

University of Stuttgart

Institute for Modelling Hydraulic and Environmental Systems Department of Hydromechanics and Modelling of Hydrosystems

What is the Scope of the Model?

Subsurface biogeochemical gold (Au) mobilization, transport, and precipitation

Reactions and Processes in the Simplified Model

Model Scale and Primary Variables

- Large spatial scales of interest in applications → modelling on REV scale using volume averaged quantities:
 - Mole fractions x_{w}^{κ} (mobile components)
 - Volume fractions ϕ_{λ} (solids)

Mass Balance Equations

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

Mass Balance Equations

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

• Mass balance equation of components exclusively in the water phase:

$$\frac{\partial}{\partial t} \left(\phi \rho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} S_{\mathbf{w}} \right) + \nabla \cdot \left(\rho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} \mathbf{v}_{\mathbf{w}} \right) - \nabla \cdot \left(\rho_{\mathbf{w}} \mathbf{D}_{\mathbf{w}, \mathrm{pm}}^{\kappa} \nabla x_{\mathbf{w}}^{\kappa} \right) = q^{\kappa}$$

Mass Balance Equations

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

• Mass balance equation of components exclusively in the water phase:

$$\frac{\partial}{\partial t} \left(\phi \rho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} S_{\mathbf{w}} \right) + \nabla \cdot \left(\rho_{\mathbf{w}} x_{\mathbf{w}}^{\kappa} \mathbf{v}_{\mathbf{w}} \right) - \nabla \cdot \left(\rho_{\mathbf{w}} \mathbf{D}_{\mathbf{w}, \mathrm{pm}}^{\kappa} \nabla x_{\mathbf{w}}^{\kappa} \right) = q^{\kappa}$$

• Mass balance for the immobile components / solid phases:

$$\frac{\partial}{\partial t} \left(\rho_{\lambda} \phi_{\lambda} \right) = q^{\lambda}$$

Sources and Sinks: Reactions

$$r_{\text{growth}}^{\text{bio}} = \mu \cdot \phi_{\text{bio}} \rho_{\text{bio}}$$
$$\mu = \mu_{\text{max}} \cdot \frac{C_{\text{w}}^{\text{substrate}}}{K_{\text{substrate}} C_{\text{w}}^{\text{substrate}}}$$

$$\begin{array}{lll} r_{\rm decay}^{\rm bio} &=& k_{\rm d} \cdot \phi_{\rm bio} \rho_{\rm bio} \\ k_{\rm d} &=& k_{\rm d,0} + k_{\rm d,Au} \left(c_{\rm w}^{\rm Au} - c_{\rm crit}^{\rm Au} \right) \end{array}$$

$$r_{\text{Substrate}} = rac{r_{\text{growth}}^{\text{diss,bio}} + r_{\text{growth}}^{\text{prec,bio}}}{Y_{ ext{bio,substrate}} M_{ ext{substrate}}}$$

$$r_{\text{growth}}^{\text{bio}} = \mu \cdot \phi_{\text{bio}} \rho_{\text{bio}}$$
$$\mu = \mu_{\text{max}} \cdot \frac{C_{\text{w}}^{\text{substrate}}}{K_{\text{substrate}} C_{\text{w}}^{\text{substrate}}}$$

$$\begin{array}{lll} r_{\rm decay}^{\rm bio} &=& k_{\rm d} \cdot \phi_{\rm bio} \rho_{\rm bio} \\ k_{\rm d} &=& k_{\rm d,0} + k_{\rm d,Au} \left(c_{\rm w}^{\rm Au} - c_{\rm crit}^{\rm Au} \right) \end{array}$$

$$r_{\text{Substrate}} = \frac{r_{\text{growth}}^{\text{diss,bio}} + r_{\text{growth}}^{\text{prec,bio}}}{Y_{\text{bio,substrate}} M_{\text{substrate}}}$$

$$r_{\rm CN} = Y_{\rm CN} r_{\rm growth}^{\rm diss,bio}$$

$$r_{\rm Citrate} = Y_{\rm Citrate} r_{\rm growth}^{\rm diss,bio}$$

Gold Dissolution and Precipitation

$$r_{\rm diss}^{\rm Au_{\rm large}} = k_{\rm diss} c^{\rm Mn^{\rm III/IV}} A_{\rm Au_{\rm large}} \phi_{\rm Au_{\rm large}} c_{\rm w}^{\rm CN}$$
$$r_{\rm diss}^{\rm Au_{\rm NP}} = k_{\rm diss} c^{\rm Mn^{\rm III/IV}} A_{\rm Au_{\rm NP}} \phi_{\rm Au_{\rm NP}} c_{\rm w}^{\rm CN}$$

Gold Dissolution and Precipitation

$$r_{\rm diss}^{\rm Au_{large}} = k_{\rm diss} c^{\rm Mn^{III/IV}} A_{\rm Au_{large}} \phi_{\rm Au_{large}} c_{\rm w}^{\rm CN}$$

$$r_{\rm diss}^{\rm Au_{NP}} = k_{\rm diss} c^{\rm Mn^{III/IV}} A_{\rm Au_{NP}} \phi_{\rm Au_{NP}} c_{\rm w}^{\rm CN}$$

$$r_{\rm prec} = k_{\rm prec}^{\rm bio} \phi_{\rm prec, bio} c_{\rm w}^{\rm Au_{complex}}$$

$$+ k_{\rm prec}^{\rm clay} \rho_{\rm soil} (1 - \phi_0) R_{\rm soil}^{\rm clay} c_{\rm w}^{\rm Au_{complex}}$$

$$+ k_{\rm prec}^{\rm OM} \rho_{\rm soil} (1 - \phi_0) R_{\rm soil}^{\rm CM} c_{\rm w}^{\rm Au_{complex}}$$

Gold NP Mobility and Aggregation

$$r_{\rm d,NP} = k_{\rm d,NP} c_{\rm w}^{\rm Citrate} \phi_{\rm Au_{NP}}$$

$$r_{\mathrm{a,NP}} = +k_{\mathrm{a,NP}}^{\mathrm{clay}}\rho_{\mathrm{soil}}\left(1-\phi_{0}\right)R_{\mathrm{soil}}^{\mathrm{clay}}c_{\mathrm{w}}^{\mathrm{Au_{NP}}} \\ +k_{\mathrm{a,NP}}^{\mathrm{OM}}\rho_{\mathrm{soil}}\left(1-\phi_{0}\right)R_{\mathrm{soil}}^{\mathrm{CM}}c_{\mathrm{w}}^{\mathrm{Au_{NP}}}$$

Gold NP Mobility and Aggregation

$$r_{\rm d,NP} = k_{\rm d,NP} c_{\rm w}^{\rm Citrate} \phi_{\rm Au_{NP}}$$

$$r_{\mathrm{a,NP}} = +k_{\mathrm{a,NP}}^{\mathrm{clay}}\rho_{\mathrm{soil}}\left(1-\phi_{0}\right)R_{\mathrm{soil}}^{\mathrm{clay}}c_{\mathrm{w}}^{\mathrm{Au_{NP}}} \\ +k_{\mathrm{a,NP}}^{\mathrm{OM}}\rho_{\mathrm{soil}}\left(1-\phi_{0}\right)R_{\mathrm{soil}}^{\mathrm{OM}}c_{\mathrm{w}}^{\mathrm{Au_{NP}}}$$

$$r_{\rm agg} = k_{\rm agg} \rho_{\rm mol,Au} \phi_{\rm Au,NP}$$

Test Setup

- Bronze Age settlement in Bavaria: Gold artifacts real or fake?
- Boundary and initial conditions relatively well known

no flow

sides: Dirichlet BC = initial conditions, no gold species or substrate

Conclusions and Outlook

• The developed model qualitatively reproduces expected behaviour.

• Future work: Calibrate and validate the model using a variety of experiments at different scales

 \rightarrow Combined modeling and experimental investigations will improve the model, the experiments and the understanding of gold cycling

Thank you!

Johannes Hommel

e-mail <u>Johannes.hommel@iws.uni-stuttgart.de</u> phone +49 (0) 711 685-64600

University of Stuttgart Institute for Modelling Hydraulic and Environmental Systems Department of Hydromechanics and Modelling of Hydrosystems Pfaffenwaldring 61, D-70569 Stuttgart, Germany

