

Universität Stuttgart SimTech Cluster of Excellence

Dr. Tobias Köppl tobias.koeppl@iws.uni-stuttgart.de Institut für Wasser. und Umweltsystemmodellierung Pfaffenwaldring 61, D-70569 Stuttgart, Germany

Tobias Köppl, Timo Koch, Rainer Helmig

Motivation

Many biological systems, can be considered as porous media with small inclusions:

Definitions:

• $\Omega \subset \mathbb{R}^3$: porous matrix, $\Lambda \subset \Omega$: main axis of the inclusions

• u_{3D} : quantity in the 3D porous medium, u_{1D} : quantity in the 1D network

• K: permeabilty of the porous medium, k: permeabilty of the inclusions

• β : permeability of the vessel walls, *R* vessel radius

• Average integral on a circle of radius R around $\Lambda(s)$, perpendicular to Λ :

$$\overline{u}_{3D}(s) = rac{1}{2\pi} \int_0^{2\pi} u_{3D}(\Lambda(s), R, \theta) \, d heta$$

• Dirac measure δ_{Λ} :

 $\int_{\Omega} f \cdot \delta_{\Lambda} \, dV = \int_{\Lambda} f \, ds$

Decoupled problem, straight line \land , K = I, $U \equiv u_{1D}$, $u = u_{3D}$:

 $-\Delta u + \beta (\overline{u} - U) \delta_{\Lambda} = 0$ in Ω , $u = u_{e}$ on $\partial \Omega$.

Exact solution $u_e = -c \ln r$, r: distance to Λ [1, 3].

Problems: Singularity along A, reduced convergence orders.

New coupling concept: Concentrate the Dirac measure on the surfaces of the inclusions:

for the porous medium

State of current work

Elliptic model problem for the 3D-1D coupling approach:

$$\frac{\partial}{\partial s} \left(k \frac{\partial u_{1D}}{\partial s} \right) = \Phi, \quad \text{in } \Lambda,$$
$$-\nabla \cdot \left(K \nabla u_{3D} \right) = \Phi \delta_{\Lambda}, \quad \text{in } \Omega.$$

Exchange term (network/porous medium): $\Phi = \beta (u_{1D} - \overline{u}_{3D})$.

Analysis of the new coupling concept [2]:

Higher regularity, global convergence in the H^1 -norm, model reduction errors are bounded by input data.

Cooperation

This work is a common project with the Institute for Numerical Mathematics, Technical University of Munich (Ettore Vidotto, Barbara Wohlmuth) and the Laboratory for Modeling and Scientific Computing, Polytechnic University of Milan (Paolo Zunino).

References

www.simtech.uni-stuttgart.de

[1] T. Köppl, E. Vidotto, and B. Wohlmuth.

A local error estimate for the poisson equation with a line source term. *Numerical Mathematics and Advanced Applications ENUMATH 2015*, Part(VI):421–430, 2016.

[2] T. Köppl, E. Vidotto, B. Wohlmuth, and P. Zunino.

Model reduction, analysis and numerical approximation of second order elliptic problems with inclusions. 2016, in preparation.

[3] T. Köppl and B. Wohlmuth.

Optimal a priori error estimates for an elliptic problem with dirac right-hand side. *SIAM Journal on Numerical Analysis*, 52(4):1753–1769, 2014.

