

Field-scale investigation of microbially induced calcite precipitation using a numerical model

Johannes Hommel

University of Stuttgart, Germany

University of Stuttgart

Increased use of the subsurface injecting or extracting fluids.

Motivation

Increased use of the subsurface injecting or extracting fluids.

- → changing the chemistry of the pore water, which will reequilibrate with the present minerals
- \rightarrow need for reactive transport models

Exclusive and storage uses require separation.

- \rightarrow sealing of leakage pathways is important
- → sealing is mineral precipitation = reactive transport

Brief introduction to the model

Field scale simulations

Test the applicability of the model for large domains using the setting of a real field test site.

- Challenges and solutions
- Preliminary results

Summary and Outlook

Brief introduction to the model

Field scale simulations

Test the applicability of the model for large domains using the setting of a real field test site.

- Challenges and solutions
- Preliminary results

Summary and Outlook

International Research Training Group Model concept: Relevant processes

MONTANA STATE UNIVERSITY **Center for Biofilm**

Engineering

International Research Training Group International Research Model concept: important reactions

- Bacteria Sporosarcina pasteurii produce the enzyme urease.
- Urease catalyses the hydrolysis of urea, which produces ammonia and leads to a pH increase.

 $CO(NH_2)_2 + 2H_2O \xrightarrow{urease} 2NH_3 + H_2CO_3$

 $H_2CO_3 \longleftrightarrow HCO_3^- + H^+$

 $\mathsf{HCO}_3^-\longleftrightarrow\mathsf{CO}_3^{2-}+\mathsf{H}^+$

 $2\,\mathsf{NH}_4^+\longleftrightarrow 2\,\mathsf{NH}_3+2\,\mathsf{H}^+$

 $Ca^{2+} + CO_3^{2-} \leftrightarrow CaCO_3 \downarrow$

dissociation of bicarbonate ion

dissociation of carbonic acid

dissociation of ammonia

 ${\it calcite\ precipitation/dissolution}$

\rightarrow in the presence of calcium ions, the rise in pH due to ureolysis will drive the precipitation of calcite.

University of Stuttgart

IWS, Department of Hydromechanics and Modelling of Hydrosystems

ureolysis

Model concept: Scale

Brief introduction to the model

Field scale simulations

Test the applicability of the model for large domains using the setting of a real field test site. Challenges and solutions

Preliminary results

Summary and Outlook

IWS, Department of Hydromechanics and Modelling of Hydrosystems

- Test applicability of the model on a large scale
- Help design the actual experiment and interpret the results
- Uncertain geometry \bullet and injection strategy
- \rightarrow different scenarios will be simulated

schematic view of the well and injection region

Simplifications:

No discrete fracture, but a horizontal high-permeability region

		4e-13	8e-13 1.2e-12	1.6e-12
	1.08e-14	Perme	eability [m ²]	.64e-12
ø				
<mark>وک کو</mark>				

 radial, no perforation, but injection over the whole circumference

University of Stuttgart

top, bottom, and sides: Neumann, q=0 outer radius: Dirichlet, values = initial Inner radius: Neumann, q=0, except for injection into the high permeability region

CPU time in the order of days to weeks, caused by non-linear processes

Field scale simulations, challenge

- (biological and chemical, CaCO₃ precipitation in particular) and high number of unknowns.
- (10 components + 2 solid phases per node)

→ Parallel computing, decoupled transport and reactions some speedup but CPU time remains in the range of days.

International Research Training Group

MONTANA

Center for Biofilr Engineering

Field scale simulations, challenge

small volume, low pH, Ca ²⁺	high CO_3^{2-} + Ca^{2+} \rightarrow precipitation, but the rate is too high!	large volume, high pH → high CO ₃ ²⁻	

A problem at larger scales is the increasing element size. Dilution of small low pH, Ca²⁺-rich volumes injected into large

- volumes of high pH brine leads to high CO_3^{2-} + relatively high Ca^{2+}
- \rightarrow precipitation rates of up to 10¹² mol/(m³s).

The molar density of pure calcite is only 27300 mol/m³!

 \rightarrow regularization of the precipitation rate,

University of Stuttgart

→equilibrium instead of kinetic precipitation rate

Regularization

$$r_{\rm prec, \, kinetic} = k_{\rm prec} A_{\rm SW} \ (\Omega - 1)^{n_{\rm prec}}$$

$$r_{\text{prec, equilibrium}} = \text{molefraction}(m_{\text{prec}}) \frac{\rho_{\text{mol, brine}}}{\Delta t}$$

with:

$$m_{\rm prec} = \frac{m_{\rm Ca^{2+}} + m_{\rm CO_3^{2-}} - \sqrt{\left(m_{\rm Ca^{2+}} - m_{\rm CO_3^{2-}}\right)^2 + 4\frac{K_{\rm Sp}}{\gamma_{\rm Ca^{2+}} \gamma_{\rm CO_3^{2-}}}}{2}$$

resulting from the assumption of equilibrium:

$$\left(m_{\text{Ca}^{2+}} - m_{\text{prec}} \right) \left(m_{\text{CO}_{3}^{2-}} - m_{\text{prec}} \right) = \frac{K_{\text{sp}}}{\gamma_{\text{Ca}^{2+}} \gamma_{\text{CO}_{3}^{2-}}}$$

$$r_{\text{prec}} = \text{MIN} \left(r_{\text{prec, kinetic}} , \ r_{\text{prec, equilibrium}} \right)$$

University of Stuttgart

Preliminary results

Brief introduction to the model

Field scale simulations

Test the applicability of the model for large domains using the setting of a real field test site.

- Challenges and solutions
- Preliminary results

Summary and Outlook

- Transition from lab-scale to field-scale is not as simple as it seems in the first place.
- Discretization has a huge impact on modelled reaction rates (dilution effects) and thereby on the convergence behaviour and CPU time.
- Balance between CPU time and accuracy needs to be found by refining or coarsening the grid.
- In general, the model is applicable on larger scale, with constraints on grid size caused by both dilution effects and the number of nodes.

Thank you for your attention!

University of Stuttgart

