
Automated system
testing in scientific
numerical software
frameworks

using the example of Dune /

dune-pdelab / DuMuX

Timo Koch1

Dominic Kempf2

Bernd Flemisch1

Peter Bastian2

Computational Methods in

Water Resources 2016

20th – 24th June 2016

University of Toronto, Canada

build passed

1 University of Stuttgart, 2 Heidelberg University, Germany

• DUNE – a numerical software framework for solving PDEs

• Developed at over 10 universities in Europe

• Open-source development model

• Highly modular; loosely connected modules

• Template-based C++ programming

• DuMuX – application module, porous media simulator

• Modular structure

• Material framework / laws; fluid systems

• Non-isothermal multi-phase multi-component models

• Cell- and vertex-centered finite volume discretization

University of Stuttgart

DuMuX and DUNE

Background

get Dune / Dumux at

https://www.dune-project.org/

http://dumux.org/

repositories at

https://gitlab.dune-project.org/

groups/core

https://git.iws.uni-stuttgart.de/

dumux-repositories/

https://www.dune-project.org/
http://dumux.org/
https://gitlab.dune-project.org/groups/core
https://gitlab.dune-project.org/groups/core
https://git.iws.uni-stuttgart.de/dumux-repositories/
https://git.iws.uni-stuttgart.de/dumux-repositories/

University of Stuttgart

DuMuX – DUNE for Multi-{Phase, Component, Scale, Physics, ...}
flow and transport in porous media

Groundwater contamination

(Alexander Kissinger)

Two-phase flow on cornerpoint grids

with NL-TPFA (Martin Schneider)

Porenetwork – Darcy coupling

(Kilian Weishaupt, T. K.)

Capillary networks

1D-3D coupling (T. K.)

Supervisors: Bernd Flemisch, Holger Class, Rainer Helmig

Discrete fracture networks

(Dennis Gläser)

Why testing and how?

Motivation

• Open-source / research code is under continuous development (bugs appear!)

• We want

• Reproducible and trustworthy numerical results as basis for publications

• Sustainable code development (code reusage, combining codebases)

• Increasing trust and transparency, quality assurance

• Main problem

• Developers are coding and researching (PhD students, professors)

• Little time for documentation and testing

University of Stuttgart

Why is testing necessary and important?

Motivation

• Unit testing (single feature)

• Integration testing (few features to functional unit)

• System testing (end-user setup, feature combination)

• Challenges – high coverage, test evaluation

• Build & run

• Comparison of simulation output with reference output (from stable versions)

• Benchmarks, real-world examples / experimental data (validation)

• Convergence tests against analytical solutions (verification)

• Scalability tests

University of Stuttgart

How to test – overview of different test types

 mostly neglected!

• Frameworks provide combinable features

• They depend on third-party libraries / system setup

• Only unit testing is not enough!

• Benchmarks typically only test a single end-user setup!

• Problem

• Huge number of possible user setups  combinatoric explosion

• Hard for generic algorithms to eliminate non-sense combinations

University of Stuttgart

Why is system testing necessary and important?

Motivation

Feature

Feature

Feature

Library

Compiler

System Env

Run-time input

User code

Simulation

dune-testtools
D. Kempf, T. Koch. System testing in scientific numerical software frameworks
using the example of DUNE, 2016 (in revision)

repos: https://gitlab.dune-project.org/groups/quality

Facilitating system testing

https://gitlab.dune-project.org/groups/quality

• Tools simplifying the writing of system tests

• Idea – use common configure files (ini files) with extended syntax

(meta ini files) defining a group of tests

• “One source file, one meta ini file, one line CMake”

• Written in Python, customizable, easy scripting

• Test evaluation tools

University of Stuttgart

Simplifying system testing for code-developing scientists

dune-testtools

Regular Dune ini file

[TimeManager]

TimeStepSize = 1.0e-3

[Assembler]

PartialReassembly = true

[Grid]

Refinement = 3

University of Stuttgart

Simplifying system testing for code-developing scientists

dune-testtools

Dynamic (run-time) variations

[TimeManager]

TimeStepSize = 1.0e-3, 1.0 | expand

[Assembler]

PartialReassembly = true, false | expand

[Grid]

Refinement = 0, 3, 5 | expand

({TimeManager.TimeStepSize} == 1.0e-3 and

{Grid.Refinement} == 5) | exclude

University of Stuttgart

Simplifying system testing for code-developing scientists

Static (compile-time) variations

dune-testtools

YASP = Dune::YaspGrid<{__static.DIM}>

UG = Dune::UGGrid<{__static.DIM}>

[__static]

DIM = 2, 3 | expand

GRIDTYPE = {YASP}, {UG} | expand

CMake build system integration

dune_add_system_test(BASENAME uniquename

SOURCE mytest.cc

INIFILE conf.mini

SCRIPT vtucompare)

University of Stuttgart

Simplifying system testing for code-developing scientists

Various test evaluation tools

dune-testtools

• The SCRIPT parameter:

• Python wrapper for custom test execution

and evaluation

• Customizable – some are implemented:

• Comparing output ini files

• Comparing VTK files

• Convergence test wrapper

• Parallel testing

• Just checking exit code

Automated builds and open-
source workflow

Integrating (system-) testing in the development workflow

University of Stuttgart

• Git repositories hosted on a GitLab server

• Merge-request based workflow

• Transparent development, issue tracker, contributions

• Integrated Continuous Integration (CI)

Automated builds and open-source workflow

• Python framework for Continuous Integration

• Highly customizable (!)

• Communicates with GitLab

• Modelling user lands / system environments

• Robust and highly portable build setups

• Cross-platform

Integrating (system-) testing in the development workflow

University of Stuttgart

Automated builds and open-source workflow

Suggested development workflow (Continuous Integration)

changes code

merge request

Feedback / discussions / issue tracker

code review

Automated testing

on remote machines

build status / logs

comments

e-mail or webhook

University of Stuttgart

Automated builds and open-source workflow

Suggested development workflow (Continuous Integration)

DuMuX Team

DUNE Team

• Automated testing is detecting early if a bug was introduced

• Bugs can be easily tracked to individual commits

• Fixing / writing tests often reveals otherwise unnoticed bugs

• Leads to improvement of the code base quality

• Makes maintanance easier

What did we learn so far?

Automated builds and open-source workflow

visit https://git.iws.uni-stuttgart.de/buildbot/

e-mail

phone +49 (0) 711 685-

fax +49 (0) 711 685-

University of Stuttgart

Thank you!

Timo Koch

64676

60430

Institute for Modelling Hydraulic

and Environmental Systems

timo.koch@iws.uni-stuttgart.de

Pfaffenwaldring 61, 70569 Stuttgart

Institute for Modelling Hydraulic and Environmental Systems

The project is supported by

