

Modeling Evaporation Using Coupled RANS/Darcy Models

Thomas Fetzer, University of Stuttgart Kathleen M. Smits, Colorado School of Mines Rainer Helmig, University of Stuttgart

NUPUS Meeting, September 2015, Freudenstadt

Introduction – Applications

fuel cells

www.en.wikipedia.org

evaporation

www.step.ethz.ch

buildings/urban areas

Introduction – Challenges

Model – Concept

free flow

interface

porous medium flow

Model – Porous Medium Model

- REV concept, Darcy's law
- two fluid phases (gas, liquid)
- two components (air, water)
- non-isothermal
- equilibrium phase transitions
- p_g , S_l or X_g^w , T

Model – Porous Medium Equations

momentum balance (Darcy)

$$\frac{k_{\mathbf{r},\alpha}}{\nu_{\alpha}\varrho_{\alpha}}\mathbf{K}\left(\nabla p_{\alpha}-\varrho_{\alpha}\mathbf{g}\right)+\mathbf{v}_{\alpha}=0$$
pressure gravity

component mass balance

$$\sum_{\alpha \in \{\mathsf{I},\mathsf{g}\}} \left\{ \phi \frac{\partial \left(\varrho_{\alpha} S_{\alpha} X_{\alpha}^{\kappa}\right)}{\partial t} + \nabla \cdot \left(\varrho_{\alpha} X_{\alpha}^{\kappa} \mathbf{v}_{\alpha}\right) - \nabla \cdot \mathbf{j}_{\alpha,\mathsf{pm},\mathsf{diff}}^{\kappa} - q_{\alpha}^{\kappa} \right\} = 0$$

$$\text{storage} \qquad \text{advection} \qquad \text{diffusion source}$$

energy balance

$$\sum_{\alpha \in \{\mathsf{I},\mathsf{g}\}} \left\{ \phi \frac{\partial \left(\varrho_{\alpha} S_{\alpha} u_{\alpha}\right)}{\partial t} + \nabla \cdot \left(\varrho_{\alpha} h_{\alpha} \mathbf{v}_{\alpha}\right) \right\} + (1 - \phi) \frac{\left(\partial \varrho_{\mathsf{s}} c_{\mathsf{s}} T\right)}{\partial t} - \nabla \cdot \left(\lambda_{\mathsf{pm}} \nabla T\right) - q^{T} = 0$$

$$\text{storage} \qquad \text{advection} \qquad \text{storage (solid)} \qquad \text{conduction source}$$

Model – Free Flow

- laminar/turbulent (RANS)
- single phase (gas)
- two components (air/water)
- non-isothermal
- $p_{\rm g}, \mathbf{v}_{\rm g}, X_{\rm g}^{\rm w}, T$

Model – Free Flow Equations

mass balance

$$rac{\partial arrho_{\mathbf{g}}}{\partial t} +
abla \cdot (arrho_{\mathbf{g}} ar{\mathbf{v}}_{\mathbf{g}}) = 0$$
 storage advection

momentum balance (RANS)

$$\frac{\partial \left(\varrho_{\mathbf{g}}\bar{\mathbf{v}}_{\mathbf{g}}\right)}{\partial t} + \nabla \cdot \left(\varrho_{\mathbf{g}}\bar{\mathbf{v}}_{\mathbf{g}}\bar{\mathbf{v}}_{\mathbf{g}}^{\mathsf{T}}\right) - \nabla \cdot \left(\left[\varrho_{\mathbf{g}}\nu_{\mathbf{g}} + \varrho_{\mathbf{g}}\nu_{\mathbf{g},\mathsf{t}}\right]\nabla \left(\bar{\mathbf{v}}_{\mathbf{g}} + \bar{\mathbf{v}}_{\mathbf{g}}^{\mathsf{T}}\right)\right) + \nabla \bar{\rho}_{\mathbf{g}} - \varrho_{\mathbf{g}}\nabla \mathbf{g} = 0$$
storage inertia viscous eddy viscosity pressure gravity

component mass balance

$$\frac{\partial \left(\varrho_{\mathbf{g}} \bar{X}_{\mathbf{g}}^{\kappa}\right)}{\partial t} + \nabla \cdot \left(\varrho_{\mathbf{g}} \bar{X}_{\mathbf{g}}^{\kappa} \bar{\mathbf{v}}_{\mathbf{g}}\right) - \nabla \cdot \left(\left[D_{\mathbf{g}}^{\kappa} + D_{\mathbf{g},\mathbf{t}}^{\kappa}\right] \varrho_{\mathbf{g},\mathsf{mol}} M^{\kappa} \nabla \bar{x}_{\mathbf{g}}^{\kappa}\right) - q_{\mathbf{g}}^{\kappa} = 0$$
storage advection diffusion eddy diffusion source

energy balance

$$\frac{\partial \left(\varrho_{\mathbf{g}}\bar{u}_{\mathbf{g}}\right)}{\partial t} + \nabla \cdot \left(\varrho_{\mathbf{g}}\bar{h}_{\mathbf{g}}\bar{\mathbf{v}}_{\mathbf{g}}\right) - \sum_{\kappa \in \{\mathbf{a},\mathbf{w}\}} \left\{\nabla \cdot \left(\bar{h}_{\mathbf{g}}^{\kappa}\bar{j}_{\mathbf{g},\mathsf{ff},\mathsf{t},\mathsf{diff}}^{\kappa}\right)\right\} - \nabla \cdot \left(\left[\lambda_{\mathbf{g}} + \lambda_{\mathbf{g},\mathsf{t}}\right]\nabla\bar{T}\right) - q_{\mathbf{g}}^{T} = 0$$
 storage advection (eddy-)diffusion conduction eddy conduction source

Model – Turbulence and Roughness

Model – Coupling Model

- [Mosthaf et al. 2011, Fetzer et al. 2015 (submitted)]
- local thermodynamic equilibrium
- continuity of fluxes
- continuity of primary variables

Model – Coupling Equations

mass

- $\left[\left(\varrho_{\mathsf{g}}\mathbf{\bar{v}}_{\mathsf{g}}\right)\cdot\mathbf{n}\right]^{\mathsf{ff}}=-\left[\left(\varrho_{\mathsf{g}}\mathbf{v}_{\mathsf{g}}+\varrho_{\mathsf{I}}\mathbf{v}_{\mathsf{I}}\right)\cdot\mathbf{n}\right]^{\mathsf{pm}}$
- momentum (tangential)

$$\left[\left(\overline{\mathbf{v}}_{g} + \frac{\sqrt{(\mathbf{K}\mathbf{t}_{i}) \cdot \mathbf{t}_{i}}}{\alpha_{\mathsf{BJ}}\varrho_{\mathsf{g}}\nu_{\mathsf{g}}} \overline{\boldsymbol{\tau}}_{\mathsf{g,t}} \mathbf{n} \right) \cdot \mathbf{t}_{i} \right]^{\mathsf{ff}} = 0$$

- momentum (normal)
- $\left[\left(\left\{arrho_{\mathsf{g}}ar{\mathsf{v}}_{\mathsf{g}}ar{\mathsf{v}}_{\mathsf{g}}^{\mathsf{T}}-ar{oldsymbol{ au}}_{\mathsf{g},\mathsf{t}}+ar{p}_{\mathsf{g}}oldsymbol{\mathsf{I}}
 ight\}oldsymbol{\mathsf{n}}
 ight)\cdotoldsymbol{\mathsf{n}}
 ight]^{\mathsf{ff}}=p_{\mathsf{g}}^{\mathsf{pm}}$

- component
 - continuity of mass fractions
 - continuity of fluxes
- energy
 - · continuity of temperature
 - continuity of fluxes

Results – Setup

implementation: 2D, box, fully implicit

experiments: [Davarzani et al. 2014]

Results – Evaporation Rate

Results – Cumulative Mass Loss

Results – Porous Medium Saturation

Results – Porous Medium Temperature

Results – Roughness

Summary and Outlook

- test case
 - turbulence improves prediction of evaporation rates
 - roughness minor role
- model
 - improve discretization of numerical free flow model
 - advanced turbulence models
 - include gravity
- model + experiments
 - heterogeneities
 - discrete roughness elements

Thank you for your attention!

- [Mosthaf et al. 2011] A coupling concept for two-phase compositional porousmedium and single-phase compositional free flow Water Resources Research, 2011, 47, W10522
- [Fetzer et al. 2015 (submitted)] Effect of Turbulence and Roughness on Coupled Porous-Medium/Free Flow Exchange Processes
 Transport in Porous Media, 2015, submitted
- [Davarzani et al. 2014] Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface Water Resources Research, 2014, 50, 1-20
- [Beavers, G. S. & Joseph, D. D. 1967] Boundary conditions at a naturally permeable wall Journal of Fluid Mechanics, 1967, 30, 197-207
- [Cebeci, T. 1978] Calculation of Incompressible Rough-Wall Boundary Layer Flows AIAA Journal, 1978, 16, 730-735

