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‘ Motivation ‘ Model simplification

With increasing intensity of subsurface use, ensuring separation between he full complexity model (FC) and two simplifications are investigated:
different ayers with co-mpetitive uses becomes more ar]d more importar?t. To Initial biofilm (1B):

ensure separation, sealing technologies such as microbially induced calcite Instead of an inoculation period, the model is started at a later time with a

p.recipitati?n (MICP) are important. This and other applications of MICP are pre-established biofilm. The component suspended biomass is neglected [1],
discussed in Phillips et al. [3]. resulting in a reduced number of unknowns.

‘ Simple chemistry (SC):

Activities and saturation index are neglected, the precipitation rate is assumed
to be equal to the ureolysis rate as in e.g. van Wijngaarden et al. [4],
lorec = Farea- 1 his model has the full set of unknowns, but the geochemistry is

cO, & neglected.
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transport including two solid phases.
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a - - Table 1 : Comparison of the simplified models. Reference error homogeneous

Relevant processes to heterogeneous permeability: 0.0033.
e two-phase multi-component flow Model CPU time Error Newton it. Lin. it. / N. it
e processes determining the distribution of biomass: FC, N 107° 32110 s 0.0025 4971 15.15

- growth: fyut = 4 Phiofim Pbiofim C%Cio e, FC,N10~*  4861s 0.0065 776 6.57

- decay: Fecay = Kdecay Phiofim Obiofimy SC, N 107° 5758 s 0.0070 1094 14.90

- attachment: Fuytachment = (Ca 1 Ppiofilm + Ca,z(? Sy ¢ Chacteria SC, N 1074 2001 s 0.0104 396 13.14

- detachment: ryetachment = €41 (Sw @ |V puwl) R Cd,2 M, 1B, N 10~° 28089 s 0.0040 5053 14.9

e (bio-) chemical reactions:

urease Relaxing the Newton convergen riterion | impl
- microbially catalyzed ureolysis: CO(NH,), +2H,0 —— 2NH; + H,CO;, * Relaxing the Newton convergence criterion is a simple but

effective measure to reduce CPU time.
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Nirea — kurease kub Pbiofilm gbbiofilm murea L K

- influence of NH; on the pH: NH; + H" <= NH, = increase in pH, e For the given setup, the CPU time of the simple chemistry model (at

- precipitation (and dissolution) of calcite: Ca** + CO3™ «= CaCOs |, N 10 °) is comparable to relaxing the Newton convergence criterion.
Mprecipitation = Kprecipitation ASW 1 -1 precipitation . : . oo .
e e ( | ) | CaMIC0% ) | e The simple chemistry model could be simplified further, removing
which is depended on the calcite saturation state €2 = K, and the water-solid additionally the components suspended biomass (see IB moclel) and

f As. - L L
surface area Na™*, CI", and NH}, as the geochemistry is neglected in this setup.

3
O clogging: QS — ¢O — ¢Calcite — ¢bioﬁlm = K = KO (szo:%sift)
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The setup is the bicycle rim
experiment described in
Hommel et al. [2].
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