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Why store heat?
• Energy storage bridges the gap

between fluctuating sources of
renewable energy and energy
consumption.

• Energy storage enhances energy
efficiency and process optimization.

• Heat is the major part of the end
energy consumption: 56.3 %

• decentralized technologies avoid
transportation and conversion losses

End energy consumption in Germany,
see [1]

Storage concept
The heat is stored in the conversion of calcium hydroxide Ca(OH)2 to calcium
oxide CaO.

CaOs + H2Og 
 Ca(OH)2,s + ∆HR

with ∆HR = 112 kJ/mol

Main Processes

• The reaction kinetics depends on the temperature and the partial water
pressure. The equilibrium temperature is determined by the Van’t Hoff
equation [3].
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with p0 = 1.013bar

T > Teq: charge
T < Teq: discharge

equilibrium temperature, see [4]

• Volume change of about 50% of the solid particles during the reaction [5]
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Fixed-bed Reactor Concepts of

Direct reactor concept [5]:
A mixture of reaction fluid and
heat transfer fluid is injected
directy into the reactor.

Indirect Reactor Concept
[6]: Heat transfer and reaction
fluid are decoupled. Heat is
conducted into the heat transfer
channel and transported by a
gas flow.

Advantages

• Ca(OH)2 / CaO has high storage densities : 430 kWh/m3

• Ca(OH)2 / CaO is a cheap, abundant and environmentally friendly material

• Ca(OH)2 / CaO can be operated as chemical heat pump

Model concept
The numerical model is implemented in DuMux [2]. For the direct reactor concept
the thermochemical reaction model is sufficient. The indirect reactor concept
necessitates coupling between two domains: the thermochemical reaction model
and the channel flow.
Thermochemical reaction model solves for the porous medium:

• mass and momentum balance equations for water vapor

• mass balance equations for the solid phases CaO and Ca(OH)2

• an overall energy balance assuming local thermodynamic equilibrium

• using linear reaction kinetics according to [7]

• accounting for a permeability aterlation due to the porosity change [8].

Channel flow model solves for the heat-exchanger gas-flux

• the Navier-Stokes equations

• an energy balance equation

Coupling accounts for

• heat conduction between the two domains assuming a continuous temperature
distribution at the interface

Model Setup

First Results
Temperature
distribution after 5
seconds

Reaction rate in the
porous medium domain
after 5 seconds

Pressure distribution
after 5 seconds

Outlook
• study the importance of turbulence for the heat convection

• reduce computational effort by simplfying the channel flow model

• investigate the assumption of a continuous temperature distribution at the
interface

• verify model results with experimental data
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