



# Developing numerical models for underground storage of synthetic natural gas

Beatrix Becker, Bernd Flemisch, Rainer Helmig University of Stuttgart In cooperation with Bo Guo and Mike Celia Princeton University





#### Why energy storage?







#### General renewable energy storage concept







#### Subsurface energy storage options





#### **Chemical underground energy storage**

**University of Stuttgart** 

Germany







#### Subsurface storage facilities







#### Why modeling energy storage?









Faigle et al., 2013





#### **Modeling challenges**







#### **Modeling challenges**







#### Adaptive modeling









#### Adaptive grid example: Nine-spot water flow







### Multi-physics Modeling: Coupling (Fritz et al. 2011)

| <b>2</b> p | 2c |   |  |
|------------|----|---|--|
|            | -1 | n |  |

- Only one phase present in global rest domain.
- 2p2c processes only in subdomain.
- Only flux of one phase across subdomain border
- Dynamic subdomain: cell and all neighbors belong to subdomain if  $S \neq 1$
- Easy coupling of transport equations:

$$\frac{\partial C^{\kappa}}{\partial t} = -\sum_{\alpha} \nabla \cdot \left( \mathbf{v}_{\alpha} \varrho_{\alpha} X_{\alpha}^{\kappa} \right) + q^{\kappa}$$

• 2p2c equation for a single phase equals:

$$\frac{\partial C^{\kappa}}{\partial t} = \nabla \cdot \left(\frac{\mathbf{v}}{\phi} C^{\kappa}\right)$$





#### **Example: Two-phase two componenent**







#### **Multi-Multi results:**

#### 2D, injection of gas into a brine aquifer, 2phase-2component flow, isothermal







#### Coupling of a VE to a 3D model







#### Adaptive modeling













## LH2

#### **Preliminary results**







### **Summary and outlook**

#### First steps:

- Coupling of VE model to 3D model
- Model switching criteria adaptive coupling
- In cooperation with Bo Guo and Mike Celia, Princeton University

Including heterogeneity Including hysteresis (Papafotiou, et al. 2010)

Including multi-physics





#### References

Aavatsmark, I., Eigestad, G. T., Mallison, G. T. & Nordbotten, J. M. (2008). A compact multipoint flux approximation method with improved robustness. Numerical Methods for Partial Differential Equations, 24, 1329–1360.

Faigle, B., Helmig, R., Aavatsmark, I. & Flemisch, B. (2013). Efficient multi-physics modeling with adaptive grid-refinement using a MPFA method. Computational Geoscience, 1-12.

Faigle, B., Elfeel, M. A., Helmig, R., Becker, B., Flemisch, B., & Geiger-Boschung, S. (2014). Multi-physics modeling of non-isothermal compositional flow on adaptive grids. Computer Methods in Applied Mechanics and Engineering.

Guo, B., Bandilla, K. W., Doster, F., Keilegavlen, E. and Celia, M. A. (2014). A vertically integrated model with vertical dynamics for CO2 storage, Water Ressources Research, 50.

Hawkins, D., & Rothleder, M (2006). Evolving role of wind forecasting in market operation at the CAISO. Power Systems Conference and Exposition, 2006.

IEC White Paper (2012). Grid integration of large-capacity Renewable Energy sources and use of large-capacity Electrical Energy Storage.

Meibom, P., Larsen, H. V., Barth, R., Brand, H., Tuohy, A., & Ela, E. (2011). Advanced unit commitment strategies in the United States Eastern Interconnection. NREL.

Papafotiou, A., Sheta, H., & Helmig, R. (2010). Numerical modeling of two-phase hysteresis combined with an interface condition for heterogeneous porous media. Computational Geosciences, 14(2), 273-287.

Wolff, M., Flemisch, B. & Helmig, R. (2013). An adaptive multi-scale approach for modeling two-phase flow in porous media including capillary pressure. Water Resources Research, 49(12), 8139–8159.