

Coupling of a vertical-equilibrium model to a full-dimensional model

Beatrix Becker, Bernd Flemisch, Rainer Helmig University of Stuttgart In cooperation with Bo Guo and Mike Celia Princeton University

Subsurface energy storage

Why modeling energy storage?

Modeling challenges injection rate Fluctuations: - daily - weekly Injection **Withdrawal** - seasonally **Brine infiltration** in water aquifer Caprock failure Gas injection Brine displacement Highly complex Less complex

Adaptive modeling: a vision

Coupling of a VE to a 3D model

Model complexity and coupling

Governing equations

 $\frac{\partial}{\partial t}(\varrho_{\alpha}\phi s_{\alpha}) + \nabla \cdot (\varrho_{\alpha}\boldsymbol{u}_{\alpha}) = \varrho_{\alpha}\psi^{\alpha} \qquad \frac{\partial}{\partial t}(\varrho_{\alpha}\Phi S_{\alpha}) + \nabla \cdot (\varrho_{\alpha}\boldsymbol{U}_{\alpha}) = \varrho_{\alpha}\Psi^{\alpha}$

$$\boldsymbol{u}_{\alpha} = -rac{k_{r,\alpha}\boldsymbol{k}}{\mu_{\alpha}}(\nabla p_{\alpha} - \varrho_{\alpha}\mathbf{g})$$

$$U_{\alpha} = -\mathbf{K}\Lambda_{\alpha}(\nabla_{\mathbf{h}} P_{\alpha} - \varrho_{\alpha}\mathbf{G})$$

(Nordbotten & Celia, 2012)

Reconstruction

Coupling boundary

Neumann condition for VE-model

2D

VE

Dirichlet condition for FullD-model

2D

VE

Sequential coupling

How to implement: modelcoupling

One coupling problem:

- init()
- timeIntegration()

Two sub-problems:

- Need to be able to run in episodes
- Need to be able to give boundary information to the other model
- Need to be able to receive boundary information from the other model

The coupling model

The sub-model

Results: 2D and VE model vs. coupling model

CPU time:

- 2D model: 100%
- VE model: 3%
- Coupled model: 30%

Results: Flux at coupling boundary

Results: Vertically integrated saturation

Outlook: Monolithic coupling concept

Summary and outlook

First steps:

- Coupling of VE model to Full-D model
- Model switching criteria adaptive coupling
- In cooperation with Bo Guo and Mike Celia, Princeton University

Including heterogeneity Including hysteresis (Papafotiou, et al. 2010)

Including multi-physics

References

Faigle, B., Helmig, R., Aavatsmark, I. & Flemisch, B. (2013). Efficient multi-physics modeling with adaptive grid-refinement using a MPFA method. Computational Geoscience, 1-12.

Faigle, B., Elfeel, M. A., Helmig, R., Becker, B., Flemisch, B., & Geiger-Boschung, S. (2014). Multi-physics modeling of non-isothermal compositional flow on adaptive grids. Computer Methods in Applied Mechanics and Engineering.

Guo, B., Bandilla, K. W., Doster, F., Keilegavlen, E. and Celia, M. A. (2014). A vertically integrated model with vertical dynamics for CO2 storage, Water Ressources Research, 50.

Nordbotten, J. M. & Celia, M. A. (2012). Geological Storage of CO2 - Modeling Approaches for Large-Scale Simulation. John Wiley & Sons.

Papafotiou, A., Sheta, H., & Helmig, R. (2010). Numerical modeling of two-phase hysteresis combined with an interface condition for heterogeneous porous media. Computational Geosciences, 14(2), 273-287.

Wolff, M., Flemisch, B. & Helmig, R. (2013). An adaptive multi-scale approach for modeling two-phase flow in porous media including capillary pressure. Water Resources Research, 49(12), 8139–8159.