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[1] Geostatistical interpolation of log conductivity measurements leads to velocity fields
lacking small-scale variability whereas large-scale features are covered well. The
unresolved, small-scale velocity fluctuations cause underestimation of macrodispersion,
dilution, and mixing in subsequent transport calculations. The same holds when the best
linear unbiased estimate of geostatistical inverse methods is used in flow and transport
simulations. Considering a regular grid of measurement points, we approximate the lack of
dispersion, to which we refer as correction dispersion, by applying first-order theory to the
conditional covariance of the kriged log conductivity field. The nonstationarity of the
conditional covariance is removed by averaging it over space. We distinguish between
macrodispersion, describing the rate of change in the second spatial moments of a large
plume, and effective dispersion of a plume introduced as a point source, parameterizing
dilution and mixing. Depending on the objective, we either add a correction
macrodispersion tensor or a correction effective dispersion tensor to the true local dispersion
tensor in transport calculations on the smoothed log conductivity field. The numerical
application to a two-dimensional periodic domain shows excellent agreement in the one-
and two-particle moments between simulations on the highly resolved field and those on the
interpolated one using corrected values for the local dispersion coefficients. INDEX TERMS:
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1. Introduction

[2] In the last two decades, the impact of heterogeneity
on solute transport in natural formations has gained high
attention. The stochastic description of (log-)hydraulic con-
ductivity has been proven an adequate framework for
handling spatial variability and uncertainty. Based on sec-
ond-order statistics, that is, the geometric mean of the
hydraulic conductivity and a covariance model of the log
conductivity fluctuations, closed-form expressions have
been developed for macrodispersion, i.e., the spreading of
a large solute plume [Gelhar and Axness, 1983; Neuman et
al., 1987; Dagan, 1988] and, more recently, effective
dispersion of smaller plumes [Rajaram and Gelhar, 1993;
Attinger et al., 1999; Dentz et al., 2000], and the concen-
tration variance [Fiori and Dagan, 2000]. These studies
have deepened our understanding of solute transport in
heterogeneous domains. Applying the resulting expressions
to real cases, however, puts us into an ironic situation.
Although a considerably high number of measurements is
needed to retrieve the statistical parameters required by the
methods described in the studies mentioned above, the
measurements themselves are dismissed altogether and only
the statistical parameters are used.
[3] A related field of stochastic hydrology deals with

inferring the distribution of hydraulic conductivity by inter-

polating hydraulic-conductivity measurements or inversing
hydraulic-head and concentration measurements [see, e.g.,
McLaughlin and Townley, 1996; Zimmerman et al., 1998].
In the geostatistical framework, interpolation and inverse
modeling is identical to evaluating the best linear unbiased
estimate (BLUE), or conditional mean, of the log-hydraulic
conductivity distribution. It is well known that the distribu-
tion of the BLUE is smoother than the true conductivity
field. In particular, it is smoother than described by the prior
covariance model used in the conditioning procedure. Con-
sider the covariance function RYY (x, x + h) of log con-
ductivity fluctuations on the fully resolved field. Then the
fluctuations on the kriged field are given by the covariance
function Rk(x, x + h) which is RYY (x, x + h) minus the
conditional covariance Rc(x, x + h):

Rk x; xþ hð Þ ¼ RYY x; xþ hð Þ � Rc x; xþ hð Þ ð1Þ

Note that Rc(x, x + h) depends on the exact location even if
RYY (x, x + h) is stationary. Figures 1a and 1e show a fully
resolved log conductivity field Y(x) and its approximation
by kriging using point values taken from the original field
on a regular grid of observation points. After kriging, small-
scale structures have been smoothed out.
[4] In a thought experiment, we imply a mean head-

gradient into the x1 direction. Then the fluctuations of the
log conductivity field cause those of the velocity field. By
first-order theory, we can relate the covariance of log
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conductivity to that of velocity fluctuations about the over-
all mean velocity, at least under stationary conditions [Bakr
et al., 1978; Gelhar and Axness, 1983]. We continue our
thought experiment by introducing a conservative tracer as a
line source into the heterogeneous domain. The resulting
concentration distributions after a certain period of time are
shown in Figure 1b for the fully resolved field and Figure 1f
for the kriged field. Because the interpolated log conduc-
tivity field is smoother than the fully resolved one, the
corresponding concentration distribution shows smaller
fluctuations and is more peaked.
[5] For comparison, we use two different averaging

procedures. In the evaluation of longitudinal macrodisper-
sion, we average the concentration over the cross section
perpendicular to the direction of mean flow. The resulting
concentration profiles are illustrated in Figure 1c for the
fully resolved log conductivity field and Figure 1g for the
kriged one. Then, we define the macrodispersion coefficient
by half the rate of change of the second central moment of
these profiles. Longitudinal macrodispersion is dominated
by the fluctuating mean position of the line-shaped plume.
If we want to quantify how wide, in average, the plume is at
a given x2 value, macrodispersion gives a too large value. A
more expedient quantity for the latter task is the longitudinal

effective dispersion coefficient. Here, we first subtract the
center of gravity for each x2 value from the longitudinal
coordinate x1, and subsequently perform the averaging over
the cross section. The resulting concentration profiles on the
fully resolved and interpolated log conductivity fields are
shown in Figures 1d and 1h, respectively. In analogy to
macrodispersion, the effective dispersion coefficient is half
the rate of change of the second central moment of these
profiles. Obviously, the profiles in Figures 1d and 1h are
more peaked than their counterpart in Figures 1c and 1g;
that is, the effective dispersion coefficients are considerably
smaller than the macrodispersion coefficients. Macrodisper-
sion is a parameter of overall spreading, whereas effective
dispersion is a measure of dilution. Given a stationary
velocity field, we can predict both macrodispersion and
effective dispersion by first-order theory [Gelhar and
Axness, 1983; Neuman et al., 1987; Dagan, 1988; Dentz
et al., 2000; Fiori and Dagan, 2000].
[6] If we compare Figure 1c with Figure 1g and Figure 1d

with Figure 1h, we observe that simulating transport on a
conductivity field retrieved from kriging leads to an under-
estimation of dispersion, namely of effective dispersion.
Consider De(t) the time-dependent effective dispersion
tensor on the fully resolved field and ~De(t) the effective

Figure 1. Effect of geostatistical interpolation on solute transport. Figures 1a and 1e: fully resolved and
interpolated log conductivity fields. Figures 1b and 1f: corresponding concentration distribution for
macroscopically uniform flow due to a line source injection. Figures 1c and 1g: profiles of concentrations
averaged over the cross section of the domain. Figures 1d and 1h: averaged concentration profiles in
which the longitudinal coordinate has been corrected for the center of gravity for each x2 value prior to
averaging.
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dispersion tensor resulting from calculations on the kriged
field. Then, we suggest to increase the local dispersion
tensor in simulations on interpolated log conductivity fields
by a correction effective dispersion tensor Dc

e(t) in order to
meet the dispersive behavior of the fully resolved fields:

De
c tð Þ ¼ De tð Þ � ~D

e
tð Þ ð2Þ

If we want to meet the macrodispersive behavior, we will
need a correction macrodispersion tensor Dc*(t) which
differs from Dc

e(t). Adopting and extending the approach
of Rubin et al. [1999] derived for block-wise averaged log
conductivity values, we can estimate Dc*(t) and Dc

e(t) from
the conditional covariance function, describing the varia-
bility of log conductivity that is lost in the kriging proce-
dure. Since we take volume averages in the evaluation of
both types of dispersion, we can derive the dispersion
coefficients from the velocity fluctuations about the same
overall uniform mean velocity. We remove the nonstatio-
narity of the conditional covariance function Rc(x, x + h) of
log conductivity by spatial averaging. Then, we can sub-
stitute the averaged conditional covariance function �Rc(h)
into the standard equations deriving the macrodispersion
and effective dispersion coefficients in stationary fields,
yielding expressions for the correction dispersion tensors.
[7] The paper is organized as follows. In section 2, we

review the evaluation of the conditional covariance in
kriging. Section 3 contains the expressions used for macro-
dispersion (section 3.1) and effective dispersion of a point
source (section 3.2) as well as the approach to account for
the smoothing of the conductivity field by geostatistical
interpolation (section 3.3). In section 4, we apply the
approach to a spatially periodic two-dimensional domain.

2. Covariance of Kriged Log Conductivity Fields

[8] Consider the log conductivity field Y(x) = ln(K(x)) a
stationary random function characterized by its mean �Y and
covariance RYY (h):

�Y ¼ Yh i 6¼ f xð Þ ð3Þ

RYY hð Þ ¼ Y xð Þ � �Yð Þ Y xþ hð Þ � �Yð Þh i 6¼ f xð Þ ð4Þ

in which h i denotes the expected value operator, and h is
the separation vector. The Fourier transform of the cova-
riance function RYY (h) is the power spectral density func-
tion of the log conductivity fluctuations SYY (s):

SYY sð Þ ¼ 1

2pð Þd=2

Z
V1

RYY hð Þ exp i h 
 sð Þdh ð5Þ

in which s is the vector of wave numbers, d is the dimen-
sionality of the domain, and i is the imaginary number.
[9] Consider the log conductivity Y to be exactly known

at the nm measurement locations x̂i. The (generalized)
covariance of the log conductivity is assumed known,
whereas the mean value of Y must be estimated. Then, the
estimate by ordinary kriging is the expected mean of the log
conductivity field conditioned on the measurements. We

formulate the interpolation by kriging in the function-
estimate form [see, e.g., Kitanidis, 1996]:

~Y xð Þ ¼ b̂þ
Xnm
i¼1

RYY x� x̂ið Þxi ð6Þ

in which ~Y (x) is the best linear unbiased estimate (BLUE)
of the log conductivity at location x, whereas b̂ is the
estimated overall mean, and xi is a weighting factor of
measurement i. These coefficients are determined by solv-
ing the kriging system:

RŶ Ŷ u

uT 0

2
4

3
5 X

b̂

2
4
3
5 ¼

Ŷ

0

2
4

3
5 ð7Þ

in which RŶ Ŷ is the covariance matrix of the log conduc-
tivity at all measurement points, u is the vector of drift
coefficients consisting of nm entries of unity, and Ŷ is the
vector of measured log-conductivities. Kitanidis [1996]
gives the following analytical result for the conditional
covariance Rc(x1, x2):

Rc x1; x2ð Þ ¼ RYY kx1 � x2kð Þ

� Pb þ
Xnm
j¼1

RYY x1; x̂j
� �

pjb þ pbjRYY x̂j; x2
� �� 

þ
Xnm
k¼1

RYY x1; x̂j
� �

PjkRYY x̂k ; x2ð ÞÞ
� �!

ð8Þ

in which coefficient Pjk is the j, kth entry of the nm � nm
matrix Px̂x̂, pjb is the jth entry of the nm � 1 vector px̂b, and
Pb is a scalar where Px̂x̂, px̂b and Pb are taken from the
inverse of the kriging matrix:

Px̂x̂ px̂b

pTx̂b Pb

2
4

3
5 ¼

RŶ Ŷ u

uT 0

2
4

3
5�1

ð9Þ

[10] The conditional covariance Rc(x, x + h) quantifies
the variability of log conductivity unresolved by the kriging
procedure, whereas RYY (h) � Rc(x, x + h) describes the
expected variability of the kriged field. For the case of zero
separation, h = 0, the conditional covariance Rc(x, x) is also
known as estimation variance. The more dense the measure-
ment points are, the more variability is captured in the
kriged field, and the smaller Rc(x, x + h) becomes. In
principle, we can extend the analysis to include measure-
ments of hydraulic heads or other dependent quantities. The
corresponding cokriging equations are similar to the kriging
equations given above.
[11] Rc(x, x + h) depends not only on the separation vector

h but also on the exact location x, that is, Rc(x, x + h) is
nonstationary. The variance is fully recovered at the meas-
urement points, whereas it is significantly smaller at the
points with maximum distance to the next measurement
locations. For the further analysis, we remove this non-
stationarity by taking spatial averages of the filtered cova-
riances. That is, although the filtered fields are nonstationary,
we treat them like stationary ones. This allows us to use
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approaches for the evaluation of macrodispersion and effec-
tive dispersion on the kriged field that have been developed
for stationary fields. Also, we assume a regular grid of
measurement locations.
[12] In order to remove the nonstationary, we take the

spatial average of Rc(x, x + h):

�Rc hð Þ ¼ lim
L1;L2;L3!1

1

L1L2L3

ZþL1=2

�L1=2

ZþL2=2

�L2=2

ZþL3=2

�L3=2


 Rc x; xþ hð Þ dx3 dx2 dx1 ð10Þ

[13] The evaluation of the actual conditional covariance
matrix Rc(x1, x2) by equation (8) can be tedious because Rc

is a square matrix of the order of the number of points
discretizing the domain. By contrast, �Rc(h) is a vector of the
same order and requires much less computational memory.
In the appendix, we derive an efficient semianalytical
method for the calculation of �Rc(h) that circumvents the
calculation of the actual conditional covariance matrix
Rc(x1, x2). Based on these expressions, Figure 2 shows
the profile of the spatially averaged covariance function
�Rc(h) along the x1-axis for the case of the two-dimensional
isotropic exponential model of the unconditional covariance
function. The wider the grid spacing, the closer is the
conditional covariance to the unconditional. More dense
observation points lead also to smaller integral scales.

3. Dispersion Coefficients

3.1. Macrodispersion

[14] The macrodispersion tensor is defined as the disper-
sion tensor needed to match the second central spatial
moments of a very large plume in a heterogeneous domain
when transport is described by the uniform advection-
dispersion equation. In the Lagrangian framework, the
normalized second central moments are expressed as var-
iance of particle displacements hX0X0Ti taken from the
ensemble of particles each introduced into a single realiza-
tion of the random spatial field. Then, the time-dependent
macrodispersion tensor D*(t) is half the rate of change of
hX0X0Ti [see, e.g., Dagan, 1984]. In the Eulerian frame-
work, the macrodispersive flux is the flux due to local

dispersion �Drc plus the covariance of seepage velocity
fluctuations and concentration fluctuations hv0c0i, again
applying the ensemble average [see, e.g., Gelhar and
Axness, 1983]. The full macrodispersion tensor is retrieved
by applying unit concentration gradients in all principle
directions of the system of coordinates. In stationary veloc-
ity fields with small log conductivity fluctuations, linear
stochastic theory yields [Gelhar and Axness, 1983; Neuman
et al., 1987; Dagan, 1988]:

D* tð Þ ¼ 1

2

@ X0X0T� �
@t

¼ Dþ 1

2pð Þd=2

Z
V1

� sTDs� is 
 �v
� �


 1� exp �t is 
 �vþ sTDsð Þð Þ
s 
 �vð Þ2þ sTDsð Þ2


 Svv sð Þds ð11Þ

in which X is the one-particle displacement, D is the local
dispersion tensor assumed uniform �v is the mean seepage
velocity, t is time, and Svv(s) is the spectrum of all seepage-
velocity components. For a uniform effective porosity q and
a uniform gradient of the mean head �J, the spectrum of
seepage-velocity components Svv(s) can be evaluated from
that of log conductivity SYY(s) by [Bakr et al., 1978; Gelhar
and Axness, 1983]:

Svv sð Þ ¼ J� s 
 J
s2

s

 �
J� s 
 J

s2
s

 �T K2
g

q2
SYY sð Þ ð12Þ

in which Kg = exp(�Y ) is the geometric mean of the hydraulic
conductivity K.

3.2. Effective Dispersion

[15] The macroscopic parameters derived through vol-
ume-averaging over a single realization and ensemble-
averaging over an infinite number of realizations become
identical at the limit of an infinite initial size of the plume.
In all practical applications, however, the solute plumes are
finite, and the second central moments of the ensemble-
averaged concentration merge two types of information: the
expected second central moments of the real plume and the
uncertainty in predicting the center of mass [Kitanidis,
1988]. Half the rate of change of the expected second
central moment of a plume with finite initial size is
quantified by the effective dispersion tensor De(t, V0) which
is a function of time and the initial volume of the plume V0

[Rajaram and Gelhar, 1993; Attinger et al., 1999; Dentz et
al., 2000]. The smaller the initial size of the plume, the
higher is the contribution of uncertainty in the plume
location to ensemble-averaged macrodispersion. In the
following, we consider the limit of a point-like injection,
V0 = 0, for which the dispersion theories based on strictly
advective transport predict zero effective dispersion.
Accounting for local dispersion, the effective dispersion
tensor is initially identical to the local dispersion tensor,
grows over time since local transverse dispersion makes the
plume sample increasingly more streamlines, and finally
reaches the asymptotic macrodispersion tensor, although at
very large times [Attinger et al., 1999; Dentz et al., 2000].
[16] The significance of De(t, 0) reaches beyond the

temporal development of spatial moments due to a point-
like injection of a conservative tracer. It also quantifies the
adjoint problem: For longitudinal effective dispersion, we
inject the tracer as a pulse into a control plane perpendicular

Figure 2. Spatially averaged conditional covariance �Rc(h)
for the exponential model with different spacings of
observation points.
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to the direction of mean flow and quantify the average
longitudinal spreading observed along single lines into the
longitudinal direction (see Figure 1). For transverse effec-
tive dispersion, the injection-plane is parallel to the mean
direction of flow, and we quantify average spreading along
single lines normal to the injection plane. Therefore De(t, 0)
quantifies the overlapping of adjacent plumes that have
been separate in the initial state. That is, De(t, 0) is a
measure of dispersive mixing. In calculations of mixing-
controlled reactive transport, De(t, 0) is the macroscopic
dispersion parameter that guarantees the accurate mass
balance, although the spatial moments of the reactive
plumes will be underestimated.
[17] In the Lagrangian framework, the effective disper-

sion coefficients are evaluated by the two-particle moments
of displacement: Conceptually, two particles are jointly
introduced into each realization of the random field at the
same location. Denote the displacement of the first particle
by X1(t), and that of the second by X2(t). Then, the
expression of the two-particle covariance by Fiori and
Dagan [1999] can be reformulated to the following term
for the difference between the macrodispersion tensor D*(t)
and the effective dispersion tensor De(t, 0) in a stationary
velocity field with zero initial volume:

D* tð Þ � De t; 0ð Þ ¼ 1

2

@ X0
1X

0T
2

� �
@t

¼ 1

2pð Þd=2

Z
V1

sTDs� is 
 �v
s 
 �vð Þ2þ sTDsð Þ2


 exp is 
 �v� sTDs
� ��

t
� �

� exp �2sTDst
� ��


 Svv sð Þds ð13Þ

Dentz et al. [2000] derived equation (13) in an Eulerian
framework; their analysis also included the effects of a
spatially varying retardation factor. The effective dispersion
tensor De(t, 0) is given by subtracting equation (13) from
equation (11). For small local dispersion values and early
times, equations (11) and (13) hardly differ. This makes
De(t, 0) sensitive to small errors caused by higher-order
effects not accounted for in the derivations of equations (11)
and (13).

3.3. Correcting the Smoothing Effect of Kriging

[18] The expressions for macrodispersion and effective
dispersion, equations (11) and (13), are based on second-
order statistics of the unconditional log conductivity field.
When we use kriged log conductivity fields for transport
calculations, only a fraction of the true variability is
resolved. The missing variability is quantified by Rc(x1,
x2) given by equation (8).
[19] If we wanted to quantify the uncertainty in tagging a

particle in the kriged field starting at a definite point, we had
to follow a rigorous nonstationary approach. On the kriged
field, the BLUE of the velocity depends on the actual
position. Also, the velocity fluctuation about the BLUE
are nonstationary. For this purpose, Rubin [1991] developed
a method assuming strictly advective transport in which the
velocity covariance was sampled along the mean condi-
tional trajectory. A more rigorous framework for the trajec-
tory uncertainty in stochastic fields with nonstationary mean
is given by Indelman and Rubin [1996] [see also Sun and
Zhang, 2000]. As the BLUE of the velocity does not exhibit

a simple trend but irregular fluctuations about an overall
mean, closed-form expressions can not be derived.
[20] Here, we consider a simpler problem where we inject

the tracer by an injection plane and analyze the average
behavior of all particles. The fraction of dispersion that is
recovered by calculations on the kriged field can be derived
from the velocity fluctuations of the BLUE about the uniform
mean velocity. We further simplify the problem by using the
spatially averaged conditional covariance �Rc(h) of log con-
ductivity rather than the nonstationary Rc(x, x + h). Now, the
contributions to the fully resolved variability RYY (h) act
additive on the dispersion coefficients. This follows from
the definition of the Fourier transform, equation (5), and the
linear relationships between the spectra of log conductivity
and velocity components, equation (12), as well as between
the velocity spectrum and the dispersion coefficients, equa-
tions (11) and (13). That is, we can split RYY (h) into the part
covered by the kriged field, RYY (h) � �Rc(h), and the unre-
solved part, �Rc(h). We evaluate the effect of each component
on D*(t) and De(t, 0) separately by the equations mentioned
above, and finally sum up all contributions to dispersion.
While the contribution of RYY (h) � �Rc(h) to dispersion is
automatically met by transport calculations on the kriged
field, we must parameterize the contribution of �Rc(h).
[21] We denote the macrodispersion tensor related to the

fully resolved field by D*(t) and that of the smoothed field
by ~D*(t). Then the difference Dc*(t) = D*(t) � ~D*(t), to
which we refer as correction macrodispersion tensor,
describes the spreading of the plume that has been lost
through smoothing of the log conductivity field. Analo-
gously, we denote the effective dispersion tensor on the
fully resolved field by De(t, 0) and that on the smoothed
field by ~De(t, 0), and the difference Dc

e(t, 0) = De(t, 0) �
~De(t, 0), to which we refer as correction effective dispersion
tensor, describes the amount of mixing that has been lost
through smoothing.
[22] Whenever we apply kriging, or cokriging, we

assume a certain covariance function of the true field
RYY (h). Provided a sufficient number of measurements,
the validity of the assumed covariance function can be
tested by cross-evaluation techniques such as the method
of orthonormal residuals [Kitanidis, 1991]. This allows to
calculate the expected macrodispersion and effective tensors
on the true field D*(t) and De(t, 0), respectively. Through
equations (8) and (10), we also know the conditional
covariance of the log conductivity field Rc(x1, x2) and its
stationary simplification �Rc(h). Substituting �Rc(h) into equa-
tion (5) results in the averaged conditional spectrum �Sc(h)
which yields, through equations (11)–(13), the correction
macrodispersion and effective dispersion coefficients Dc*(t)
and Dc

e(t, 0), respectively.
[23] Adopting and extending the idea of Rubin et al.

[1999], we may add Dc*(t) and Dc
e(t, 0), respectively, to the

local dispersion tensor D in transport calculations on the
smoothed grid in order to achieve the correct spreading or
mixing behavior of the plume. That is, depending on the
objective, we use two different ‘‘local’’ dispersion tensors in
the calculations on the smoothed grid. If the overall spread-
ing is of primary concern, we use D + Dc*(t), whereas D +
Dc
e(t, 0) is used when mixing is more important. The

correction macrodispersion tensor Dc*(t) and the correction
effective dispersion tensor Dc

e(t, 0) depend on the spacing of
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observation points and the model of the fully resolved log
conductivity field. By considering the specifics of smooth-
ing through kriging, our approach differs from that of Rubin
et al. [1999] who simplified the effects of block-averaging
by cutting off the log conductivity spectrum at the Nyquist
wave number. Also, effective dispersion was not considered
in the latter study.
[24] A complication in applying the approach arises from

the impact of local dispersion on macrodispersion and
effective dispersion. Consider coordinate x1 in the direction
of mean flow. Then, choosing D + Dc*(t) rather than D as
‘‘local’’ dispersion tensor on the smoothed grid has two
effects on macrodispersion. The primary effect is by the
component D11 which is additive to longitudinal macro-
dispersion. By increasing D11, we correct exactly for the
kriging-induced smoothing. However, we also alter D22 in
order to meet the transverse macrodispersion behavior,
which has a dampening effect on longitudinal macrodisper-
sion so that the correction will no more be exact. Consid-
ering realistic parameter values, fortunately, the impact of
local transverse dispersion on longitudinal macrodispersion
is fairly small [Fiori, 1996], and so is the error introduced
by using the full correction macrodispersion tensor rather
than its longitudinal component only. On the contrary, local
dispersion has a major impact on effective dispersion. By
choosing a ‘‘local’’ dispersion tensor of D + Dc

e(t, 0) rather
than D, we may increase longitudinal and transverse mixing
significantly via both the D11- and D22-components. In the
following application, we will add different components of
the correction dispersion tensors Dc*(t) and Dc

e(t, 0) to the
local dispersion tensor to evaluate the cross effects between
longitudinal and transverse components.

4. Application to a Two-Dimensional
Periodic Domain

4.1. Numerical Methods

[25] All equations in the preceding sections were formu-
lated for stationary media and therefore infinite domains.
An expedient approximation of stationary media are peri-
odic ones where the log conductivity values are exactly
repeated at distances that are integer multiples of L1, L2, and
L3 in the directions x1, x2, and x3, respectively [Kitanidis,
1992]. Then, the log conductivity field is fully described by
a single unit cell of size L1 � L2 � L3. Nonetheless, the
periodic domain is infinite. In periodic media, the Fourier
integral of equation (5) is replaced by the corresponding
Fourier series which is truncated in the discrete Fourier
transform method. Because of the computational effort, we
restrict the following example to the two-dimensional case.
[26] We generate 50 periodic fields of 1000 � 500 cells

by a spectral approach similar to that of Dykaar and
Kitanidis [1992] using an isotropic exponential covariance
function:

RYY hð Þ ¼ exp �kh0k
l

 �
ð14Þ

in which l is the correlation length, and h0 is a separation
vector modified to account for periodicity:

h0i ¼ min hi; Li � hið Þ ð15Þ

The parameters of the fields are given in Table 1. Equation
(14) describes the covariance function within a single unit
cell. For distance components larger than L1 � L2,
periodicity requires:

RYY h1 þ kL1; h2 þ ‘L2½ �ð Þ ¼ RYY h1; h2½ �ð Þ8k; ‘ 2
. . . ;�2;�1; 0; 1; 2; . . .½ � ð16Þ

For each realization, we ‘‘take measurements’’ on a regular
grid of observation points with a spacing of �xobs = 1.25l,
that is, we pick 40 � 20 evenly spaced log conductivity
values from the fully resolved distributions. For each set of
‘‘measurements’’, we perform interpolation by ordinary
kriging using the original covariance function that accounts
for the periodicity. Therefore the 50 interpolated log
conductivity fields are also periodic.
[27] Assuming a mean head-gradient J = [�J, 0] in the x1

direction, the hydraulic heads f in the infinite, periodic
domain exhibit a linear trend with periodic fluctuations.
Except for a constant, the hydraulic head field is fully
described by the hydraulic head distribution within a single
unit cell with periodic boundary conditions [Kitanidis,
1992; Dykaar and Kitanidis, 1992]:

f L1; x2ð Þ ¼ f 0; x2ð Þ � JL1 ð17Þ

f x1; L2ð Þ ¼ f x1; 0ð Þ ð18Þ

Because the fields of log-hydraulic conductivity Y(x) and
the hydraulic head fluctuations f0(x) are periodic, the fields
of specific discharge and seepage velocity v are also
periodic and thus fully described by the distribution within a
single cell. In our simulations, the flow field is evaluated by
a standard cell-centered Finite Volume formulation for each
realization, accounting for the periodic boundary condi-
tions, equations (17) and (18). The linear system of
equations is solved by a conjugate gradient solver with
algebraic multigrid preconditioning [Ruge and Stüben,
1987].
[28] Transport is solved by the particle-tracking random-

walk method using the semianalytical approach of Pollock
[1988] for the advective displacement. In each realization, a
pair of particles is introduced at the center of each Finite-
Volume cell and tracked through the periodic domain over a
dimensionless time period tKg J/(qL1) of unity. Particles
leaving the unit cell at a boundary enter another unit cell

Table 1. Parameters of the Test Case

Parameter Value

Dimensions of domain L1

l
¼ 50;

L2

l
¼ 25

Spatial discretization
�x1

l
¼ �x2

l
¼ 0:05

Spacing of measurements
�x1;obs

l
¼ �x2;obs

l
¼ 1:25

Covariance model isotropic exponential
Variance of Y sY

2 = 0.25
Local dispersion scalar

Péclet number Pe ¼ KgJl
qD

¼ 500
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with identical flow field. That is, we can reintroduce the
particle at the opposite side of the unit cell and add/subtract
the corresponding length Li to/from the particle’s position
within the unit cell to gain its global position. Altogether 50
million particles are tracked on average once through the
unit cell. The one-particle variance of displacement hX0X0Ti
(t) at time t is evaluated by:

X0X0T� �
tð Þ ¼ 1

2nrnc

Xnr
j¼1

Xnc
k¼1

X1 j; k; tð Þ
 

XT
1 j; k; tð Þ

þ X2 j; k; tð Þ 
 XT
2 j; k; tð Þ

!
� 1

4n2r n
2
c



Xnr
j¼1

Xnc
k¼1

X1 j; k; tð Þ þ X2 j; k; tð Þ
 !



Xnr
j¼1

Xnc
k¼1

XT
1 j; k; tð Þ þ XT

2 j; k; tð Þ
 !

ð19Þ

in which nr is the number of realizations, nc is the number of
Finite-Volume cells, X1( j, k, t) is the displacement at time t
of particle 1 starting at time zero in the center of cell k in
realization j, and X2( j, k, t) is the same quantity for particle
2. The displacement is the actual position of the particle at
time t minus the coordinates of the starting point. The two-
particle variogram of displacement �XXT(t) is given by:

�IXXT tð Þ � X0X0T� �
tð Þ � X0

1X
0T
2

� �
tð Þ ¼ 1

2nrnc

Xnr
j¼1

Xnc
k¼1

X1 j; k; tð Þð
 

�X2 j; k; tð ÞÞ 
 XT
1 j; k; tð Þ

�
�XT

2 j; k; tð Þ
�!

ð20Þ

The one-particle variance of displacement hX0X0Ti (t) and
the two-particle variogram of displacement �XXT(t) are
evaluated at discrete times with a dimensionless increment
�tKg J/(q�x1) of unity. Subsequently, the macrodispersion
and effective dispersion tensors are calculated by numerical
differentiation with respect to time:

D* tð Þ ¼ 1

2

X0X0T� �
t þ�tð Þ � X0X0T� �

tð Þ
�t

ð21Þ

De t; 0ð Þ ¼ 1

2

�IXXT t þ�tð Þ � �IXXT tð Þ
�t

ð22Þ

[29] We apply the particle-tracking random walk method
to both the highly resolved and the kriged log conductivity
fields and calculate the macrodispersion and effective dis-

persion tensors, D*(t) and De(t, 0), according to equations
(21) and (22). Using the true local dispersion coefficient in
the simulations, these calculations allow a comparison to the
theoretical values of all dispersion coefficients mentioned.
In subsequent calculations, we increase the local dispersion
in the calculations on the kriged fields attempting to meet
the same macrodispersion or effective dispersion values as
observed on the highly resolved grid. Table 2 summarizes
the conductivity and dispersion parameters in the various
simulations.

4.2. Comparison Between Numerical and
Analytical Results

[30] Figure 3 shows the principal components of the
macrodispersion and effective dispersion tensors, D*(t)
and De(t, 0), as evaluated by the particle-tracking random-
walk method and the analytical expressions from first-order
analysis, equations (11) and (13). The agreement between
numerical and analytical results is very good for the macro-
dispersion coefficients. Due to the periodicity of the
domain, the longitudinal macrodispersion coefficient D*11
increases shortly before the center of the plume is advected
once through the unit cell whereas the transverse macro-
dispersion coefficient D*22 becomes negative at this time.
This behavior deviates from that expected in stationary
media. However, it is anticipated in periodic media because
of the perfect correlation of log conductivity at the longi-
tudinal separation distance h1 = L1. In the numerical
simulation, the negative transverse macrodispersion is less
pronounced and appears earlier than in the analytical
solution.
[31] The discrepancy between numerical and analytical

results is higher for the effective dispersion coefficients with
point-like injection De(t, 0) than for macrodispersion. In
comparison to the results from particle tracking, the first-
order theory underestimates the longitudinal effective dis-
persion coefficient systematically by about 20 percent. The
underestimation by first-order analysis is, in relative terms,
even stronger for the transverse effective dispersion coef-
ficient. These results indicate that higher-order effects may
become important in the evolution of two-particle moments
in advection-dominated transport even for fairly small
values of the log conductivity variance.
[32] We repeat the flow calculation and particle-tracking

procedure on the kriged log conductivity fields and evaluate
the corresponding macrodispersion and effective dispersion
coefficients. The difference between these coefficients and
the corresponding ones retrieved by transport calculations
on the highly resolved fields are the correction macro-
dispersion and correction effective dispersion tensors,
D*c(t) and Dc

e(t, 0). Figure 4 shows the principal components

Table 2. Log Conductivity and Local Dispersion Parameters Used in the Simulations

Number Log Conductivity Field Local Dispersion Remarks

1 highly resolved D yields numerical solution of D*(t) and De(t)
2 kriged D yields numerical solution of D*(t) � D*c(t) and De(t) � Dc

3 kriged max (D + D*c(t), 0) full correction macrodispersion tensor
4 kriged D + Dc

e(t, 0) full correction effective dispersion tensor
5 kriged D + Dc,‘

e (t, 0) only longitudinal correction of effective dispersion
6 kriged D + Dc,t

e (t, 0) only transverse correction of effective dispersion
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of D*c(t) and Dc
e(t, 0), as evaluated by the particle-tracking

random-walk method in comparison to those derived from
substituting the spatially averaged conditional covariance
of log conductivity �Rc(h) into equations (11) and (13). As
in the case of the unconditional macrodispersion, shown in
Figure 3, the agreement between the numerical and ana-
lytical results is excellent for macrodispersion, the only
exception being the transverse correction macrodispersion
at the time when the theory requires significant negative
values because of periodicity. Since large-scale structures

are covered well by the kriging estimate, the integral scale
of the conditional covariance of log conductivity �Rc(h) is
smaller than that of the unconditional covariance RYY (h),
and the correction macrodispersion coefficients reach their
asymptotic values faster than the original macrodispersion
coefficients. In the example, the amount of macrodisper-
sion lost due to smoothing is about one fifth of the true
value.
[33] The comparison between analytical and numerical

results of the correction effective dispersion shown in

Figure 4. Components of the correction dispersion coefficient. Solid line shows numerical simulation;
dashed line shows analytical result.

Figure 3. Dispersive quantities using the highly resolved grid. Solid line shows numerical simulation;
dashed line shows analytical result.

SBH 2 - 8 CIRPKA AND NOWAK: DISPERSION ON KRIGED HYDRAULIC CONDUCTIVITY FIELDS



Figure 4 is similar to the highly resolved case shown in
Figure 3. A systematic underestimation by the analytical
approach can be observed, but the trend is covered well. For
the travel times considered, the smoothing of the grids has a
stronger effect on effective dispersion than on macrodisper-
sion. The amount of longitudinal effective dispersion lost
due to smoothing is almost one half of the true value.
Effective dispersion is governed by local dispersion making
the plume sample increasing scales of heterogeneity. At
earlier times, smaller scales of heterogeneity are sampled,
and these are more affected by using a kriged rather than the
highly resolved log conductivity field. In general, this holds
for both longitudinal and transverse effective dispersion. In
the example given, however, the absolute values of trans-
verse effective dispersion are only by one fourth larger than
the local-scale value D = 0.008�vlsY

2 so that the under-
estimation due to smoothing the grid is not that relevant.

4.3. Increasing the Local Dispersion Coefficients

[34] We repeat the particle-tracking random-walk calcu-
lations on the kriged fields with increased local dispersion
coefficients. We add the analytical expressions of the
correction dispersion tensors, D*c(t) and Dc

e(t, 0), or direc-
tional components of them, to the true local dispersion
tensor. By adding D*c(t), we expect accurate macrodisper-
sion in the calculations on the interpolated fields, whereas
adding Dc

e(t, 0) should yield correct effective dispersion.
Due to periodicity, as illustrated in Figure 4, the transverse
correction macrodispersion coefficient does have negative
values when the mean travel distance approaches the length
of the unit cell. At times when Dt + D*t,c(t) < 0, the
coefficient used in the calculations is set to zero. Table 2
gives an overview over all calculations.
[35] Figures 5 and 6 show the comparison between the

macrodispersion coefficients as evaluated numerically on
the highly resolved log conductivity field using the true
local dispersion tensor D and on the kriged log conductivity
field using max(D + D*c(t), 0) as local dispersion tensor. For
longitudinal macrodispersion, shown in Figure 5, the agree-
ment is almost perfect. For transverse macrodispersion,
shown in Figure 6, the agreement is very good at times
when the transverse correction macrodispersion coefficient
D*t,c(t) is positive. At times when local transverse dispersion

must be set to zero, the correction approach yields too high
values of transverse macrodispersion. It should be noted,
however, that negative values of transverse macrodispersion
are an artifact of periodicity. In a stationary field, the
transverse macrodispersion coefficients are always positive.
Model results not plotted in the figures show that, by using
max(D + D*c(t), 0) as local dispersion tensor on the kriged
log conductivity field, we strongly overestimate effective
dispersion. This behavior is anticipated by D*c(t) being
much larger than Dc

e(t, 0).
[36] Figures 7 and 8 show the comparison between the

effective dispersion coefficient as evaluated numerically on
the highly resolved log conductivity field using the true
local dispersion tensor D and on the kriged log conductivity
field adding Dc

e(t, 0) or components of it to the true local
dispersion tensor. As shown in Figure 7, adding either the
full correction effective dispersion tensor Dc

e(t, 0) or only its
longitudinal component to the true local dispersion tensor
D, yields excellent results of longitudinal effective disper-
sion. Adding only the transverse component of Dc

e(t, 0), on
the contrary, leads to an underestimation of longitudinal
mixing. In the application given, apparently, the values of

Figure 5. Longitudinal macrodispersion coefficient. Solid
line shows highly resolved conductivity field; dashed line
shows kriged conductivity field using increased local
dispersion tensor.

Figure 6. Transverse macrodispersion coefficient. Solid
line shows highly resolved conductivity field; dashed line
shows kriged conductivity field using increased local
dispersion tensor.

Figure 7. Longitudinal effective dispersion coefficient for
point-like injection. Solid line shows highly resolved
conductivity field; markers show kriged conductivity field
using increased local dispersion tensor. Circles, longitudinal
correction; squares, transverse correction; asterisks, long-
itudinal and transverse correction.
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transverse correction effective dispersion are too small to
have a major impact on longitudinal mixing. For transverse
effective dispersion, as shown in Figure 8, the situation is
somewhat more complicated. Adding the longitudinal com-
ponent of Dc

e(t, 0) to D leads to an increase in transverse
mixing, although delayed. Adding the transverse compo-
nent of Dc

e(t, 0) to D gives the correct rate of change of
transverse effective dispersion at early times. The values,
however, do not reach the correct maximum. Finally, adding
the full correction effective dispersion tensor Dc

e(t, 0) to the
local one causes slight overestimation of transverse mixing.
However, keeping in mind that, with the given variability,
the overall increase of transverse effective dispersion is
smaller than the true local value, using either correction
approach may be considered satisfactory. This may be
different for fields with higher variance of log conductivity.
[37] Model results not plotted in the figures show that, by

using D + Dc
e(t) as local dispersion tensor on the kriged log

conductivity field, we underestimate macrodispersion. We
can quantify the lack of macrodispersion by D*c(t) � Dc

e(t).
In applications requiring the correct approximation of both
macrodispersion and effective dispersion, such as in the
prediction of breakthrough curves in mixing-controlled
reactive transport, we suggest to perform the calculations
on the smoothed log conductivity field using the sum of
correction effective dispersion tensor and the true local
dispersion tensor. This would guarantee a correct mass
balance of the reacting compounds. Subsequently, the
resulting breakthrough curves may be corrected for the lack
in the second central moments in a parameterized form.

5. Summary and Conclusions

[38] The main results of the study may be summarized as
follows.
1. Geostatistical interpolation of log conductivity mea-

surements leads to the best linear unbiased estimate (BLUE)
of the log conductivity distribution. The interpolated
distribution is too smooth. The lack of variability can be
approximated by the conditional covariance which is a
result of the kriging procedure and does not depend on the
actual measured values.

2. The conditional covariance is nonstationary. For
measurements on a regular, rather dense grid we may
remove the nonstationarity by taking spatial averages.
3. The spatially averaged conditional covariance of log

conductivity can be substituted into the analytical expres-
sions for macrodispersion and effective dispersion from
first-order theory. The resulting correction dispersion
tensors quantify the lack of dispersion when performing
the calculations on the kriged rather than the fully resolved
grid.
4. By adding the analytical expressions for the correction

macrodispersion and correction effective dispersion tensors,
respectively, to the true local dispersion tensor in calcula-
tions on the interpolated log conductivity fields, we get
plumes with either the correct overall spreading or mixing
behavior.
5. Our approach averages over all possible starting

points. If we wanted to quantify the uncertainty in tagging
a particle in the kriged field starting at a definite point, we
had to follow a rigorous nonstationary approach such as that
of Indelman and Rubin [1996] for advective transport,
because the mean trajectory on the kriged field depends on
the location of the injection point. That is, we expect that
our approach is applicable only to wide plumes.
6. It is important to distinguish between macrodispersion

and effective dispersion. In our approach, we cannot meet
both. We believe, however, that quantifying the lack of
macrodispersion when meeting the correct mixing behavior
will be sufficient in many applications.
[39] Cirpka [2002] has applied the approach successfully

to mixing-controlled multicomponent reactive transport.

Appendix A: Semianalytical Approach for the
Spatially Averaged Conditional Covariance

[40] We derive �Rc(h) for the 2-D exponential model in a
periodic domain. Measurements are taken on a regular grid
(denoted by index t) of mx � my = m locations with spacing
spacings dtx and dty. Interpolations are performed on a highly
resolved grid (denoted by index s) with nx � ny = n points
and spacings dsx and dsy. The unconditional and conditional
covariance matrices R(x1, x2) and Rc(x1, x2) relating all
points on the fine grid to each other are denoted by the n� n
matrices Rss and Rcss

, the unconditional covariance matrices
R(x1, x2) on the grid of observations is denoted by the m� m
matrix Rtt, the discretized separation-related covariance R(h)
on the fine grid by Rs (1 � n) and on the grid of
observations by Rt (1 � m), and the spatially averaged
conditional covariance matrix �Rc(h) on the fine grid by Rcs

(1 � n). lx and ly are the correlation lengths in x- and y
direction Lx and Ly the domain lengths, and u and U are
vectors and matrices with unity entries. We require Lx � lx
and Ly � ly to avoid overlapping of covariance functions.
A 1 � n matrix does not imply a 1-D domain, but arranging
all points in a vector-shaped data array. Equation (8) is in
this notation:

Rcss ¼ Rss � RstPttRts � usPbu
T
s � uspbtRts � Rstptbu

T
s ðA1Þ

See equation (9) for explanation of the P-coefficients. Rst =
Rts

T is the n�mmatrix of the covariance relating all points on
the fine grid to all observation points. Applying the rules for

Figure 8. Transverse effective dispersion coefficient for
point-like injection. Solid line shows highly resolved
conductivity field; markers show kriged conductivity field
using increased local dispersion tensor. Circles, longitudinal
correction; squares, transverse correction; asterisks, long-
itudinal and transverse correction.
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the inverse of a partitioned matrix [see, e.g., Schweppe,
1973], we obtain

Ptt ¼ R�1
tt þ R�1

tt utPbu
T
t R

�1
tt ðA2Þ

pbt ¼ �Pbu
T
t R

�1
tt ¼ pTtb ðA3Þ

Pb ¼ 0� uTt R
�1
tt ut

� ��1 ðA4Þ

For regular periodic observation grids, Rtt = Rtt
T, Rtt

�1 =
(Rtt

�1)T, and all sums of rows and columns are identical.
Multiplication Au or uTA is the summation of rows or
columns, so that Pb = �Rtt, the mean of (Rtt)jk, as Rtt can be
shown to be the sum of all (Rtt

�1)jk. Then:

Ptt ¼ R�1
tt � m2 �Rttð Þ�1

Utt ðA5Þ

pbt ¼
1

m
uTt ¼ pTtb ðA6Þ

Rcss ¼ Rss � Rst R�1
tt � m2

�
Rtt

� ��1
Utt

�
Rts þ Rttusu

T
t

� 1

m
usu

T
t Rts �

1

m
Rstutu

T
s ðA7Þ

We average over all starting points x1 keeping the separation
vector h = x2 � x1 constant:

Rcss

x1 ¼ Rss� Rst R
�1
tt � m2 Rtt

� ��1
Utt

� �
Rts

x1

þ RttusuTs
x1

� 1

m
usu

T
t Rts

x1

� 1

m
Rstutu

T
s

x1

ðA8Þ

in which the last three terms represent the mean of Rt and Rs.
We define the n � n permutation matrix Is(h): Rs(h0)Is(h) =
Rs(h + h0), and rearrange:

Rcs hð Þ ¼ Rs �
Xm
j¼k

RstRts
x1
Is hj � hk
� �

Pttð Þj;kþRtus � 2Rsus

ðA9Þ

where hj is the distance of the jth observation point from the
observation point at the origin, and k is arbitrary. For periodic
domainswe enforceRt=Rs=0 by subtracting themean value
from all entries. When inverting Rtt, we do not apply this
correction to avoid a bad condition of the matrix. No error
results, as Ptt includes a correction for Rtt.
[41] In equation (A9), the only term of size n � n is

RstRts prior to spatial averaging. Due to the averaging, we
may replace Rst and Rts by mRs, and execute summation
first. Then we replace summation by integration:

RstRts
x1 ¼ mxmy

nxny
s4



Xnx
j¼1

Xny
k¼1

exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxj

lx

þ j
dsx
lx

 �2

þ hxk
lx

þ k
dsy

ly

 �2
s0

@
1
A


 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j
dsx
lx

 �2

þk
dsy

ly

 �2
s0

@
1
A

¼ s4
lxly

dsxdsy

Zþ1Z
�1

exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx

lx

þ x

 �2

þ hy

ly

þ y

 �2
s0

@
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p !
dx dy ðA10Þ

which is the volume under a surface with elliptic isocon-
tours. The infinite integral is numerically exact for Lx � lx
and Ly � ly and small dsx and dsy. If an integrand has
isocontours z = f (x(r), y(r)) with enclosed area A(r), then:

Z Z
f x; yð Þdxdy ¼

Z
zðrÞ dA

dr
dr ðA11Þ

As in equation (A10) we integrate from �1 to +1, we
may rotate and offset to obtain unit ellipses with apexes (±a,
0) and (0, ±b), jaj � jbj, focal points (±c, 0), c2 = a2 � b2,
and A = pab:

x2

a2
þ y2

b2
¼ 1; c ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x

l2
x

þ
h2y

l2
y

s
ðA12Þ

and therefore:

RstRts
x1 ¼ s4

lxly

dxdy



Zþ1 Z

�1

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ cð Þ2þy2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� cð Þ2þy2

q �
dx dy

¼ s4
lxly

dxdy
p
Z1
0

exp �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p� � 2b2 þ c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p db ðA13Þ

This integral can be evaluated numerically and converges
rapidly as the integrand exponentially approaches zero for
increasing b. Substituting RstRts

x1 as retrieved from
equation (A13) into equation (A9) yields the spatially
averaged covariance function �Rc(h) discretized on the fine
grid. The extension to 3-D is straightforward by using
ellipsoids instead of ellipses.
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