Modeling Evaporation Using Coupled RANS/Darcy Models

Thomas Fetzer^{*}, Kathleen M. Smits[–], Jan Vanderborght°, and Rainer Helmig*

* IWS, University of Stuttgart CESEP, Colorado School of Mines [°] Forschungszentum Jülich

Nupus Meeting, 8th - 12th September 2015

Motivation

This project focuses on understanding and modeling the relevant processes of evaporation. Evaporation is strongly influenced by the interaction of different physical processes:

• in the free flow

turbulent free flow	exchange
boundary layer	processes
flow + transport in	interface properties

Preliminary Results

Evaporation Rates

• at the interface

• inside the porous medium The main goal is to describe these processes and to simulate porousmedium flow with an adjacent free flow. The developed concept can be unsaturated zone

Figure 1 : Relevant processes for modeling evaporation from bare soil.

used for improving soil salinization simulations, analyzing water balance relations or technical applications, like fuel cells or drying and cooling processes.

Concept

Porous Medium

- REV concept
- Darcy's law
- two fluid phases (gas, liquid)
- two components (air, water)
- non-isothermal

Figure 2 : Setup for laboratory evaporation experiments [2], setup of the corresponding numerical simulation and their results [3].

Porous Medium

Figure 3 : Influence on the porous-medium quantities [3].

Heterogeneity

Coupling

Free Flow

• laminar/ turbulent (v_t)

- Reynolds-averaged Navier-Stokes
- single fluid phase (gas)
- two component (air, water)
- non-isothermal
- local thermodynamic equilibrium
- continuity of fluxes
- extension of [5] to turbulent conditions
- wall functions for rough interfaces [1, 4]

implementation

- monolithic, fully implicit
- time: implicit Euler
- free flow: box, (future: staggered grid)
- porous medium: box, (future: cc)

Figure 4 : Evaporation rates from heterogeneous soils.

Outlook

Short-Term

- further evaluation of heterogeneity results
- implementation of new coupling concept (staggered grid-cc)
- coupling a simple transport model for the free flow to porous medium (cc-cc)
- including gravitational forces

Long-Term

- analysis of pore scale effects
- reduction of model complexity

Analysis

The analysis focuses on the influence of properties and processes like roughness, boundary layers, heterogeneities, and obstacles on the coupled free-flow porous-medium interactions.

- [1] Cebeci, T. (1978). Calculation of Incompressible Rough-Wall Boundary Layer Flows. AIAA Journal, 16(7):730-735.
- [2] Davarzani, H., Smits, K., Tolene, R. M., and Illangasekare, T. (2014). Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. Water Resources Research, 50:1-20.
- [3] Fetzer, T., Smits, K., M., and Helmig, R. (2015). Effect of Turbulence and Roughness on Coupled Porous-Medium/Free Flow Exchange Processes. Transport in Porous Media, submitted.
- [4] Kuznetsov, A. and Becker, S. (2004). Effect of the interface roughness on turbulent convective heat transfer in a composite porous/fluid duct. International Communications in Heat and Mass Transfer, 31(1):11–20.
- [5] Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., and Wohlmuth, B. (2011). A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resources Research, 47(10):W10522.

Simulations are performed using the open-source simulator DuMu^x.

Support of the German Research Foundation is gratefully acknowledged.