

Numerical investigation of microbially induced calcite precipitation as leakage mitigation technology

Al Cunningham**, Rainer Helmig, Anozie Ebigbo*, Holger Class,

Johannes Hommel

University of Stuttgart, Germany *RWTH Aachen, Germany **Montana State University, USA

University of Stuttgart

IWS, Department of Hydromechanics and Modelling of Hydrosystems

MONTANA

Center for Biofilm Engineering

N

Relevant processes

REV-scale model

University of Stuttgart

- 2 fluid phases: Water and CO₂
- 2 solid phases: Calcite and biofilm
- 10 mobile components: Water, total carbon, sodium, chloride,

calcium, biomass, substrate, oxygen, total nitrogen, urea

Component	Variable	Description
water	$p_{ m w}$	water phase pressure
total carbon (${S}_{ m n} \ { m or} \ x_{ m w}^{ m C_{tot}}$	>CO ₂ saturation or mole frac. of tot. carbon in water
components	x_{w}^{κ}	$\dots \dots \dots \dots$ mole fraction of component κ in water
solid phases	ϕ_{λ}	$\dots \dots \dots \dots$ volume fraction of solid phase λ
/		

The variable for total carbon depends on the phase presence. In case of both phases present, it is the non-wetting phase saturation, if only water phase is present, it is the mole fraction of total carbon in water.

University of Stuttgart

- Mass balance equation for components in both phases: $\sum_{\alpha} \left\{ \frac{\partial}{\partial t} \left(\phi \varrho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\varrho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\varrho_{\alpha} \mathbf{D}_{\alpha, \text{pm}} \nabla x_{\alpha}^{\kappa} \right) \right\} = q^{\kappa}$ $\kappa \in \{ \text{w}, \text{C}_{\text{tot}}, \text{ O}_2 \}; \alpha \in \{ \text{w}, \text{n} \}$
- Mass balance equation of components exclusively in the water phase:

$$\frac{\partial}{\partial t} \left(\phi \varrho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} S_{\mathbf{w}} \right) + \nabla \cdot \left(\varrho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} \mathbf{v}_{\mathbf{w}} \right) - \nabla \cdot \left(\varrho_{\mathbf{w}} \mathbf{D}_{\mathbf{w}, \mathrm{pm}} \nabla x_{\mathbf{w}}^{\kappa} \right) = q^{\kappa}$$

 $\kappa \in \{ \mathrm{Na, \ Cl, \ Ca, \ bio, \ substrate, \ N_{\mathrm{tot}}, \ \mathrm{urea} \}$

• Mass balance for the immobile components / solid phases:

$$\varrho_{\lambda} \frac{\partial \phi_{\lambda}}{\partial t} = q^{\lambda} \qquad \lambda \in \{\text{biofilm, calcite}\}$$

Sources & sinks: Biomass

Suspended biomass:	$q^{ m bio}$	=	$r_{\rm growth}^{\rm bio} - r_{\rm decay}^{\rm bio} - r_{\rm attach} + r_{\rm detach}$
Biofilm:	$q^{ m biofilm}$	=	$r_{\rm growth}^{\rm biofilm} - r_{\rm decay}^{\rm biofilm} + r_{\rm attach} - r_{\rm detach}$
Growth:	$r_{ m growth}^{ m bio}$	=	$\mu\phi S_{ m w}C_{ m w}^{ m bio}$
	$r_{ m growth}^{ m biofilm}$	—	$\mu\phi_{ m biofilm}arrho_{ m biofilm}$
Growth coefficient:	μ	=	$\mu_{\max} Yield \frac{C_{\mathrm{w}}^{\mathrm{substrate}}}{K_{\mathrm{substrate}} + C_{\mathrm{w}}^{\mathrm{substrate}}} \cdot \frac{C_{\mathrm{w}}^{\mathrm{O}_{2}}}{K_{\mathrm{O}_{2}} + C_{\mathrm{w}}^{\mathrm{O}_{2}}}$
Decay:	$r_{ m decay}^{ m bio}$	=	$f(\mathrm{pH}, C_\mathrm{w}^\mathrm{bio}, \phi, S_\mathrm{w},)$
	$r_{ m decay}^{ m biofilm}$	=	$f(\text{calcite precipitation}, \phi_{\text{biofilm}})$
Attachment:	$r_{ m attach}$	=	$f(C_{ m w}^{ m bio},\phi,S_{ m w},\phi_{ m biofilm})$
Detachment:	$r_{ m detach}$	=	$f(abla p_{\mathrm{w}} , \phi_{\mathrm{biofilm}}, r_{\mathrm{growth}}^{\mathrm{biofilm}})$

Sources & sinks: Solutes

 $q^{\text{substrate}}$ $= -(r_{\text{growth}}^{\text{bio}} + r_{\text{growth}}^{\text{biofilm}})/Yield$ Substrate: $= -(r_{\text{growth}}^{\text{bio}} + r_{\text{growth}}^{\text{biofilm}}) \cdot (0.5/Yield)$ q^{O_2} Oxygen: $= -r^{\text{urea}} = f(C_{\text{w}}^{\text{urea}}, \text{pH}, C_{\text{w}}^{\text{NH}_4})$ $q^{\rm urea}$ Urea: $q^{\rm NH_{tot}}$ Total nitrogen: $2r^{\text{urea}}$ q^{Ca} Calcium: $r_{\rm diss} - r_{\rm precip}$ $q^{\mathrm{C}_{\mathrm{tot}}}$ $= r^{\text{urea}} + r_{\text{diss}} - r_{\text{precip}}$ Total carbon:

Calcite: $q^{\text{calcite}} = r_{\text{precip}} - r_{\text{diss}}$

University of Stuttgart

Berea sandstone core used for the high pressure core experiment

 $\phi = \phi_0 = 0.18$

 $\phi_{\rm c} = 0$

 $K = K_0 =$ 3 \cdot 10^{-14} m^2

Experiment $\phi = 0.137$ $\phi_{c} = 0.037$ K = $2.3 \cdot 10^{-15} m^{2}$ Simulation $\phi = 0.114$ $\phi_{c} = 0.030$ K = $6.0 \cdot 10^{-15} m^{2}$

enter for Biofilm

naineerina

before biomineralization

University of Stuttgart

IWS, Department of Hydromechanics and Modelling of Hydrosystems

after

International Research in upus Training Group in upus Results: High-pressure core experiments

International Research Training Group

University of Stuttgart

Training Group

Future work: Large and field-scale application

- Validation of two-phase model.
- →High-pressure experiments with supercritical carbon dioxide.
- Validation of the model for inhomogeneous media.
- Use the model as a predictive tool to design field scale application.
- Improve the implementation of clogging with respect to biofilm presence.

Numerical implementation:

DuMu^X (**DU**NE for **Multi**-{Phase, Scale, Component, Physics, ...})

- Based on DUNE (Distributed and Unified Numerics Environment)
- Modular numerical simulator

For further information see: <u>http://dumux.org/</u> or:

Flemisch et. al; DuMux: DUNE for Multi-{Phase, Component, Scale, Physics, ...} Flow and Transport in Porous Media. *Advances in Water Resources*, 2011.

University of Stuttgart

Supplementary slides

Training Group S Motivation – Injection-Well Vicinity

- corrosion of well cement
- high injection pressure
 → cause fracture
- → leakage of CO2

(Ebigbo et. al., AWR 2010)

→ interested in investigating the use of biofilms which are capable of causing calcite precipitation

University of Stuttgart

Model concept

• What kind of a model do we need?

(Ebigbo et. al., AWR 2010; Phillips et al., Environmental Science & Tech. 2012)

University of Stuttgart

Model concept

- What kind of a model do we need?
- Two-phase multicomponent flow model
- Including relevant biochemical processes

(Ebigbo et. al., AWR 2010; Phillips et al., Environmental Science & Tech. 2012)

Training Group in nupus List of Components / Primary Variables

Component	Variable	Description
water	$p_{ m w}$	water phase pressure
total carbon	$S_{ m n}$ / $x_{ m w}^{ m C_{tot}}$	CO_2 saturation / mole frac. of tot. carbon in water
susp. biomass	$x_{ m w}^{ m b}$	mole fraction of suspended biomass in water
biofilm	ϕ_{f}	volume fraction of biofilm
substrate	$x_{ m w}^{ m s}$	mole fraction of substrate in water
oxygen	$x_{\mathrm{w}}^{\mathrm{O}_2}$	mole fraction of oxygen in water
urea	$x_{ m w}^{ m u}$	mole fraction of urea in water
total nitrogen	$x_{ m w}^{ m N_{tot}}$	mole fraction of total nitrogen in water
calcite	$\phi_{ ext{c}}$	volume fraction of calcite
calcium	$x_{ m w}^{ m Ca}$	mole fraction of calcium in water
chloride	$x_{ m w}^{ m Cl}$	mole fraction of chloride in water
sodium	$x_{ m w}^{ m Na}$	$\ldots \ldots \ldots \ldots$ mole fraction of sodium in water

In total 2 fluid phases, 2 solid phases and 10 mobile components

The variable for the total carbon depends on the phase presence. In case of both phases present, it is the non-wetting phase saturation, if only water phase is present, it is the mole fraction of total carbon in water.

- bacteria Sporosarcina pasteurii produce the enzyme urease
- urease catalyses the hydrolysis of urea, which produces ammonia and leads to a pH increase → drives the precipitation of calcite

$$CO(NH_2)_2 + 2H_2O \xrightarrow{\text{urease}} 2NH_3 + H_2CO_3$$

$$H_2CO_3 \longleftrightarrow HCO_3^- + H^+$$

$$HCO_3^- \longleftrightarrow CO_3^{2-} + H^+$$

$$2 \operatorname{NH}_4^+ \longleftrightarrow 2 \operatorname{NH}_3 + 2 \operatorname{H}^+$$

$$\mathsf{Ca}^{2+} + \mathsf{CO}_3^{2-} \longleftrightarrow \mathsf{Ca}\mathsf{CO}_3 \downarrow$$

ureolysis

dissociation of carbonic acid

dissociation of bicarbonate ion

dissociation of ammonia

calcite precipitation/dissolution

→ in the presence of calcium ions, the rise in pH will drive the precipitation of calcite.

Training Group

University of Stuttgart

Rate of Urea Hydrolysis

 $k_{\sf ub} \dots$ amount of urease per bulk volume

$$\nu_{\max} = \frac{k}{1 + \frac{m_{\mathrm{H}^+}}{K_{\mathrm{EU,1}}} + \frac{K_{\mathrm{EU,2}}}{m_{\mathrm{H}^+}}} \quad \left[\frac{\mathrm{mol}_{\mathrm{ureas}}}{\mathrm{g}_{\mathrm{urease}} \cdot \mathrm{s}}\right]$$

 $K_{\mathsf{EU},i}\ldots \mathsf{dissociation}$ constants for enzyme-urea complex

Adapted from:

Fidaleo and Lavecchia, Chem. Biochem. Eng. Q. 17 (4) 2003

University of Stuttgart

Rate of Urea Hydrolysis

Calcite Precipitation / Dissolution

$$r_{\mathsf{prec}} = k_{\mathsf{prec}} A_{\mathsf{sw}} (\Omega - 1)^{n_{\mathsf{P}}}$$
 for $\Omega \ge 1$ \rightarrow precipitation occurs

$$r_{\mathsf{diss}} = (k_{\mathsf{diss},\mathbf{1}}[\mathrm{H}^+] + k_{\mathsf{diss},\mathbf{2}}) A_{\mathsf{cw}} (1-\Omega)^n \mathsf{d}$$
 for $\Omega < 1$

 \rightarrow dissolution occurs

$$\Omega = \frac{m_{\mathsf{Ca}^{2+}}m_{\mathsf{CO}_3^{2-}}}{K_{\mathsf{sp}}^*(I)} = \frac{\gamma_{\mathsf{Ca}^{2+}}m_{\mathsf{Ca}^{2+}}\gamma_{\mathsf{CO}_3^{2-}}m_{\mathsf{CO}_3^{2-}}}{K_{\mathsf{sp}}}\dots \text{ saturation state}$$

 $A_{sw} \dots$ specific interfacial surface between solid and water phases $A_{cw} \dots$ specific interfacial surface between calcite and water phases

→ rate of precipitation or dissolution is dependent on the distance from equilibrium

Solubility Product

From the activity coefficients, one can calculate the apparent solubility product

Surface Areas

$a_{ m c}\ldots$ specific surface area of calcite grains

University of Stuttgart

• Changes in porosity

$$\phi = \phi_0 - \phi_f - \phi_c$$

• Changes in permeability

$$K = K_0 \left(\frac{\phi - \phi_{\text{crit}}}{\phi_0 - \phi_{\text{crit}}}\right)^3 \dots Kozeny - Carman - type \ relation$$

Charge balance

 $\sum_i z_i m_i = 0$

University of Stuttgart

Column Experiments

 $CaCl_2$, urea, substrate

Calcite is quantified at the end of the experiments

University of Stuttgart

Training Group S Results: Column Experiments

MONTANA STATE UNIVERSITY Center for Biofilm Engineering

Column Experiment 2

University of Stuttgart

Training Group Stand Nupus Future work: Large rock core experiments

- The fully implicit model
 - is computationally too expensive
 - and sensitive to boundary conditions or the inclusion of the high permeability region = fracture

→New concept: Decoupling flow and transport calculation to get rid of those constraints

Training Group in upus Future Test case: High-Pressure Experiments

DOE FOA 250

"Innovative Technologies in Geologic Carbon Sequestration"

Center for Biofilm Engineering Montana State University

University of Stuttgart

- Motivation
- Model concept
- Numerical implementation
- Simulation results
- Final remarks

Relevant Processes

- Two-phase multicomponent transport
- Biomass
 - growth / decay
 - attachment / detachment
- Urea hydrolysis

 Precipitation / dissolution of calcite

Clogging

Sources & sinks: Biomass

Suspended biomass:
$$q^{\rm b} = r_{\rm g}^{\rm b} - r_{\rm dc}^{\rm b} - r_{\rm a} + r_{\rm d}$$

Biofilm: $q^{\rm f} = r_{\rm g}^{\rm f} - r_{\rm dc}^{\rm f} + r_{\rm a} - r_{\rm d}$
Growth term: $r_{\rm g}^{\rm b} = \mu \phi S_{\rm w} C_{\rm w}^{\rm b}$
 $r_{\rm g}^{\rm f} = \mu \phi_{\rm f} \varrho_{\rm f}$
Growth coefficient: $\mu = k_{\mu} Y \frac{C_{\rm w}^{\rm substrate}}{K_{\rm substrate} + C_{\rm w}^{\rm substrate}} \cdot \frac{C_{\rm w}^{\rm O_2}}{K_{\rm O_2} + C_{\rm w}^{\rm O_2}}$
Decay term: $r_{\rm dc}^{\rm b} = b^{\rm b} \phi S_{\rm w} C_{\rm w}^{\rm b}$
Attachment term: $r_{\rm a} = k_{\rm a} \phi S_{\rm w} C_{\rm w}^{\rm b}$
Detachment term: $r_{\rm d} = k_{\rm d} \phi_{\rm f} \varrho_{\rm f}$
WS, Department of Hydromechanics and Modelling of Hydrosystems (MS) Department (MS) Dep

International Research Training Group

Sources / Sinks: Biomass

$$q^{b} = r^{b}_{g} - r^{b}_{b} - r_{a} + r_{d}$$

$$q^{f} = r^{f}_{g} - r^{f}_{b} + r_{a} - r_{d}$$
Growth term:
$$r^{b}_{g} = \mu \phi S_{w} C^{b}_{w}$$

$$r^{f}_{g} = \mu \phi_{f} \varrho_{f}$$
Growth coefficient:
$$\mu = k_{\mu} Y \frac{C^{s}_{w}}{K_{s} + C^{s}_{w}} \cdot \frac{C^{e}_{w}}{K_{e} + C^{e}_{w}}$$
Decay term:
$$r^{b}_{b} = b^{b} \phi S_{w} C^{b}_{w}$$

$$r^{f}_{b} = b^{f} \phi_{f} \varrho_{f}$$

Attachment term: $r_a = \kappa_a \phi S_w C_w^{\sim}$ Detachment term: $r_d = k_d \phi_f \varrho_f$

University of Stuttgart

Sources / Sinks: Solutes

Substrate: $q^{s} = -(r_{g}^{b} + r_{g}^{f})/Y$ Electron acceptor: $q^{e} = -(r_{g}^{b} + r_{g}^{f}) \cdot (R/Y)$ Urea: $q^{u} = f(C_{w}^{u}, pH, C_{w}^{a})$ Ammonium/ammonia: $q^{a} = f(q^{u})$ Calcium: $q^{Ca} = r_{diss} - r_{prec}$

University of Stuttgart

