

University of Stuttgart

Institute for Modelling Hydraulic and Environmental Systems Department for Hydromechanics and Modelling of Hydrosystems

Model Coupling in thermochemical Heat Storage

Gabriele Seitz, Rainer Helmig, Holger Class

Why store heat?

- Energy storage bridges the gap between fluctuating sources of renewable energy and energy consumption.
- Energy storage enhances energy efficiency and process optimization.
- Heat is the major part of the end energy consumption: 56.3 %
 decentralized technologies avoid transportation and conversion losses

End energy consumption in Germany,

Corresponding author: gabriele.seitz@iws.uni-stuttgart.de

The numerical model is implemented in DuMu[×] [2]. For the direct reactor concept the thermochemical reaction model is sufficient. The indirect reactor concept necessitates coupling between two domains: the thermochemical reaction model and the channel flow.

DuMu^x

Thermochemical reaction model solves for the porous medium:

- mass and momentum balance equations for water vapor
- mass balance equations for the solid phases CaO and Ca(OH)₂

Storage concept

The heat is stored in the conversion of calcium hydroxide $Ca(OH)_2$ to calcium oxide CaO.

 $CaO_s + H_2O_g \rightleftharpoons Ca(OH)_{2,s} + \Delta H_R$

see [1]

with $\Delta H_R = 112 \text{ kJ/mol}$

Main Processes

 The reaction kinetics depends on the temperature and the partial water pressure. The equilibrium temperature is determined by the Van't Hoff equation [3].

- an overall energy balance assuming local thermodynamic equilibrium
- using linear reaction kinetics according to [7]
- accounting for a permeability aterlation due to the porosity change [8]. **Channel flow model** solves for the heat-exchanger gas-flux
- the Navier-Stokes equations
- an energy balance equation

Coupling accounts for

 heat conduction between the two domains assuming a continuous temperature distribution at the interface

Model Setup

• Volume change of about 50% of the solid particles during the reaction [5]

Fixed-bed Reactor Concepts of ULR

Direct reactor concept [5]: A mixture of reaction fluid and heat transfer fluid is injected directy into the reactor.

- study the importance of turbulence for the heat convection
- reduce computational effort by simplfying the channel flow model
- investigate the assumption of a continuous temperature distribution at the

-8.662e+03

8436.4

8210.6

7984.8

-7.759e+03

Reaction rate in the porous medium domain after 5 seconds

Indirect Reactor Concept

[6]: Heat transfer and reaction fluid are decoupled. Heat is conducted into the heat transfer channel and transported by a gas flow.

Advantages

- Ca(OH)₂ / CaO has high storage densities : 430 kWh/m³
- $Ca(OH)_2$ / CaO is a cheap, abundant and environmentally friendly material
- $Ca(OH)_2$ / CaO can be operated as chemical heat pump

www.hydrosys.uni-stuttgart.de

interface

• verify model results with experimental data

Literature

- [1] (eia), U. E. I. A. (2017). Residential energy consumption survey (recs).
- [2] Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Fetzer, T., Flemisch, B., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Schneider, M., Seitz, G., Scholz, S., and Weinhardt, F. (2018). Dumux 3.0.0.
- [3] Nagel, T., Shao, H., Singh, A., Watanabe, N., Roßkopf, C., Linder, M., Wörner, A., and Kolditz, O. (2013). Non-equilibrium thermochemical heat storage in porous media: Part 1–conceptual model. *Energy*, 60:254–270.
- [4] Schaube, F., Koch, L., Wörner, A., and Müller-Steinhagen, H. (2012). A thermodynamic and kinetic study of the de-and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage. *Thermochimica acta*, 538:9–20.
- [5] Schaube, F., Kohzer, A., Schütz, J., Wörner, A., and Müller-Steinhagen, H. (2013). De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part A: Experimental results . *Chemical Engineering Research and Design*, 91(5):856 – 864.
- [6] Schmidt, M., Gutierrez, A., and Linder, M. (2017). Thermochemical energy storage with CaO/Ca(OH)2 Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor. Applied Energy, 188:672 – 681.
- [7] Shao, H., Nagel, T., Roßkopf, C., Linder, M., Wörner, A., and Kolditz, O. (2013). Non-equilibrium thermo-chemical heat storage in porous media: Part 2–a 1d computational model for a calcium hydroxide reaction system. *Energy*, 60:271–282.
 [8] Seitz, G., Helmig, R. and Class, H. (2019). A numerical modeling study on the influence.
- [8] Seitz, G., Helmig, R. and Class, H. (2019). A numerical modeling study on the influence
- of porosity changes during thermochemical heat storage
- Submitted to Applied Energy

