56. Schmid, K.S., Geiger, S., Sorbie, K.: Semianalytical solu-
tions for co- and countercurrent imbibition and dispersion
of solutes in immiscible two-phase flow. Water Resour. Res.
47(2), 1–16 (2011). doi:10.1029/2010WR009686

57. Seto, C.J., Orr, F.M.: Analytical solutions for multicompo-
nent, two-phase flow in porous media with double contact
discontinuities. Transp. Porous Media 78(2), 161–183 (2009)

58. Sorbie, K.S., Mackay, E.J.: Mixing of injected, connate and
aquifer brines in waterflooding and its relevance to oilfield
scaling. J. Pet. Sci. Eng. 27(1–2), 85–106 (2000)

59. Van Dyke, M.: Perturbation Methods in Fluid Mechan-
ics/Annotated Edition. The Parabolic, Stanford (1975)

60. Welge, H.: A simplified method for computing oil recovery
by gas or water drive. Trans. AIME 195, 91–98 (1952)

61. Wilson, J.L., Gelhar, L.W.: Dispersive mixing in a partially
saturated porous medium. Tech. rep., Ralp M. Parsons Lab.
for Water Resour. and Hydrodyn., Mass. Inst. of Technol.,
Cambridge (1974)

62. Wilson, J.L., Gelhar, L.W.: Analysis of longitudinal disper-
sion in unsaturated flow 1. The analytical method. Water
Resour. Res. 17(1), 122–130 (1981)

63. Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.:
TOUGHREACT—a simulation program for non-isothermal
multiphase reactive geochemical transport in variably
saturated geologic media: Applications to geothermal
injectivity and CO2 geological sequestration. Comput.
Geosci. 32(2), 145–165 (2006)

64. Zazovskii, A.F.: Structure of discontinuities in problems of
oil displacement by reactants that influence the phase equi-
librium. Fluid Dyn. 20(5), 765–774 (1985)

65. Zhang, Y., Morrow, N.R.: Waterflood performance by injec-
tion of brine with different salinity for reservoir cores. SPE J.
109849, 1–12 (2007)

http://dx.doi.org/10.1029/2009WR008671, 2010
http://dx.doi.org/10.1007/s11242-010-9543-6
http://dx.doi.org/10.1029/2005WR004339
http://dx.doi.org/10.1029/2004WR003862
http://dx.doi.org/10.1016/S1359-0294(01)00100-5
http://dx.doi.org/10.1029/2010WR009686

	Analytical solutions for co- and counter-current imbibition of sorbing, dispersive solutes in immiscible two-phase f low
	Abstract
	Introduction
	Mathematical model
	Solution of the advective problem
	Preliminaries
	Solution as a Welge tangent
	Method of characteristics
	Buckley--Leverett limit

	Dispersion approximation
	Applications
	Summary and conclusions
	References



