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‘ Motivation and Setup ‘ Results

n 2014, the first field-scale application of MICP to mitigate leakage was Field observations [3]:
verformed in a fractured sandstone formation at a depth of 340.8 m [3]. e significant decrease in injectivity =45 h after the first injections

Neumann boundary

sorsom e significant decrease in pressure decay after well shut in

uidll Dirichlet boundar _ o . .

/ y o (CaCO; detected in cores 1.8 m above the injection point
®

Neumann boundary

\

Injection

———

total of 24 mineralization and 6 microbial injections during 4 days

pl

E“ Model results [1]:

£ —1.8e+6
[s'e] =

: e significant decrease in permeability close to the well for all scenarios
E ' investigated
1.75e+06 -

2.4 m

Injection
—_——»

S
N

e significant increase in injection pressure ~48 h after the first injections

) Newmari boundary o (CaCOj; reaches about 1 m above the injection point
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The MICP model is discussed in detail in Hommel et al. [2]. It includes Figure 3: Final and initial permeability along the radius through the
reactive two-phase multi-component transport including two solid phases. high-permeable layer as predicted by simulations for various grids, domain sizes,
9 and injection strategies (left). Injection pressure for the 2018 simulations and
solid phases:— (#x0)) = Groacrione the pressure boundary condition (at 50 m) over time (right). Note that the
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initial permeability on the left is only shown for the “large” 8 mx 8 m scenario.
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- influence of NH; on the pH: NH; + H" <— NH," = increase in pH, Depth [m] Radius [m]
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More detailed results and discussions will be published in Cunningham et al. [1].
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