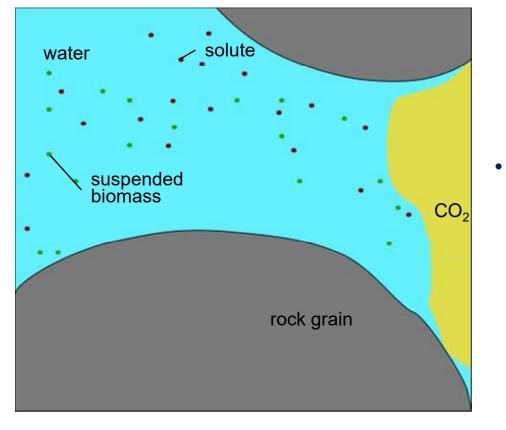
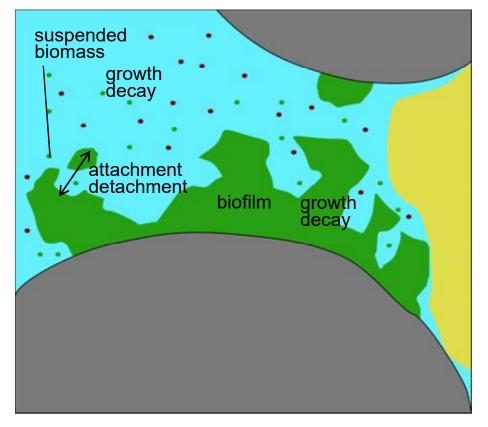

University of Stuttgart

Institute for Modelling Hydraulic and Environmental Systems Department of Hydromechanics and Modelling of Hydrosystems

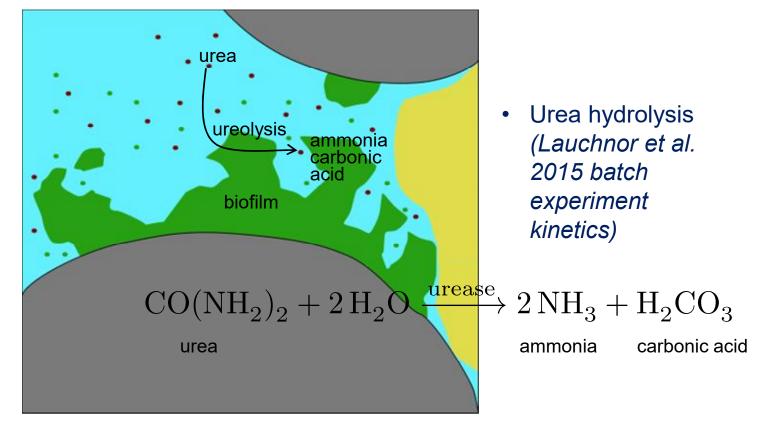
Why investigate e.g. biomineralization?

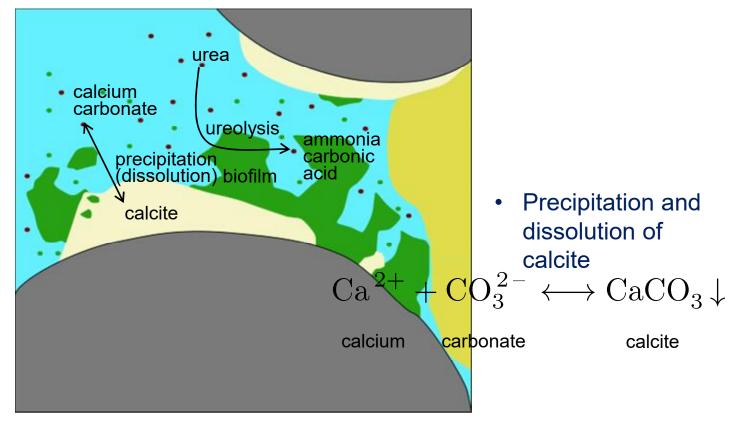


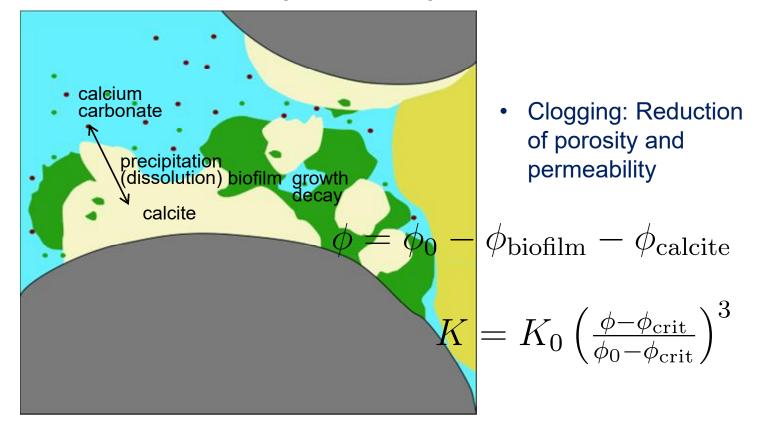
In the context of this presentation mainly: wellbore integrity remediation in gas storage, oil production, hydraulic fracking

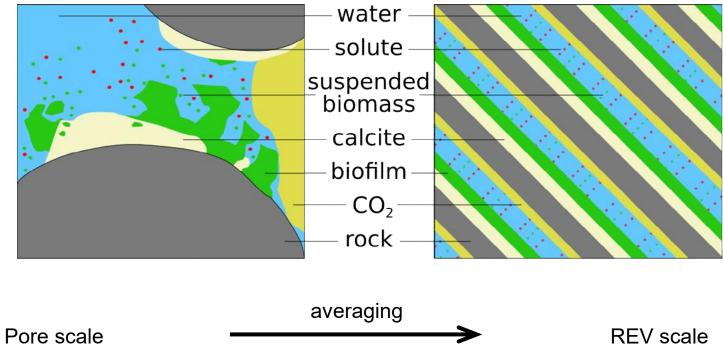

from Phillips et al. 2013 Engineered applications of ureolytic biomineralization: A review.

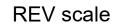
Outline


- Motivation
- Microbially induced calcite precipitation (MICP)
 - MICP (model) concept
 - Successful field-scale application and limitations
- New biomineralization processes:
 - Enzymatically induced calcite precipitation (EICP)
 - Thermally induced calcite precipitation (TICP)
- Summary




 Two-phase, multicomponent transport


- Biomass (S. pasteurii)
 - growth / decay
 - attachment / detachment



Model concept: Scale

Mass balance equations

• Mass balance equation for components in both phases:

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \text{water, } C_{\text{tot}}, O_2 \}; \ \alpha \in \{ \text{w, n} \}$$

Mass balance equations

• Mass balance equation for components in both phases:

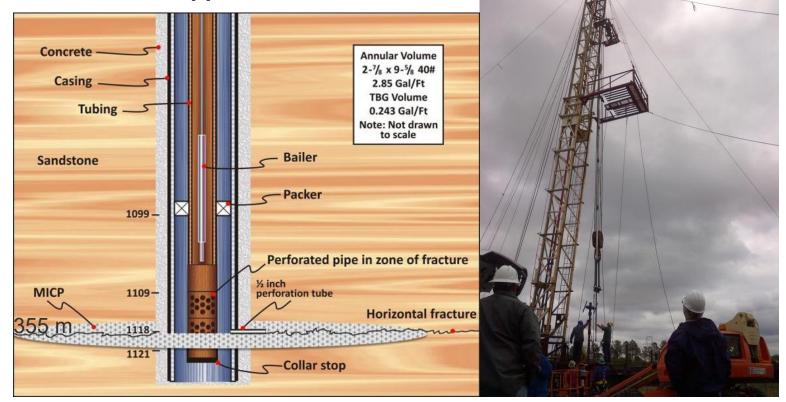
$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \text{water, } C_{\text{tot}}, O_2 \}; \ \alpha \in \{ \text{w, n} \}$$

• Mass balance equation of components exclusively in the water phase: $\frac{\partial}{\partial t} \left(\phi \rho_{w} x_{w}^{\kappa} S_{w} \right) + \nabla \cdot \left(\rho_{w} x_{w}^{\kappa} \mathbf{v}_{w} \right) - \nabla \cdot \left(\rho_{w} \mathbf{D}_{w, pm}^{\kappa} \nabla x_{w}^{\kappa} \right) = q^{\kappa}$ $\kappa \in \{ \text{Na, Cl, Ca, susp. biomass, substrate, urea, NH_{tot} } \}$

Mass balance equations

• Mass balance equation for components in both phases:

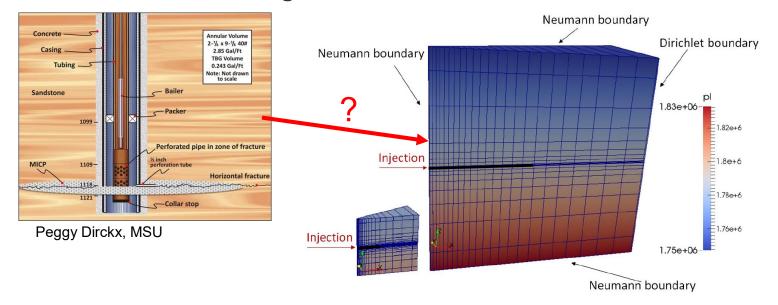

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

$$\kappa \in \{ \text{water, } C_{\text{tot}}, O_2 \}; \ \alpha \in \{ \text{w, n} \}$$

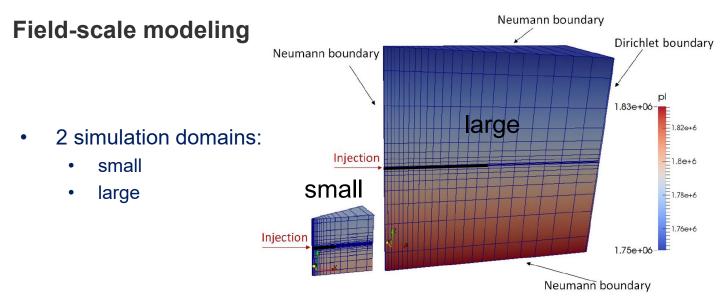
- Mass balance equation of components exclusively in the water phase: $\frac{\partial}{\partial t} \left(\phi \rho_{w} x_{w}^{\kappa} S_{w} \right) + \nabla \cdot \left(\rho_{w} x_{w}^{\kappa} \mathbf{v}_{w} \right) - \nabla \cdot \left(\rho_{w} \mathbf{D}_{w, pm}^{\kappa} \nabla x_{w}^{\kappa} \right) = q^{\kappa}$ $\kappa \in \{ \text{Na, Cl, Ca, susp. biomass, substrate, urea, NH_{tot} } \}$
- Mass balance for the immobile components / solid phases: $\frac{\partial}{\partial t} \left(\rho_{\lambda} \phi_{\lambda} \right) = q^{\lambda} \qquad \lambda \in \{ \text{biofilm, calcite} \}$

Outline

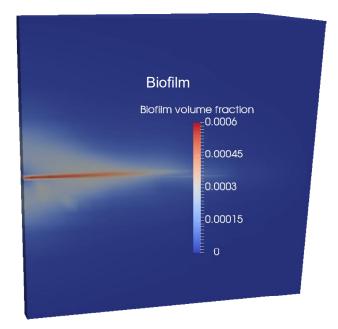
- Motivation
- Microbially induced calcite precipitation (MICP)
 - MICP (model) concept
 - Successful field-scale application and limitations
- New biomineralization processes:
 - Enzymatically induced calcite precipitation (EICP)
 - Thermally induced calcite precipitation (TICP)
- Summary


Field-scale applications of MICP

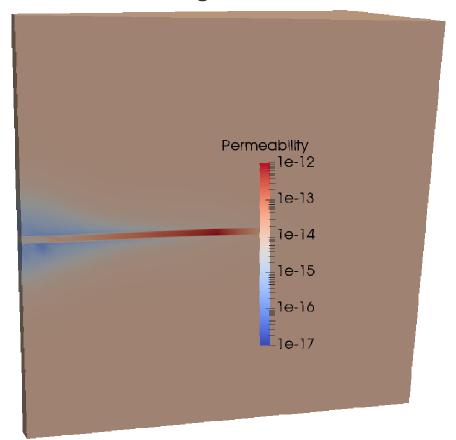
Peggy Dirckx, MSU


Adrienne Phillips, Al Cunningham, MSU

Field-scale modeling


• First challenge:

• Use the limited information to set up a simplified but still realistic simulation domain.


- 3 different injection strategies:
 - simple: few but long injections
 - ideal: many short injections, proved to be the "best" injection strategy
 - real: the actual injection strategy from the field test

Field-scale modeling: Results

Field-scale modeling: Results

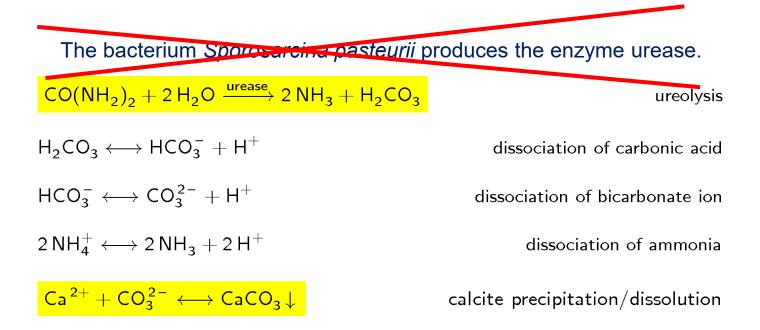
The ideal injection strategy predicted plugging after 24 Calcium rich injections,

25 were done in the field.

The real injection strategy was slightly less efficient.

MICP: Challenges and limitations

- Large amounts of the bacterium *Sporosarcina pasteurii* have to be grown before the application and might be difficult to store.
- The bacterium *Sporosarcina pasteurii* producing the enzyme urease survives up to temperatures of 40-50°C.
- At greater depths, which are relevant for e.g. CO₂ storage, the temperature is usually higher than 50°C.
- \rightarrow Need for more temperature stable technologies

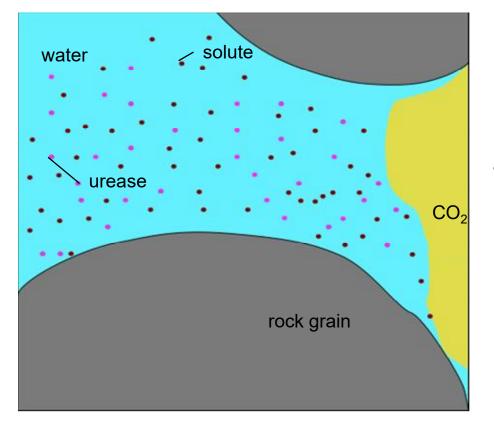

Outline

- Motivation
- Microbially induced calcite precipitation (MICP)
 - MICP (model) concept
 - Successful field-scale application and limitations

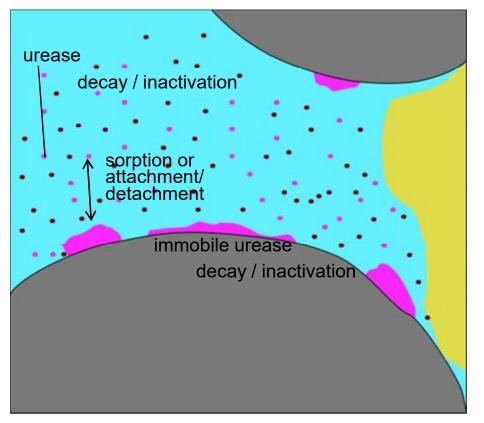
New biomineralization processes:

- Enzymatically induced calcite precipitation (EICP)
- Thermally induced calcite precipitation (TICP)
- Summary

EICP and TICP model concept: Ureolysis and reactions

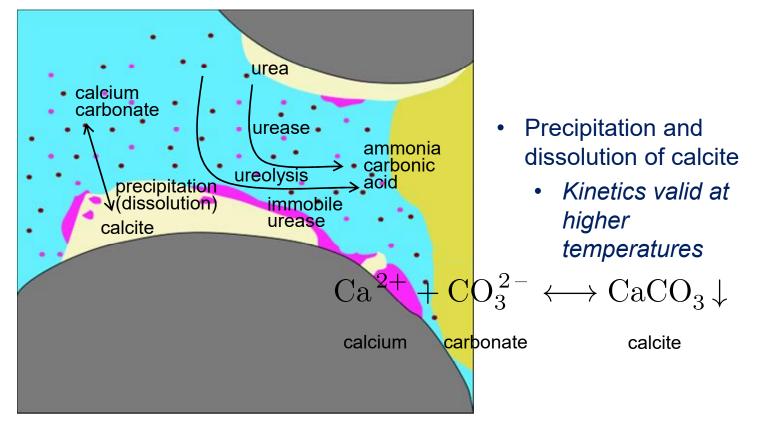


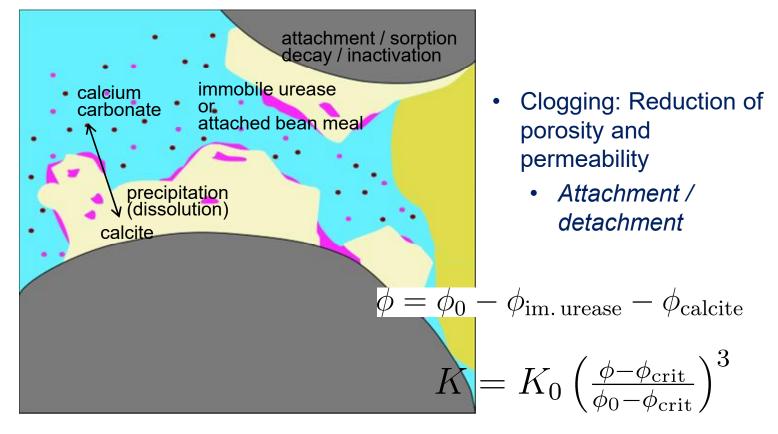
EICP and TICP model concept: Ureolysis and reactions


Urease is injected or thermal ureolysis occurs				
$CO(NH_2)_2 + 2H_2O \xrightarrow{\text{urease}} 2NH_3 + H_2CO_3$	ureolysis			
$\rm H_2\rm CO_3 \longleftrightarrow \rm H\rm CO_3^- + \rm H^+$	dissociation of carbonic acid			
$HCO_3^- \longleftrightarrow CO_3^{2-} + H^+$	dissociation of bicarbonate ion			
$2 \operatorname{NH}_4^+ \longleftrightarrow 2 \operatorname{NH}_3 + 2 \operatorname{H}^+$	dissociation of ammonia			
$Ca^{2+} + CO_3^{2-} \longleftrightarrow CaCO_3 \downarrow$	calcite precipitation/dissolution			

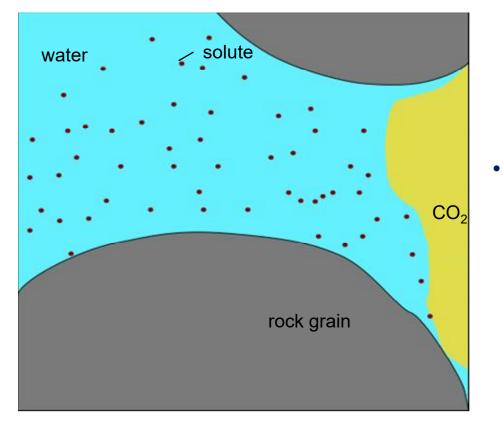
Outline

- Motivation
- Microbially induced calcite precipitation (MICP)
 - MICP (model) concept
 - Successful field-scale application and limitations
- New biomineralization processes:
 - Enzymatically induced calcite precipitation (EICP)
 - Thermally induced calcite precipitation (TICP)
- Summary

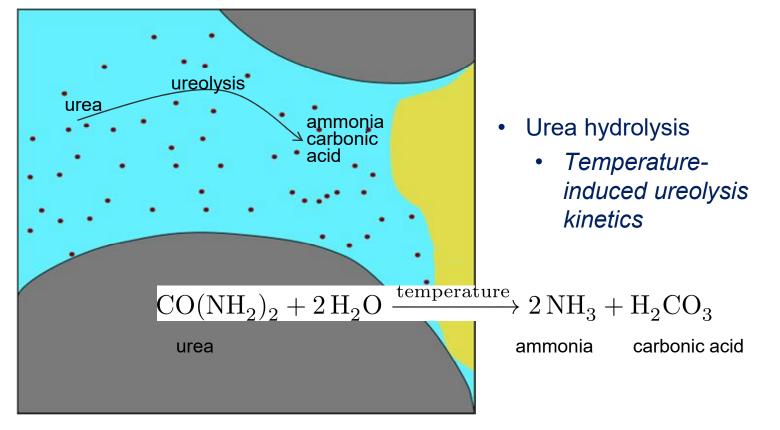


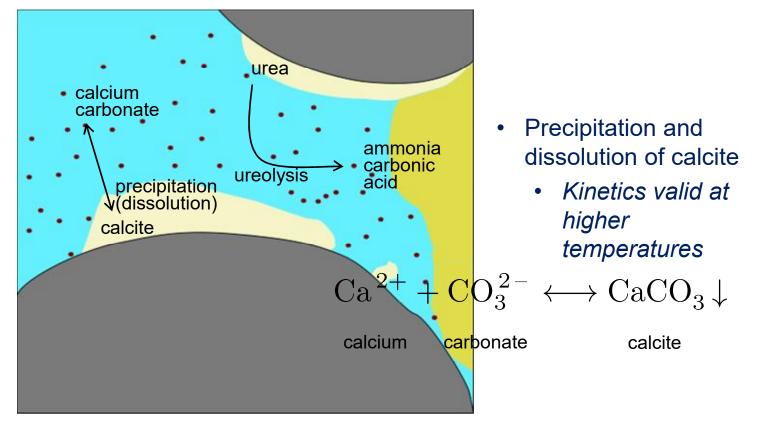

• Two-phase, multicomponent transport

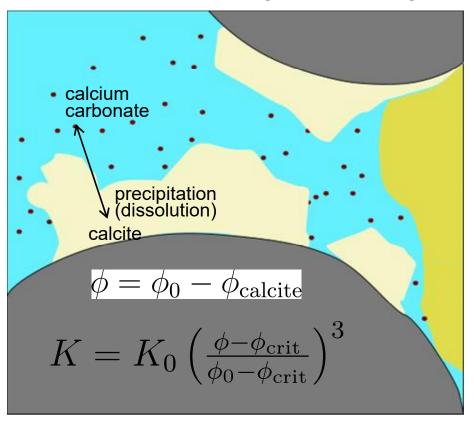
- Urease transport and immobilization:
 - Attachmentdetachment
 - Inactivation of suspended and immobile urease: temperature and precipitation



EICP compared to MICP


- The enzyme urease is surprisingly temperature stable.
- Temperature limit is approximately 80°C, but at 70-80°C rapid enzyme inactivation. The optimum temperature is 60°C.
- Urease can be stored more easily than living cells.
- Urease can be obtained from plants, e.g. jack beans or soy beans.


Outline


- Motivation
- Microbially induced calcite precipitation (MICP)
 - MICP (model) concept
 - Successful field-scale application and limitations
- New biomineralization processes:
 - Enzymatically induced calcite precipitation (EICP)
 - Thermally induced calcite precipitation (TICP)
- Summary

 Two-phase, multicomponent transport

- Clogging: Reduction of porosity and permeability
 - Still calcite the dominant mineral?
 - → At least temporally aragonite.
 - Effects of aragonite and higher temperatures on crystal distribution → poro.-perm. relation?

TICP compared to MICP and EICP

- Higher temperatures >100°C provide sufficient activation energy to hydrolyze urea without catalyst, below 100°C only low reaction rate.
- No extra catalyst (bacteria, enzyme) needed.
- Probably more difficult to control in applications, because there is no catalyst!

Outline

- Motivation
- Microbially induced calcite precipitation (MICP)
 - MICP (model) concept
 - Successful field-scale application and limitations
- New biomineralization processes:
 - Enzymatically induced calcite precipitation (EICP)
 - Thermally induced calcite precipitation (TICP)
- Summary

Summary and outlook

- Implemented two additional mineralization models (EICP and TICP).
- Main differences are the number of components and the reaction rate kinetics.
- Added non-isothermal capabilities to all mineralization models.

• TODO:

• Calibrate and validate both EICP and TICP models.

Resulting models and questions

	MICP	EICP	ТІСР
Common primary variables	7 : water, CO_2 (C_{total}), sodium, chloride, calcium, urea, calcite		
Specific primary variables	5 : substrate, oxygen, NH _{total} , suspended biomass, biofilm	4 (2): urease susp./imm., non urease JBM susp./imm., (NH _{total} for FL kinetics, temperature for NI)	0 (1): temperature for NI)
Ureolysis kinetics	Lauchnor et al. 2015	1 st order from experiments	From experiments or literature
Solid phases	biofilm, calcite	calcite, (attached enzyme and bean meal)	calcite
Open questions	temperature dependence of microbial processes	Kinetics (ureolysis and precipitation), urease transport, bean meal vs. pure enzyme temperature dependence	Kinetics (ureolysis and precipitation) temperature dependence

Thank you!

Johannes Hommel

e-mail <u>Johannes.hommel@iws.uni-stuttgart.de</u> phone +49 (0) 711 685-64600

University of Stuttgart Institute for Modelling Hydraulic and Environmental Systems Department of Hydromechanics and Modelling of Hydrosystems Pfaffenwaldring 61, D-70569 Stuttgart, Germany

Key papers / further information

- A. Ebigbo, A.J. Phillips, R. Gerlach, R. Helmig, A.B. Cunningham, H. Class, L.H. Spangler: Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns. *Water Resources Research*, 2012 (48) WO7519, doi:10.1029/2011WR011714
- E.G. Lauchnor, D.M. Topp, A.E. Parker, R. Gerlach: Whole cell kinetics of ureolysis by *Sporosarcina pasteurii*. *Journal of Applied Microbiology*, 2015 (118) 1321-1332, doi:10.1111/jam.12804
- A.J. Phillips, E.G. Lauchnor, J. Eldring, R. Espositos, A.C. Mitchell, R. Gerlach, A.B. Cunningham, L.H. Spangler: Potential CO₂ leakage leduction through biofilm-induced calcium carbonate precipitation. *Environmental Science & Technology*, 2013 (47) 142-149, doi:10.1021/es301294q
- A.J. Phillips, R. Gerlach, E.G. Lauchnor, A.C. Mitchell, A.B. Cunningham, L.H. Spangler: Engineered applications of ureolytic biomineralization: a review. *Biofouling*, 2013 (29) 715-733, doi:10.1080/08927014.2013.796550

Papers / further information

- J. Hommel, E.G. Lauchnor, R. Gerlach, A.B. Cunningham, A. Ebigbo, R. Helmig, H. Class: Investigating the influence of the initial biomass distribution and the injection strategies on biofilm-mediated calcite precipitation in porous media. *Transport in Porous Media*, 2015, doi:10.1007/s11242-015-0617-3
- J. Hommel, E.G. Lauchnor, A.J. Phillips, R. Gerlach, A.B. Cunningham, R. Helmig, A. Ebigbo, H. Class: A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments. *Water Resources Research*, 2015 (51) 3695-3715, doi:10.1002/2014WR016503
- J. Hommel, A.B. Cunningham, R. Helmig, A. Ebigbo, H. Class: Numerical investigation of microbially induced calcite precipitation as a leakage mitigation technology. *Energy Procedia*, 2013 (40C) 392-397, doi:10.1016/j.egypro.2013.08.045

Sources & sinks: Solutes and Calcite

Urea: Total nitrogen:	$q^{ m urea} \ q^{ m NH_{tot}}$	=	$-r_{ m urea} \ 2r_{ m urea}$
Calcium: Total carbon: Calcite:	$q^{\mathrm{Ca}^{2+}} \ q^{\mathrm{C}_{\mathrm{tot}}} \ q^{\mathrm{c}}$		$egin{aligned} r_{ ext{diss}} &- r_{ ext{precip}} \ r_{ ext{urea}} &+ r_{ ext{diss}} - r_{ ext{precip}} \ r_{ ext{precip}} &- r_{ ext{diss}} \end{aligned}$
Substrate: Oxygen:	$q^{ m substrate}$ $q^{ m O_2}$	=	$-\left(r_{ m growth}^{ m bio}+r_{ m growth}^{ m biofilm} ight)/Yield -\left(r_{ m growth}^{ m bio}+r_{ m growth}^{ m biofilm} ight)\cdot 0.5/Yield$

Sources & sinks: Solutes and Calcite

Urea: Total nitrogen:			$-r_{ m urea} \ 2r_{ m urea}$
Calcium: Total carbon: Calcite:	$q^{\mathrm{Ca}^{2+}} \ q^{\mathrm{C}_{\mathrm{tot}}} \ q^{\mathrm{c}}$	=	$egin{aligned} r_{ ext{diss}} &- r_{ ext{precip}} \ r_{ ext{urea}} &+ r_{ ext{diss}} - r_{ ext{precip}} \ r_{ ext{precip}} &- r_{ ext{diss}} \end{aligned}$
Substrate: Oxygen:	$q^{ m substrate}$ $q^{ m O_2}$	=	$-\left(r_{ m growth}^{ m bio}+r_{ m growth}^{ m biofilm} ight)/Yield -\left(r_{ m growth}^{ m bio}+r_{ m growth}^{ m biofilm} ight)\cdot 0.5/Yield$
Ureolysis rate	$r_{ m urea}$	=	$f\left(\phi_{\text{biofilm}}, \text{ pH}, C_{\text{w}}^{\text{urea}}; C_{\text{w}}^{\text{NH}_{4}^{+}}\right)$
Precipitation rate Dissolution rate	$r_{ m precip} \ r_{ m diss}$	=	$f\left(A_{\text{interface}}, \Omega = \frac{[\text{Ca}^{2+}][\text{CO}_{3}^{2-}]}{K_{\text{sp}}}\right)$ $f\left(A_{\text{interface}}, \Omega = \frac{[\text{Ca}^{2+}][\text{CO}_{3}^{2-}]}{K_{\text{sp}}}, \text{pH}\right)$

Sources & sinks: BiomassSusp. biomass: $q^{\text{bio}} = r_{\text{growth}}^{\text{bio}} - r_{\text{decay}}^{\text{bio}} - r_{\text{attach}}^{\text{bio}} + r_{\text{detach}}^{\text{bio}}$ Biofilm: $q^{\text{biofilm}} = r_{\text{growth}}^{\text{biofilm}} - r_{\text{decay}}^{\text{biofilm}} + r_{\text{attach}}^{\text{biofilm}} - r_{\text{detach}}^{\text{biofilm}}$

Sources & sinks: Biomass $q^{\text{bio}} = r^{\text{bio}}_{\text{growth}} - r^{\text{bio}}_{\text{decay}} - r^{\text{bio}}_{\text{attach}} + r^{\text{bio}}_{\text{detach}}$ Susp. biomass: $q^{\text{biofilm}} = r_{\text{growth}}^{\text{biofilm}} - r_{\text{decay}}^{\text{biofilm}} + r_{\text{attach}}^{\text{biofilm}} - r_{\text{detach}}^{\text{biofilm}}$ Biofilm: Growth: $\begin{array}{lll} r_{\rm decay}^{\rm bio} &=& k_{\rm decay}^{\rm bio} \cdot \phi S_{\rm w} C_{\rm w}^{\rm bio}; \ k_{\rm decay}^{\rm bio} = f({\rm pH}) \\ r_{\rm decay}^{\rm biofilm} &=& k_{\rm decay}^{\rm biofilm} \cdot \phi_{\rm biofilm} \rho_{\rm biofilm}; \ k_{\rm decay}^{\rm biofilm} = f(r_{\rm precip}) \end{array}$ Decay: $\begin{array}{lll} r_{\mathrm{attach}} & = & \left(c_{\mathrm{a},1}\phi_{\mathrm{biofilm}} + c_{\mathrm{a},1} \right) \cdot \phi S_{\mathrm{w}} C_{\mathrm{w}}^{\mathrm{bio}} \\ r_{\mathrm{detach}} & = & \left(c_{\mathrm{d},1} \left(|\nabla p_{\mathrm{w}}| \phi S_{\mathrm{w}} \right)^{0.58} + \mu \frac{\phi_{\mathrm{biofilm}}}{\phi_{0} - \phi_{\mathrm{calcite}}} \right) \cdot \phi_{\mathrm{biofilm}} \rho_{\mathrm{biofilm}} \end{array}$ Attachment: Detachment: