

Investigating the impact of induced calcite precipitation on the capillary pressuresaturation relation: Experimental plans

SFB 1313 Seminar 2018

Johannes Hommel: Own project, associated to C05

SFB 1313,

Project C05

SFB 1313, Project C05: What is it about?

- Investigate changes in the pore space and the associated alteration of the permeability.
- Use Magnetic Resonance Imaging (MRI) and X-ray computer microtomography (µCT) to asses changes in porous media.
- Measure porosity-permeability relations for different fluid-solid reactions:
 - salt precipitation during evaporation,
 - microbially-induced calcite precipitation,
 - dissolution during chemical stimulation.

• Who: Sander Huisman, Andreas Pohlmeier, Holger Steeb, + student

Own Project:

Existing Model Concept

Experiments

Why investigate Induced Calcite Precipitation (ICP)?

 \rightarrow reduce flow (reduce K and ϕ), leakage mitigation

 \rightarrow (increase mechanical strength)

Engineered applications of ureolytic biomineralization: A review.

Important Reactions

Urease or ureolytic microbes are injected or thermal ureolysis occurs Ureolysis agent: enzyme \rightarrow EICP, microbes \rightarrow MICP, thermal \rightarrow TICP

Model Concept: Scale

Balance Equations

• Mass balance equation of components

$$\sum_{\alpha} \frac{\partial}{\partial t} \left(\phi \rho_{\alpha} x_{\alpha}^{\kappa} S_{\alpha} \right) + \nabla \cdot \left(\rho_{\alpha} x_{\alpha}^{\kappa} \mathbf{v}_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} \mathbf{D}_{\alpha, \text{pm}}^{\kappa} \nabla x_{\alpha}^{\kappa} \right) = q^{\kappa}$$

• Mass balance for the immobile components / solid phases:

$$\frac{\partial}{\partial t} \left(\rho_{\varphi} \phi_{\varphi} \right) = q^{\varphi}$$

• Energy balance:

$$\frac{\partial}{\partial t} \left(\left(1 - \phi_0 \right) \rho_{\rm s} c_{\rm s} T \right) + \sum_{\varphi} \left[\frac{\partial}{\partial t} \left(\phi_{\varphi} \rho_{\varphi} c_{\varphi} T \right) \right] \\
+ \sum_{\alpha} \left[\frac{\partial}{\partial t} \left(\phi \rho_{\alpha} u_{\alpha} S_{\alpha} \right) - \nabla \cdot \left(\rho_{\alpha} h_{\alpha} \mathbf{v}_{\alpha} \right) \right] - \nabla \cdot \left(\lambda_{\rm pm} \nabla T \right) = q^{\rm h}$$

Sources & Sinks: Common

Model Summary

- Complex REV-scale models for
 - Two-phase flow and transport
 - biogeochemical reactions
- MICP: 10 years of development
- EICP and TICP: under development
- No impact of ICP on two-phase flow yet!

Why is the capillary pressure-saturation relation relevant for modeling ICP?

→ reduce flow (reduce K and ϕ), leakage mitigation

→ change in pore geometry
→ change in 2-phase flow properties!

\rightarrow Many relevant applications with 2p!

Phillips et al. 2013 Engineered applications of ureolytic biomineralization: A review.

Experimental plans: EICP and p_c-S_w

Adapting Capillary Pressure

• First step: implementing Leverett scaling of capillary pressure¹:

$$J(S_{\rm w}) = \text{const.}(S_{\rm w}) = \frac{p_{\rm c}(\phi)}{\sigma \cos\Theta} \sqrt{\frac{K(\phi)}{\phi}} = \frac{p_{\rm c,0}}{\sigma \cos\Theta} \sqrt{\frac{K_0}{\phi_0}}$$

Assuming that $\sigma \cos \Theta$ is constant:

$$\rightarrow p_{\rm c}(S_{\rm w},\phi) = p_{\rm c}(S_{\rm w},\phi_0) \sqrt{\frac{K_0\phi}{K(\phi)\phi_0}}$$

SFB 1313 ¹M. Leverett. "Capillary behaviour in porous solids". In: Transactions of the AIME 142 (1941), pp. 159–172.

Adapting Capillary Pressure

• First step: implementing Leverett scaling of capillary pressure¹:

$$J(S_{\rm w}) = \text{const.}(S_{\rm w}) = \frac{p_{\rm c}(\phi)}{\sigma\cos\Theta}\sqrt{\frac{K(\phi)}{\phi}} = \frac{p_{\rm c,0}}{\sigma\cos\Theta}\sqrt{\frac{K_0}{\phi_0}}$$

Assuming that $\sigma\cos\Theta$ is constant:
$$\rightarrow p_{\rm c}(S_{\rm w},\phi) = p_{\rm c}(S_{\rm w},\phi_0)\sqrt{\frac{K_0\phi}{K(\phi)\phi_0}}$$

Mainly a modification of the entry pressure, as:
$$p_{\rm c}(S_{\rm w},\phi_0) = p_{\rm d}\left(\frac{S_{\rm w}-S_{\rm w,r}}{1-S_{\rm w,r}}\right)^{-\frac{1}{\lambda}}$$

SFB 1313 ¹M. Leverett. "Capillary behaviour in porous solids". In: Transactions of the AIME 142 (1941), pp. 159–172.

Adapting Capillary Pressure

• First step: implementing Leverett scaling of capillary pressure¹:

$$J(S_{\rm w}) = \text{const.}(S_{\rm w}) = \frac{p_{\rm c}(\phi)}{\sigma \cos\Theta} \sqrt{\frac{K(\phi)}{\phi}} = \frac{p_{\rm c,0}}{\sigma \cos\Theta} \sqrt{\frac{K_0}{\phi_0}}$$

Assuming that $\sigma \cos \Theta$ is constant:

$$\rightarrow p_{\rm c}(S_{\rm w},\phi) = p_{\rm c}(S_{\rm w},\phi_0)\sqrt{\frac{K_0\phi}{K(\phi)\phi_0}}$$

• Second step: experimental investigation:

 $p_{\rm c}(S_{\rm w})$ measurements of samples mineralized to various degrees.

Adapting Capillary Pressure: Planned Experiments

$$p_{\rm c}(S_{\rm w},\phi) = p_{\rm c}(S_{\rm w},\phi_0) \sqrt{\frac{K_0\phi}{K(\phi)\phi_0}} = p_{\rm d,0} \sqrt{\frac{K_0\phi}{K(\phi)\phi_0}} \left(\frac{S_{\rm w} - S_{\rm w,r}}{1 - S_{\rm w,r}}\right)^{-\frac{1}{\lambda}}$$

SFB 1313 ¹M. Leverett. "Capillary behaviour in porous solids". In: Transactions of the AIME 142 (1941), pp. 159–172.

Adapting Capillary Pressure: Planned Experiments

State of the lab in spring

State of the lab at the moment:

Collaborations

- Montana State University: kinetics, lab and field-scale experiments
- C04 and C05: share experimental data (porosity, permeability) obtained at different scales with different methods
 - C04: 2D exp., µm-cm scale, Microscope and µCT images, M/EICP, experiments and pore-(network)-scale modeling
 - C05: 3D exp., cm-dm scale, MRI and μCT images, MICP, salt prec/diss, experiments only
 - Own project: 3D exp., mm-cm scale, μCT images, EICP (exp.), M/E/TICP (REV-scale model)
- Other projects?

Universität Stuttgart

Institut für Wasser- und Umweltsystemmodellierung Lehrstuhl für Hydromechanik und Hydrosystemmodellierung

Thank you!

Johannes Hommel

e-mail <u>Johannes.hommel@iws.uni-stuttgart.de</u> phone +49 (0) 711 685- 64600 fax

University of Stuttgart

Institute for Modelling Hydraulic and Environmental Systems Department of Hydromechanics and Modelling of Hydrosystems Pfaffenwaldring 61, D-70569 Stuttgart, Germany

All simulations conducted with DuMu^X www.dumux.org

Experiment setup sketch for mineralization

 \rightarrow Relevant for Leverett scaling

Experiment setup sketch for p_c**-S**_w **relations**

