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Motivation
With increasing intensity of subsurface use, ensuring separation between
different layers with competitive uses becomes more and more important.
The risk of polluting upper layers, e.g. used for drinking water production, by
applications such as CO2 storage in the subsurface or fracking could be
reduced with sealing technologies like microbially induced calcite precipitation
(MICP). Other applications of MICP are discussed in [3].
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Figure 1: Potential application sites of MICP as a sealing technology in the subsurface.

MICP has several advantages:
low viscosity⇒ reduced injection pressure and increased radial extent.
catalyzed reactions in the medium⇒ plugging is dependent on injection
scheme⇒ porosity and permeability distribution can be engineered.

⇒ MICP is a promising sealing technology that needs further research before
it can be meaningfully applied on field scale.

Model concept
The REV-scale MICP model includes reactive two-phase multi-component
transport.∑
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Figure 2: Model relevant phases and distribution of components in the phases at pore scale and
REV-scale, modified from [1].

Relevant processes
Several bio- and geo-chemical processes, in combination with solute
transport, are important for MICP:

processes determining the distribution of biomass:

growth: rgrowth = µ ρbiofilm φbiofilm
C
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,

decay: rdecay = kdecay ρbiofilm φbiofilm,
attachment: rattachment =

(
ca,1 φbiofilm + ca,2

)
S w φCbacteria

w ,
detachment: rdetachment = cd,1 (S w φ |∇pw|)0.58 + cd,2 µ,

(bio-) chemical reactions:
microbially catalyzed ureolysis: CO(NH2)2 + 2 H2O

urease
−−−−−→ 2 NH3 + H2CO3,

influence of NH3 on the pH: NH3 + H+ ←→ NH+
4 ⇒ increase in pH,

precipitation (and dissolution) of calcite: Ca2+ + CO2–
3 ←→ CaCO3 ↓ ,

rprecipitation = kprecipitation Asw (Ω − 1)nprecipitation,

which is depended on the calcite saturation state Ω =
[Ca2+][CO2−

3 ]
Ksp

and the
water-solid surface Area Asw.
clogging: φ = φ0 − φcalcite − φbiofilm⇒ K = K0

(
φ−φcrit
φ0−φcrit

)3

Simulations are performed using the open-source simulator
DuMux.
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Model improvement
In recent studies on the main driving force of MICP, the microbial ureolysis,

CO(NH2)2 + 2 H2O
urease
−−−−−→ 2 NH3 + H2CO3

kinetic parameters were determined by batch kinetic studies of Sporosarcina
pasteurii performed at Montana State University. The improved knowledge
made it necessary to update the implementation of ureolysis in the numerical
model. Contrary to the previously used ureolysis rate equation as implemented
in [1] which was determined for pure, isolated jack bean urease by [2],

rurea, old =
kurease

1+ mH+

Keu,1
+

Keu,1

mH+

kub (ρbiofilm φbiofilm)nub murea

murea+Kurea

KNH+
4
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4

the new rate equation according to experiments with whole cells of the bacteria
used in MICP applications, Sporosarcina pasteurii, is independent of the
concentrations of NH+

4 and H+:

rurea, new = kurease, new kub, new ρbiofilm φbiofilm
murea

murea+Kurea, new
.

The improved implementation of ureolysis causes a need to refit the model,
since the updated kinetic parameters are significantly different from the
previously used ones. Instead of trial-and-error methods, this refit is conducted
using inverse modeling.

Inverse Modelling
In inverse modeling, the goal is to estimate unknown or uncertain input
parameters. This estimation is based on the minimization of an objective
function, which compares simulation results and observations. Additionally to
the best fit parameter values, inverse modeling provides statistical and
sensitivity analysis of the model with respect to the fitted parameters.

Results
The fitted parameters are the biofilm density ρbiofilm, the attachment coefficient
of bacteria to biofilm ca,1, and the attachment coefficient of bacteria to arbitrary
solid surfaces ca,2.
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Figure 3: Comparison of measured concentrations at 0.4 m distance from the inlet to two simulation
results obtained with different sets of parameters, which were both fitted to experimental data obtained in
sand-filled column studies of MICP by Sporosarcina pasteurii conducted at Montana State University.
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