

Field-scale modeling of microbially induced calcite precipitation

GRS 2016 Johannes Hommel

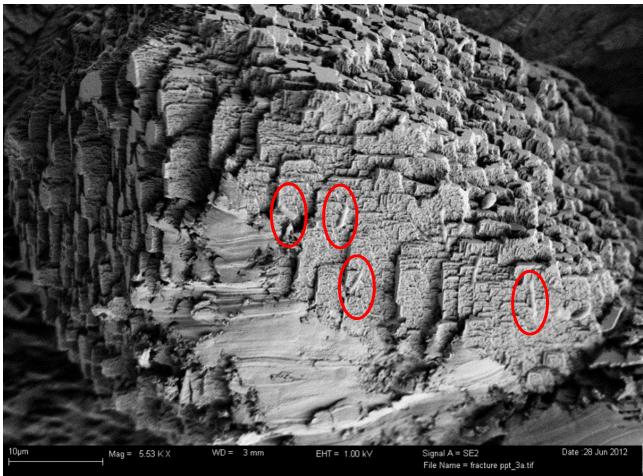
Collaborators: Anozie Ebigbo, Al B. Cunningham, Robin Gerlach Holger Class, Rainer Helmig

What is microbially induced calcite precipitation (MICP)?

What is microbially induced calcite precipitation (MICP)?

Microbes change the chemistry in a way that promotes the precipitation of calcite.




University of Stuttgart

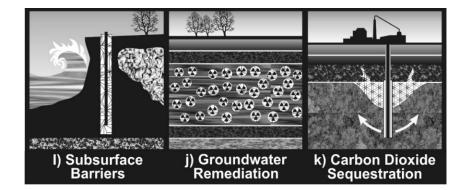
What is microbially induced calcite precipitation (MICP)?

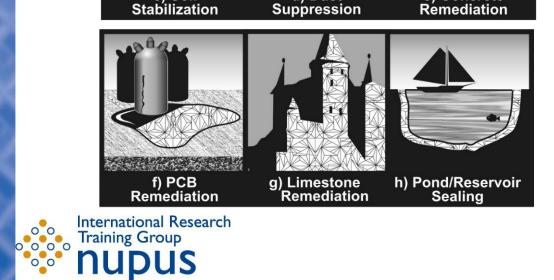
Microbes change the chemistry in a way that promotes the precipitation of calcite.

from Phillips et al. 2013 Potential CO_2 leakage reduction through biofilm-induced calcium carbonate precipitation

Why investigate MICP?

Why investigate MICP?


Engineered Applications of Ureolytic **Biomineralization**


c) Soil

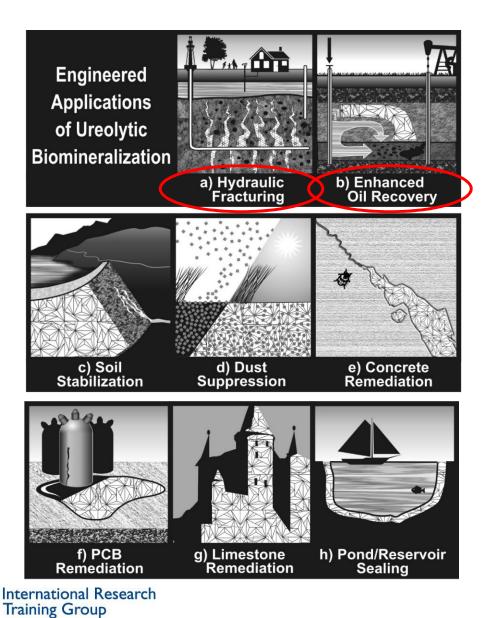
Training Group

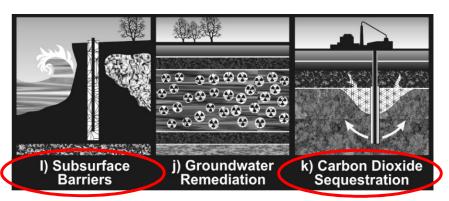
a) Hydraulic b) Enhanced Fracturing Oil Recovery

e) Concrete

d) Dust

from Phillips et al. 2013 Engineered applications of ureolytic biomineralization: A review.




Why investigate MICP?

www.hydrosys.uni-stuttgart.de

0 0 0 0 0

00

In the context of this presentation mainly: wellbore integrity remediation in gas storage, oil production, hydraulic fracking

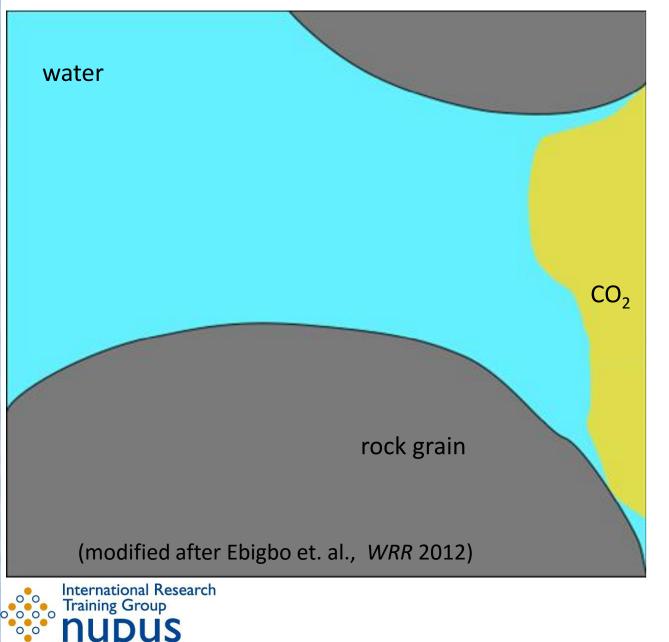
from Phillips et al. 2013 Engineered applications of ureolytic biomineralization: A review.

Outline

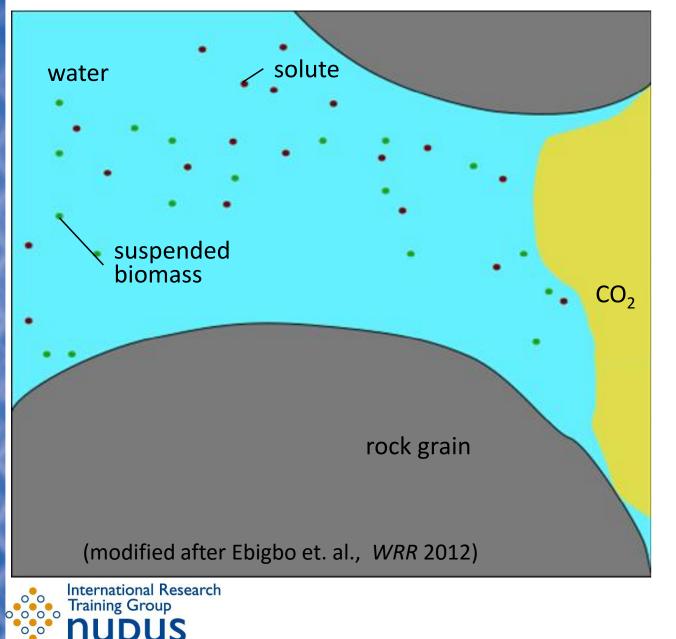
• Introduction and motivation

Model concept

• Application of (MICP and) the model at field scale


• Investigation of efficient solution strategies

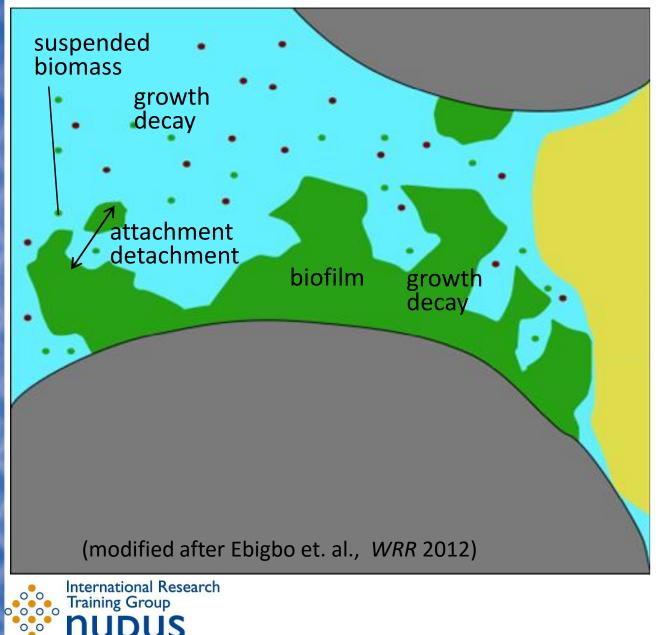
• Summary



Two-phase transport

nu

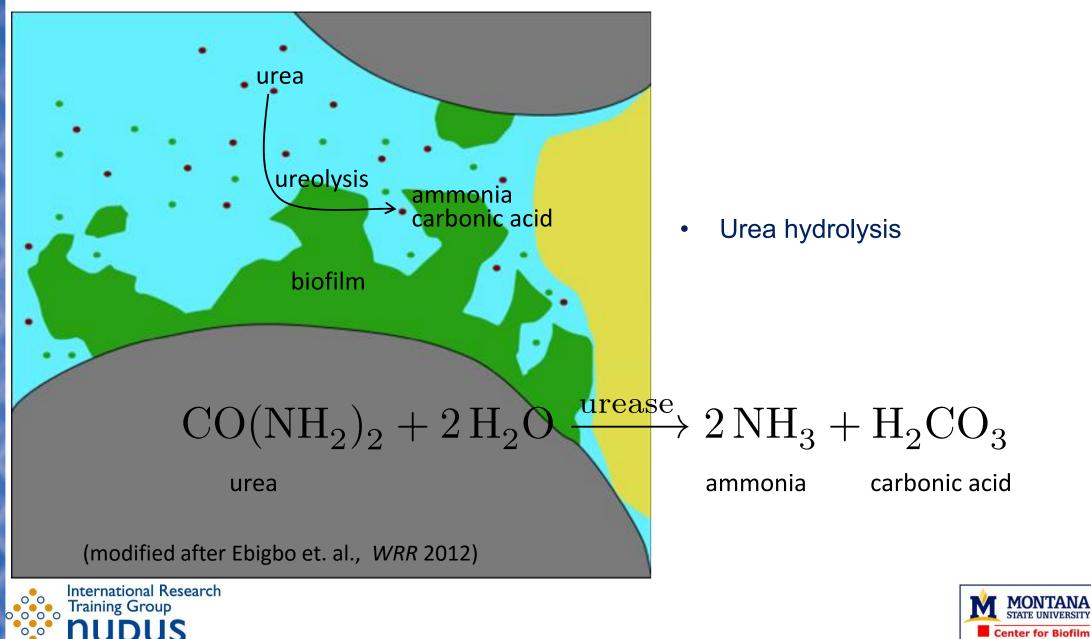
pus



Two-phase, multicomponent transport

nu

- Biomass (S. pasteurii) •
 - growth / decay
 - attachment / detachment



nu

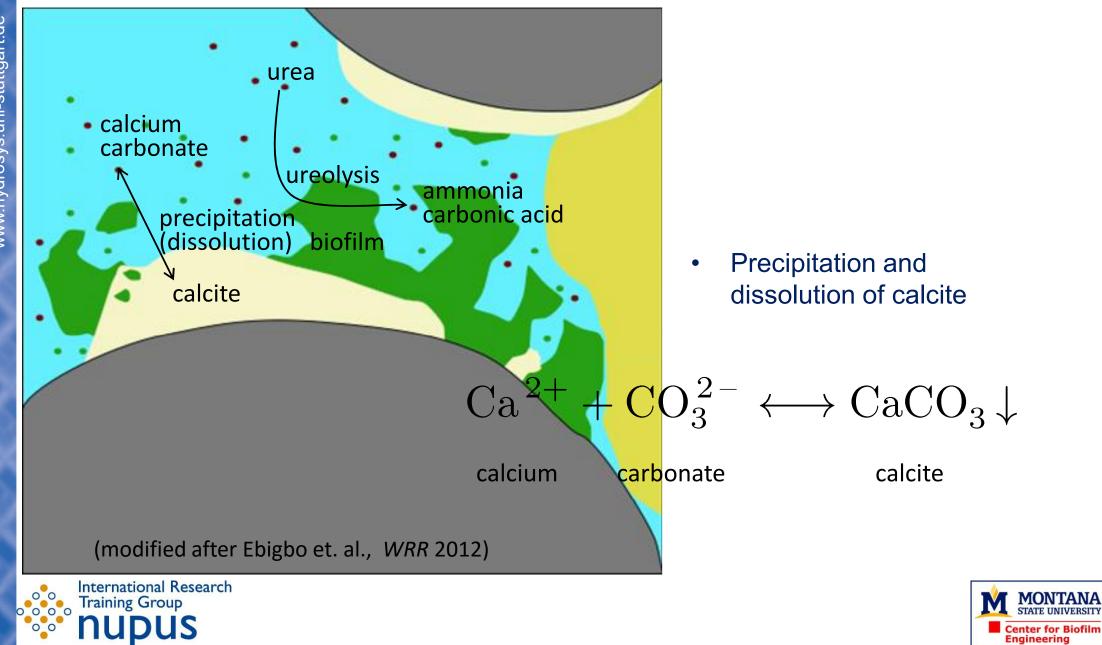
Center for Biofilm Engineering

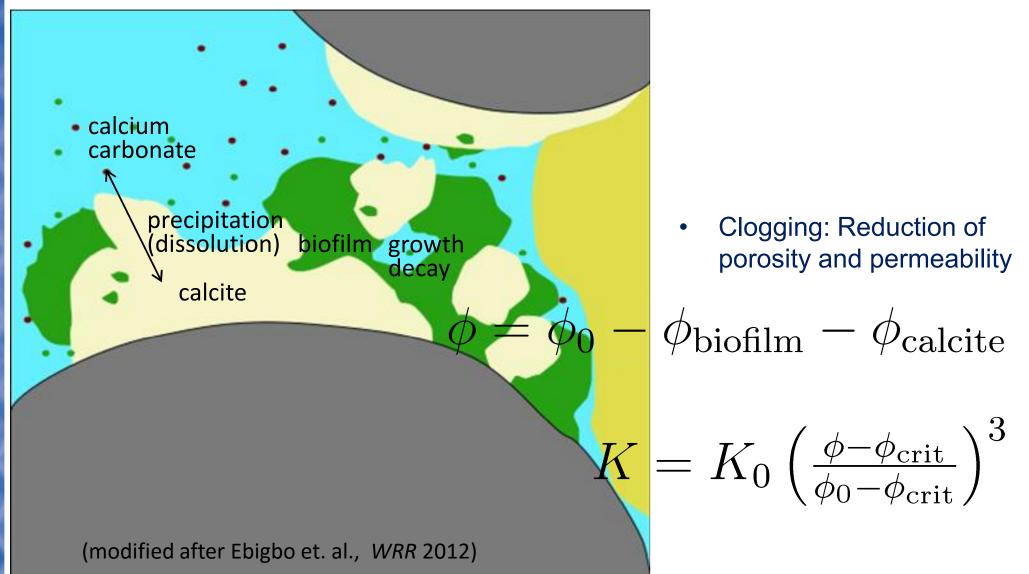
Model concept: Relevant processes

University of Stuttgart

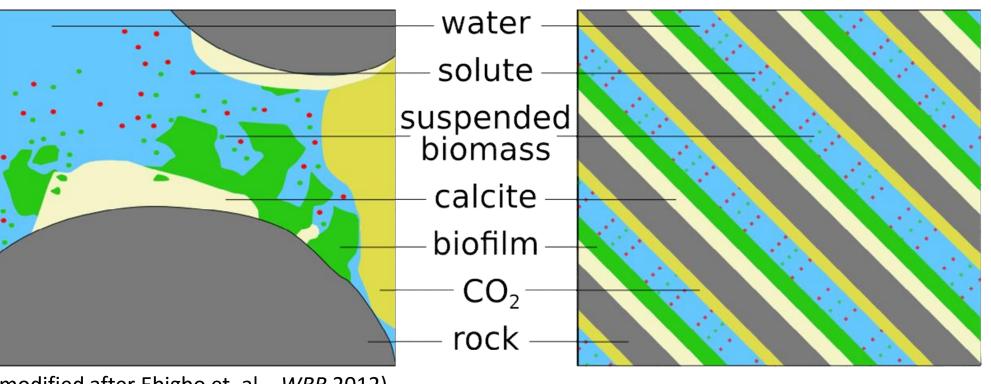
Model concept: Ureolysis and other reactions

The bacterium Sporosarcina pasteurii produces the enzyme urease.




Engineering

Model concept: Relevant processes



Model concept: Scale

(modified after Ebigbo et. al., WRR 2012)

Mass balance equations

Mass balance equation for components in both phases:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \text{water, } C_{\text{tot}}, O_2 \}; \ \alpha \in \{ \text{w, n} \}$$

Mass balance equations

Mass balance equation for components in both phases:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \text{water, } C_{\text{tot}}, O_2 \}; \ \alpha \in \{ \text{w, n} \}$$

Mass balance equation of components exclusively in the water phase:

$$\frac{\partial}{\partial t} \left(\phi \rho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} S_{\mathbf{w}} \right) + \nabla \cdot \left(\rho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} \mathbf{v}_{\mathbf{w}} \right) - \nabla \cdot \left(\rho_{\mathbf{w}} \mathbf{D}_{\mathbf{w}, \mathrm{pm}}^{\kappa} \nabla x_{\mathbf{w}}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \mathrm{Na, \ Cl, \ Ca, \ susp. \ biomass, \ substrate, \ urea, \ \mathrm{NH}_{\mathrm{tot}} \}$$

Mass balance equations

Mass balance equation for components in both phases:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \text{water, } C_{\text{tot}}, O_2 \}; \ \alpha \in \{ \text{w, n} \}$$

Mass balance equation of components exclusively in the water phase:

$$\frac{\partial}{\partial t} \left(\phi \rho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} S_{\mathbf{w}} \right) + \nabla \cdot \left(\rho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} \mathbf{v}_{\mathbf{w}} \right) - \nabla \cdot \left(\rho_{\mathbf{w}} \mathbf{D}_{\mathbf{w}, \mathrm{pm}}^{\kappa} \nabla x_{\mathbf{w}}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \mathrm{Na, \ Cl, \ Ca, \ susp. \ biomass, \ substrate, \ urea, \ \mathrm{NH}_{\mathrm{tot}} \}$$

Mass balance for the immobile components / solid phases:

$$\frac{\partial}{\partial t} \left(\rho_{\lambda} \phi_{\lambda} \right) = q^{\lambda} \qquad \lambda \in \{ \text{biofilm, calcite} \}$$

Sources & sinks: Solutes and Calcite

 $\begin{array}{c} q^{\mathrm{Ca}^{2+}} \\ q^{\mathrm{C}_{\mathrm{tot}}} \end{array}$

 q^{c}

Urea: Total nitrogen:

$$q^{\text{urea}} = -r_{\text{urea}}$$

 $q^{\text{NH}_{\text{tot}}} = 2r_{\text{urea}}$

Calcium: Total carbon: Calcite:

$$= r_{\rm diss} - r_{\rm precip}$$
$$= r_{\rm urea} + r_{\rm diss} - r_{\rm precip}$$
$$= r_{\rm precip} - r_{\rm diss}$$

Substrate:
$$q^{\text{substrate}} = -\left(r_{\text{growth}}^{\text{bio}} + r_{\text{growth}}^{\text{biofilm}}\right)/Yield$$

Oxygen: $q^{O_2} = -\left(r_{\text{growth}}^{\text{bio}} + r_{\text{growth}}^{\text{biofilm}}\right) \cdot 0.5/Yield$

Center for Biofilm Engineering

Sources & sinks: Solutes and Calcite

 $\begin{array}{c} q^{\mathrm{Ca}^{2+}} \\ q^{\mathrm{C}_{\mathrm{tot}}} \end{array}$

 q^{c}

Urea: Total nitrogen:

$$q^{\text{urea}} = -r_{\text{urea}}$$

 $q^{\text{NH}_{\text{tot}}} = 2r_{\text{urea}}$

Calcium: Total carbon: Calcite:

$$= r_{\rm diss} - r_{\rm precip}$$
$$= r_{\rm urea} + r_{\rm diss} - r_{\rm precip}$$
$$= r_{\rm precip} - r_{\rm diss}$$

Substrate:
$$q^{\text{substrate}} = -\left(r_{\text{growth}}^{\text{bio}} + r_{\text{growth}}^{\text{biofilm}}\right)/Yield$$

Oxygen: $q^{O_2} = -\left(r_{\text{growth}}^{\text{bio}} + r_{\text{growth}}^{\text{biofilm}}\right) \cdot 0.5/Yield$

Ureolysis rate

$$r_{\text{urea}} = f\left(\phi_{\text{biofilm}}, \text{pH}, C_{\text{w}}^{\text{urea}}; C_{\text{w}}^{\text{NH}_{4}^{+}}\right)$$

Precipitation rate

Dissolution rate

Training Group

nup

$$r_{\text{precip}} = f\left(A_{\text{interface}}, \Omega = \frac{[\operatorname{Ca}^{2+}][\operatorname{CO}_{3}^{2-}]}{K_{\text{sp}}}\right)$$
$$r_{\text{diss}} = f\left(A_{\text{interface}}, \Omega = \frac{[\operatorname{Ca}^{2+}][\operatorname{CO}_{3}^{2-}]}{K_{\text{sp}}}, \operatorname{pH}\right)$$

Sources & sinks: Biomass

Susp. biomass:	q^{bio}	=	$r_{ m growth}^{ m bio} - r_{ m decay}^{ m bio} - r_{ m attach}^{ m bio} + r_{ m detach}^{ m bio}$
Biofilm:	q^{biofilm}	=	$r_{ m growth}^{ m biofilm} - r_{ m decay}^{ m biofilm} + r_{ m attach}^{ m biofilm} - r_{ m detach}^{ m biofilm}$

www.hydrosys.uni-stuttgart.de

Sources & sinks: Biomass

jart.de	Susp. biomass:	$q^{ m bio}$	=	$r_{ m growth}^{ m bio} - r_{ m decay}^{ m bio} - r_{ m attach}^{ m bio} + r_{ m detach}^{ m bio}$
ys.uni-stutt	Biofilm:	q^{biofilm}	=	$r_{ m growth}^{ m biofilm} - r_{ m decay}^{ m biofilm} + r_{ m attach}^{ m biofilm} - r_{ m detach}^{ m biofilm}$
www.hydros)	Growth:	$r_{ m growth}^{ m bio} \ r_{ m growth}^{ m biofilm} \ \mu$	= = =	$ \begin{split} & \mu \cdot \phi S_{\rm w} C_{\rm w}^{\rm bio} \\ & \mu \cdot \phi_{\rm biofilm} \rho_{\rm biofilm} \\ & \mu_{\rm max} \cdot \frac{C_{\rm w}^{\rm substrate}}{K_{\rm substrate} C_{\rm w}^{\rm substrate}} \cdot \frac{C_{\rm w}^{\rm O_2}}{K_{\rm O_2} C_{\rm w}^{\rm O_2}} \end{split}$
	Decay:	$r_{ m decay}^{ m bio} \ r_{ m decay}^{ m biofilm}$	=	$ \begin{array}{l} k_{\rm decay}^{\rm bio} \cdot \phi S_{\rm w} C_{\rm w}^{\rm bio}; \ k_{\rm decay}^{\rm bio} = f({\rm pH}) \\ k_{\rm decay}^{\rm biofilm} \cdot \phi_{\rm biofilm} \rho_{\rm biofilm}; \ k_{\rm decay}^{\rm biofilm} = f(r_{\rm precip}) \end{array} \end{array} $
	Attachment: Detachment:			$ \begin{aligned} &(c_{\mathrm{a},1}\phi_{\mathrm{biofilm}}+c_{\mathrm{a},1})\cdot\phi S_{\mathrm{w}}C_{\mathrm{w}}^{\mathrm{bio}}\\ &\left(c_{\mathrm{d},1}\left(\nabla p_{\mathrm{w}} \phi S_{\mathrm{w}}\right)^{0.58}+\mu\frac{\phi_{\mathrm{biofilm}}}{\phi_{0}-\phi_{\mathrm{calcite}}}\right)\cdot\phi_{\mathrm{biofilm}}\rho_{\mathrm{biofilm}}\end{aligned} $
5	International Research Training Group			MONTAN STATE UNIVERSI Center for Biofil Engineering

Outline

• Introduction and motivation

• Model concept

• Application of (MICP and) the model at field scale

• Investigation of efficient solution strategies

• Summary

University of Stuttgart

Germany

Field-scale applications of MICP

Main characteristics of field-scale applications of MICP:

- Expensive
- Limited site-specific information
- Limited possibilities for measurements and surveillance due the depth and the restricted access only through the well used for the application
- Limited experience with field-scale applications of MICP

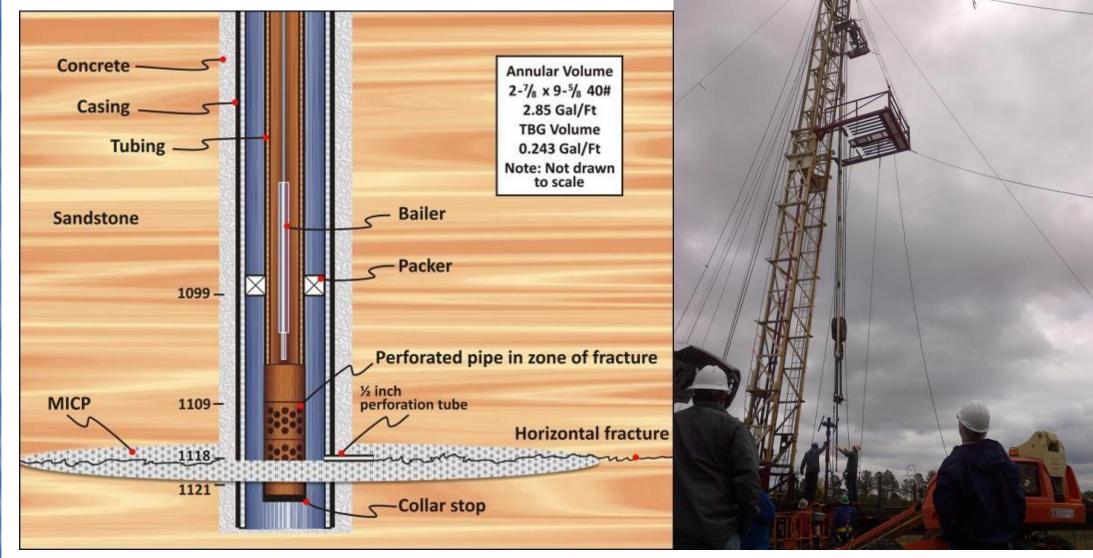
Field-scale modeling

Modeling used to give estimate answers to design questions such as:

- How much reactants (urea, calcium, cells) are necessary?
- What is the best injection strategy?
- What is the time necessary for sealing?

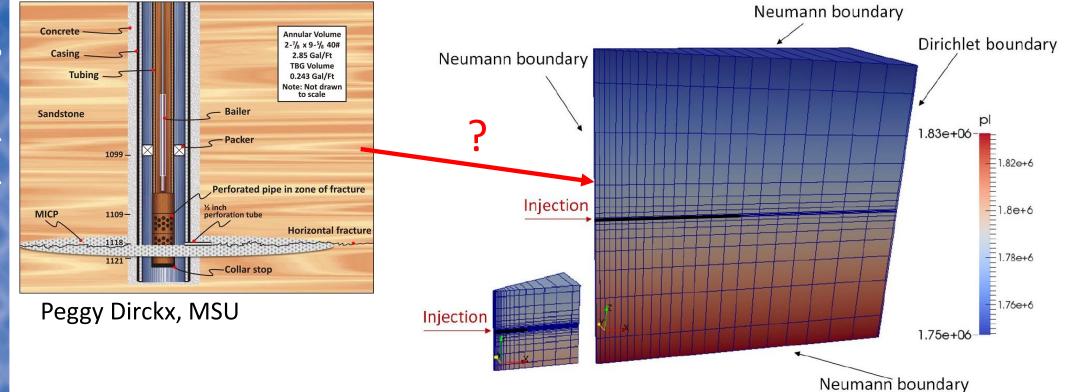
And also post-application question such as:

- What happened underground during the MICP application?
- What is the expected behavior in the future?



www.hydrosys.uni-stuttgart.de

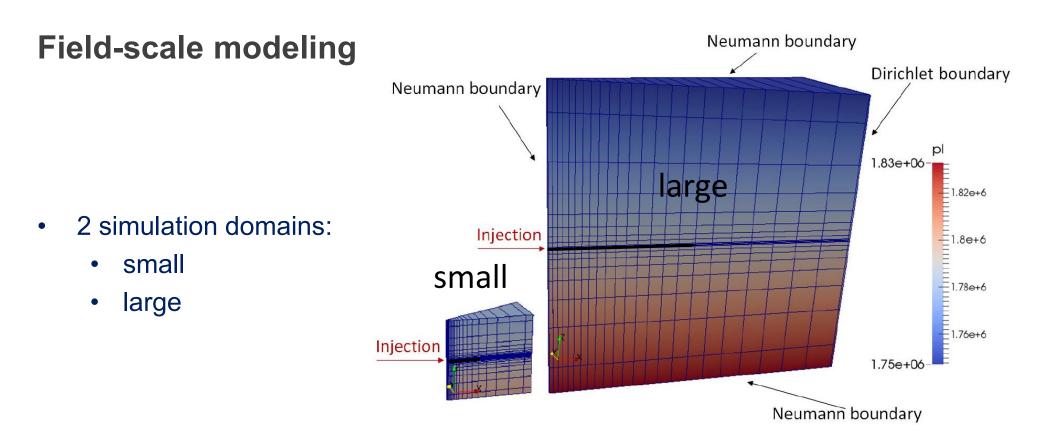
Field-scale applications of MICP



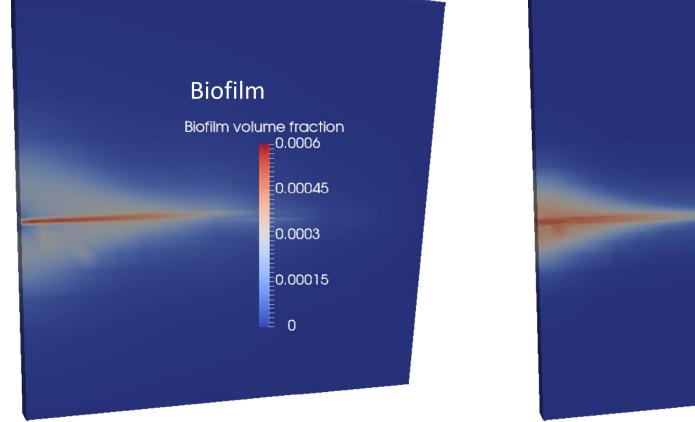
Adrienne Phillips, Al Cunningham, MSU

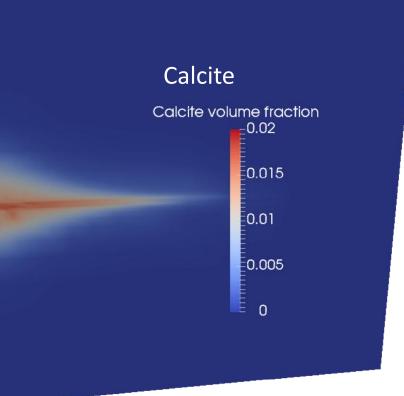
Engineering

Field-scale modeling

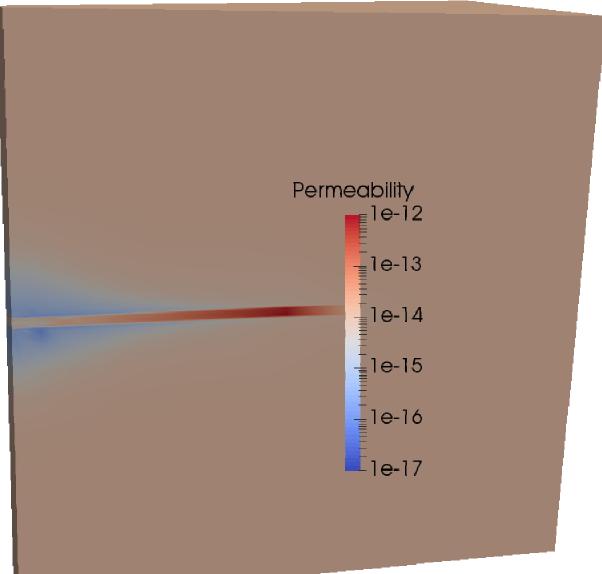

First challenge:

Use the limited information to set up a simplified but still realistic simulation domain.

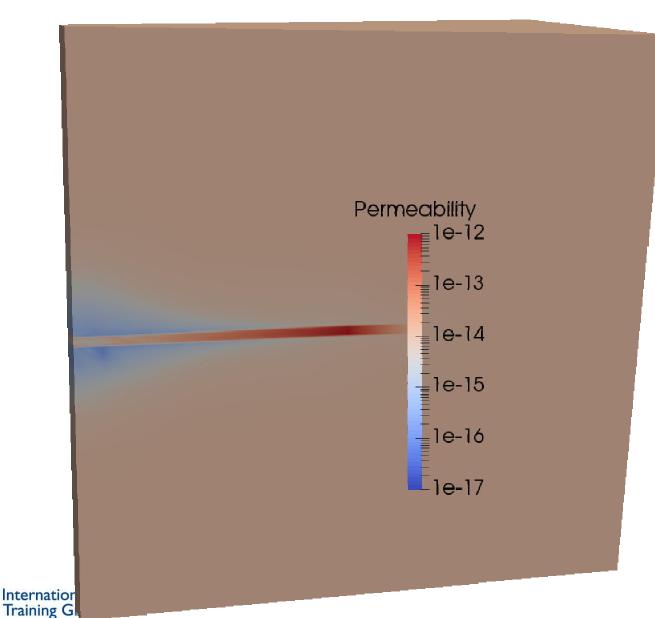

- 3 different injection strategies:
 - simple: few but long injections
 - ideal: many short injections, proved to be the "best" injection strategy
 - real: the actual injection strategy from the field test



Field-scale modeling: Results


Exemplary results for the ideal scenario on the small domain.

Field-scale modeling: Results



Field-scale modeling: Results

The ideal injection strategy predicted plugging after 24 Calcium rich injections,

25 were done in the field.

The real injection strategy was slightly less efficient.

0 0 0 0 0

Field-scale modeling: Results and outlook

The uncertainties in the subsurface properties and the geometry require a statistical analysis of the results for a huge range of scenarios.

But:

Injection strategy	Simulation time [h] small domain	Simulation time [h] large domain
Simple	1.3	96.8
Ideal	1.0	26.1
Real	93.5	38.6

Simulation times of up to a few days limit the simulations to few scenarios

 \rightarrow Need for more efficient solution strategies

Outline

• Introduction and motivation

• Model concept

• Application of (MICP and) the model at field scale

Investigation of efficient solution strategies

• Summary

Efficient solution strategies

Strategies:

- Model simplifications:
 - For realistic applications, the input parameter uncertainty leads to large errors. The model does not need to be more accurate.
 - → Remove model complexity, especially if it is relevant for the model performance.

Efficient solution strategies

Strategies:

- Model simplifications:
 - For realistic applications, the input parameter uncertainty leads to large errors. The model does not need to be more accurate.
 - → Remove model complexity, especially if it is relevant for the model performance.
- Optimize the choice of numerical parameters such as:
 - The convergence criteria for Newton or linear solvers;
 - The maximum time step size.

Efficient solution strategies

Strategies:

- Model simplifications:
 - For realistic applications, the input parameter uncertainty leads to large errors. The model does not need to be more accurate.
 - → Remove model complexity, especially if it is relevant for the model performance.
- Optimize the choice of numerical parameters such as:
 - The convergence criteria for Newton or linear solvers;
 - The maximum time step size.
- More sophisticated numerical solution schemes:
 - The full model is solved in a more efficient way.

Efficient solution strategies

Strategies:

- Model simplifications:
 - For realistic applications, the input parameter uncertainty leads to large errors. The model does not need to be more accurate.
 - → Remove model complexity, especially if it is relevant for the model performance.
 → see the poster 18 (6)

→ see the poster 18 (GRS) or 67 (GRC, Wednesday)

- Optimize the choice of numerical parameters such as:
 - The convergence criteria for Newton or linear solvers;
 - The maximum time step size.
- More sophisticated numerical solution schemes:
 - The full model is solved in a more efficient way

Model simplifications investigated:

• Full complexity model (FC)

Model simplifications investigated:

- Full complexity model (FC)
- Initial biofilm model (IB): Neglecting suspended biomass and assuming an initial biofilm distribution \rightarrow 11/12 of the unknowns of FC

Model simplifications investigated:

- Full complexity model (FC)
- Initial biofilm model (IB): Neglecting suspended biomass and assuming an initial biofilm distribution \rightarrow 11/12 of the unknowns of FC
- Simple chemistry model (SC): Neglecting all complex chemical calculations such as activities and assuming $r_{\rm prec} = r_{\rm urea}$ \rightarrow less non-linearity, faster convergence

Model simplifications investigated:

- Full complexity model (FC)
- Initial biofilm model (IB): Neglecting suspended biomass and assuming an initial biofilm distribution \rightarrow 11/12 of the unknowns of FC
- Simple chemistry model (SC): Neglecting all complex chemical calculations such as activities and assuming $r_{\rm prec} = r_{\rm urea}$
- \rightarrow less non-linearity, faster convergence

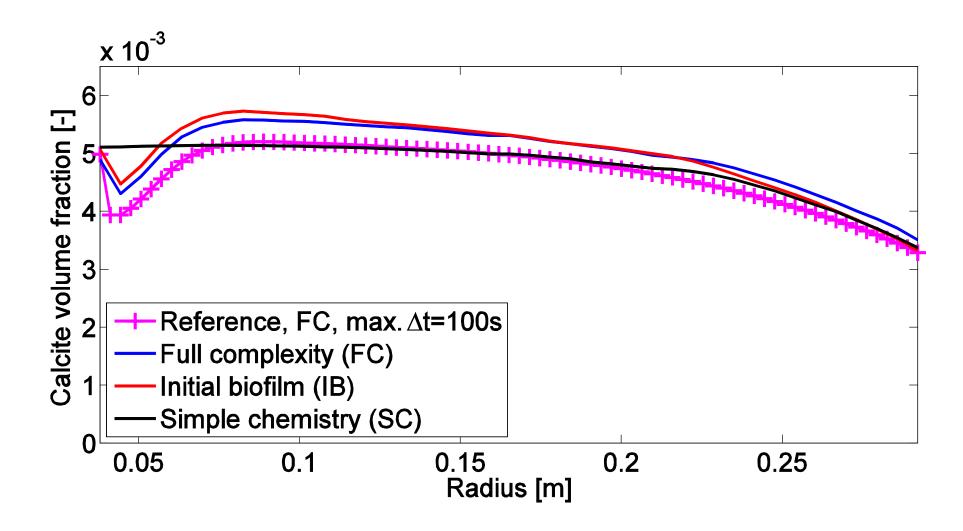
Setup	FC, N 10 ⁻⁶	IB, N 10 ⁻⁶	SC, N 10 ⁻⁶
Computational time [s]	32110	28089	5758
Newton iterations	4971	5053	1094
Linear solver iter./ Newton iteration	15.15	14.91	14.90
Error (ϕ c calcite) *	0.0025	0.0040	0.0070

* Error:
$$\sqrt{\sum_{i=1}^{\text{nodes}} (\phi_{c,i} - \phi_{c,\text{ref},i})^2}$$

Model simplifications investigated:

- Full complexity model (FC)
- Initial biofilm model (IB): Neglecting suspended biomass and assuming an initial biofilm distribution \rightarrow 11/12 of the unknowns of FC
- Simple chemistry model (SC): Neglecting all complex chemical calculations such as activities and assuming $r_{\text{prec}} = r_{\text{urea}}$
- \rightarrow less non-linearity, faster convergence

Setup	FC, N 10 ⁻⁶	IB, N 10 ⁻⁶	SC, N 10 ⁻⁶
Computational time [s]	32110	28089	5758
Newton iterations	4971	5053	1094
Linear solver iter./ Newton iteration	15.15	14.91	14.90
Error (ϕ c calcite) *	0.0025	0.0040	0.0070


ror:
$$\sqrt{\Sigma_{i=1}^{\mathrm{nodes}} \left(\phi_{\mathrm{c},i} - \phi_{\mathrm{c,ref},i}\right)^2}$$

* Er

Outline

• Introduction and motivation

• Model concept

• Application of (MICP and) the model at field scale

• Investigation of efficient solution strategies \rightarrow see the poster

• Summary

Training Group

- The developed model for MICP is very complex
- MICP and the model can be successfully applied at field scale
- The full complexity model is too time consuming for field-scale simulations
- Model simplification is useful to reduce the computational time.
 - Especially, if non-linear couplings are reduced
 - It can be used as a "process sensitivity analysis"
 - But each simplification may only be valid for a certain set of initial and boundary conditions
 - \rightarrow see the poster 18 (GRS) or 67 (GRC, Wednesday)
- Relaxing the convergence criterion of the Newton solver can also be a "first aid" choice to reduce computational time

University of Stuttgart

Germany

Thank you for your attention!

All simulations were done using

DuMu^x

Key papers / further information

A. Ebigbo, A.J. Phillips, R. Gerlach, R. Helmig, A.B. Cunningham, H. Class, L.H. Spangler: **Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns**. *Water Resources Research*, 2012 (48) WO7519, doi:10.1029/2011WR011714

E.G. Lauchnor, D.M. Topp, A.E. Parker, R. Gerlach: **Whole cell kinetics of ureolysis by** *Sporosarcina pasteurii*. *Journal of Applied Microbiology*, 2015 (118) 1321-1332, doi:10.1111/jam.12804

 A.J. Phillips, E.G. Lauchnor, J. Eldring, R. Espositos, A.C. Mitchell, R. Gerlach, A.B.
 Cunningham, L.H. Spangler: Potential CO₂ leakage leduction through biofilminduced calcium carbonate precipitation. *Environmental Science & Technology*, 2013 (47) 142-149, doi:10.1021/es301294q

A.J. Phillips, R. Gerlach, E.G. Lauchnor, A.C. Mitchell, A.B. Cunningham, L.H. Spangler:
Engineered applications of ureolytic biomineralization: a review. *Biofouling*, 2013 (29) 715-733, doi:10.1080/08927014.2013.796550

Papers / further information

J. Hommel: Modeling biogeochemical and mass transport processes in the subsurface: Investigation of microbially induced calcite precipitation. *PhD Thesis*, University of Stuttgart, 2016, doi:0.18419/opus-8770

J. Hommel, E.G. Lauchnor, R. Gerlach, A.B. Cunningham, A. Ebigbo, R. Helmig, H. Class: **Investigating the influence of the initial biomass distribution and the injection strategies on biofilm-mediated calcite precipitation in porous media**. *Transport in Porous Media*, 2015, doi:10.1007/s11242-015-0617-3

J. Hommel, E.G. Lauchnor, A.J. Phillips, R. Gerlach, A.B. Cunningham, R. Helmig, A. Ebigbo, H. Class: **A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments**. *Water Resources Research*, 2015 (51) 3695-3715, doi:10.1002/2014WR016503

J. Hommel, A.B. Cunningham, R. Helmig, A. Ebigbo, H. Class: **Numerical investigation** of microbially induced calcite precipitation as a leakage mitigation technology. *Energy Procedia*, 2013 (40C) 392-397, doi:10.1016/j.egypro.2013.08.045

