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Why investigate e.g. biomineralization?

In the context of this presentation mainly:
wellbore integrity remediation in gas 
storage, oil production, 
hydraulic fracking 

from Phillips et al. 2013 
Engineered applications of ureolytic 
biomineralization: A review. 
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MICP model concept: Relevant processes
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MICP model concept: Relevant processes
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MICP model concept: Relevant processes
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MICP model concept: Relevant processes

calcite

growth 
decay

biofilm
precipitation
(dissolution)

• Clogging: Reduction 
of porosity and 
permeability

calcium
carbonate



Model concept: Scale

averaging
Pore scale REV scale



Mass balance equations

• Mass balance equation for components in both phases:



Mass balance equations

• Mass balance equation for components in both phases:

• Mass balance equation of components exclusively in the water phase:



Mass balance equations

• Mass balance equation for components in both phases:

• Mass balance equation of components exclusively in the water phase:

• Mass balance for the immobile components / solid phases:



Outline

• Motivation

• Microbially induced calcite precipitation (MICP)

• MICP (model) concept

• Successful field-scale application and limitations

• New biomineralization processes:

• Enzymatically induced calcite precipitation (EICP)

• Thermally induced calcite precipitation (TICP)

• Summary



Field-scale applications of MICP

Adrienne Phillips, Al Cunningham, MSUPeggy Dirckx, MSU

355 m



Field-scale modeling

• First challenge:

• Use the limited information to set up a simplified but still realistic 

simulation domain.

?

Peggy Dirckx, MSU



• 2 simulation domains: 

• small

• large

• 3 different injection strategies:

• simple: few but long injections

• ideal: many short injections, proved to be the „best“ injection strategy

• real: the actual injection strategy from the field test

Field-scale modeling

large

small



Field-scale modeling: Results

Biofilm Calcite



Field-scale modeling: Results

The ideal injection
strategy
predicted plugging
after 24 
Calcium rich
injections,

25 were done in 
the field.

The real injection
strategy was 
slightly less
efficient.



MICP: Challenges and limitations

• Large amounts of the bacterium Sporosarcina pasteurii have to 

be grown before the application and might be difficult to store. 

• The bacterium Sporosarcina pasteurii producing the enzyme 

urease survives up to temperatures of 40-50°C.

• At greater depths, which are relevant for e.g. CO2 storage, the 

temperature is usually higher than 50°C.

•  Need for more temperature stable technologies
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EICP and TICP model concept: Ureolysis and reactions

The bacterium Sporosarcina pasteurii produces the enzyme urease.



EICP and TICP model concept: Ureolysis and reactions

Urease is injected or thermal ureolysis occurs
temperature
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EICP model concept: Relevant processes
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EICP model concept: Relevant processes
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EICP model concept: Relevant processes
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EICP model concept: Relevant processes
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EICP model concept: Relevant processes
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EICP compared to MICP

• The enzyme urease is surprisingly temperature stable.

• Temperature limit is approximately 80°C, but at 70-80°C rapid 

enzyme inactivation. The optimum temperature is 60°C.

• Urease can be stored more easily than living cells. 

• Urease can be obtained from plants, e.g. jack beans or soy beans. 
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TICP model concept: Relevant processes
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TICP model concept: Relevant processes
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TICP model concept: Relevant processes
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TICP model concept: Relevant processes
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TICP compared to MICP and EICP

• Higher temperatures >100°C provide sufficient activation energy to

hydrolyze urea without catalyst, below 100°C only low reaction rate.

• No extra catalyst (bacteria, enzyme) needed.

• Probably more difficult to control in applications, because there is no

catalyst!



Outline

• Motivation

• Microbially induced calcite precipitation (MICP)

• MICP (model) concept

• Successful field-scale application and limitations

• New biomineralization processes:

• Enzymatically induced calcite precipitation (EICP)

• Thermally induced calcite precipitation (TICP)

• Summary



Summary and outlook

• Implemented two additional mineralization models (EICP and TICP).

• Main differences are the number of components and the reaction 

rate kinetics.

• Added non-isothermal capabilities to all mineralization models.

• TODO:

• Calibrate and validate both EICP and TICP models.



Resulting models and questions

MICP EICP TICP

Common primary 
variables

7: water, CO2 (Ctotal), sodium, chloride, calcium, urea, calcite 

Specific primary 
variables 

5: substrate, oxygen, 
NHtotal, suspended 
biomass, biofilm

4 (2): urease susp./imm., non 
urease JBM susp./imm.,          
(NHtotal for FL kinetics, 
temperature for NI)

0 (1):  temperature 
for NI)

Ureolysis kinetics Lauchnor et al. 2015 1st order from experiments From experiments 
or literature

Solid phases biofilm, calcite calcite, (attached enzyme
and bean meal)

calcite

Open questions temperature
dependence of microbial 
processes

Kinetics (ureolysis and 
precipitation), urease
transport, bean meal vs. pure 
enzyme temperature
dependence

Kinetics (ureolysis
and precipitation) 
temperature
dependence
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