

**University of Stuttgart** 

DuMu<sup>x</sup>

Institute for Modelling Hydraulic and Environmental Systems

Beatrix Becker, Bo Guo, Karl Bandilla, Michael Celia, Bernd Flemisch, Rainer Helmig An adaptive multiphysics model coupling vertical equilibrium and full multidimensions for the simulation of underground gas storage

EGU 2018







#### Gas storage: Modeling challenges



Large domains and limited data



## Vertical equilibrium model

## Governing equations



$$\frac{\partial}{\partial t}(\varrho_{\alpha}\phi s_{\alpha}) + \nabla \cdot (\varrho_{\alpha}\mathbf{u}_{\alpha}) = \varrho_{\alpha}\mathbf{q}_{\alpha}$$
$$\mathbf{u}_{\alpha} = -\mathbf{k}\frac{\mathbf{k}_{\mathbf{r},\alpha}}{\mu_{\alpha}}(\nabla \mathbf{p}_{\alpha} - \varrho_{\alpha}\mathbf{g})$$





 $\int_{z_B}^{z_T} \dots dz$ 

## Vertical equilibrium model

Vertical equilibrium assumption

- Hydrostatic pressure profiles in the vertical direction
  - → Gas and brine phase are in vertical equilibrium





## Vertical equilibrium model

## Reconstruction of fine scale solution



#### Multiphysics (hybrid) model



More complex area, Horizontal and vertical flow Less complex area, Horizontal flow, Segregation of phases





## **2D-VE coupling**

Fluxes over boundary between subdomains



• Switch criterion based on column profiles



## **Results 2D-VE coupling**

### Adaptive coupling



Brooks-Corey cap. pressure:  $\lambda = 2.0, p_e = 1 \text{ bar}$ Phase properties (CH<sub>4</sub>, water):  $\rho_n = 59.2 \text{ kg/m}^3$   $\rho_w = 991 \text{ kg/m}^3$   $\mu_n = 1.2 \cdot 10^{-5} \text{ Pas}$   $\mu_w = 5.2 \cdot 10^{-4} \text{ Pas}$ Injection rate:  $Q_{nw} = 552 \text{ t/m/a}$ 







## **Results 2D-VE coupling**

### Adaptive coupling, example with low-permeability lens





#### Efficiency of the multiphysics model

# Efficiency: Speed X Accuracy

|                                              | relative average | relative |
|----------------------------------------------|------------------|----------|
| Model                                        | number of cells  | CPU time |
|                                              | [-]              | [-]      |
| Full VE                                      | 0.008            | 0.003    |
| Multiphysics $\epsilon_{\rm relPerm} = 0.06$ | 0.04             | 0.02     |
| Multiphysics $\epsilon_{\rm relPerm} = 0.05$ | 0.11             | ( 0.05 ) |
| Multiphysics $\epsilon_{\rm relPerm} = 0.04$ | 0.12             | 0.06     |
| Multiphysics $\epsilon_{\rm relPerm} = 0.03$ | 0.19             | 0.12     |
| Multiphysics $\epsilon_{\rm relPerm} = 0.02$ | 0.3              | 0.18     |
| Multiphysics $\epsilon_{\rm relPerm} = 0.01$ | 0.41             | 0.22     |
| Full multidimensional                        | 1                | 1        |





University of Stuttgart

(Becker et al., 2018, submitted to WRR)

## Outlook

- Adaptive coupling I
  - Further tests, application of energy storage
- Adaptive coupling II
  - Combine with multi-layer coupling
  - VE model with non-isothermal effects
  - VE model with compositional effects

include in adaptive coupled model











#### References

- Becker, B., Guo, B., Bandilla, K., Celia, M., Flemisch, B., Helmig, R. (2018). An adaptive multiphysics model coupling vertical equilibrium and full multidimensions for multiphase flow in porous media, Water Resources Research, submitted.
- Guo, B., Bandilla, K. W., Doster, F., Keilegavlen, E. and Celia, M. A. (2014). A vertically integrated model with vertical dynamics for CO2 storage, Water Ressources Research, 50.
- Guo, B., Bandilla, K. W., Nordbotten, J. M., Celia, M. A., Keilegavlen, E., Doster, F. (2016). A multiscale multilayer vertically integrated model with vertical dynamics for CO2 sequestration in layered geological formations, Water Resources Research.
- Hawkins, D., Rothleder, M (2006). Evolving role of wind forecasting in market operation at the CAISO.
  Power Systems Conference and Exposition.
- Meibom, P., Larsen, H. V., Barth, R., Brand, H., Tuohy, A., & Ela, E. (2011). Advanced unit commitment strategies in the United States Eastern Interconnection. NREL
- Nordbotten, J. M., Celia, M. A. (2012): Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation. John Wiley & Sons.





# Thank you!



**Beatrix Becker** 

e-mail Beatrix.becker@iws.uni-stuttgart.de

University of Stuttgart Institute for Modelling Hydraulic and Environmental Systems Pfaffenwaldring 61 D-70569 Stuttgart, Germany



# Thank you!



**Beatrix Becker** 

e-mail Beatrix.becker@iws.uni-stuttgart.de

University of Stuttgart Institute for Modelling Hydraulic and Environmental Systems Pfaffenwaldring 61 D-70569 Stuttgart, Germany

#### **Choice of threshold value for VE-criterion**



(Becker et al., 2018, submitted to WRR)



## **Model complexity**



Model complexity

