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[1] Evaluating uncertainty in solute transport under nonstationary flow conditions is a
computationally demanding task. This is particularly true for cases with a two-point
covariance function of log conductivity depending on the actual positions of the points
rather than their distance vector. These may occur when the geological formation exhibits
a trend. Nonstationarity can also be the result of uncertainty in the trend parameters of the
mean log conductivity value, or it may originate from conditioning of the log conductivity
field to measurements of, for example, head or conductivity. We present an efficient
numerical method for evaluating the variance of travel time in such formations. We cover
cases in which the nonstationary covariance functions are constructed from stationary
counterparts, either by scaling functions or by summation with nonstationary functions
resulting from marginalization or conditioning. We apply a matrix-based first-order
second-moment (FOSM) method for uncertainty propagation, using the continuous
adjoint-state method for coupled systems to evaluate the sensitivity matrix. The resulting
matrix-matrix multiplications are accelerated by fast Fourier transformation (FFT)
techniques after periodic embedding of the covariance matrices referring to the stationary
counterparts. The combination of these methods makes it possible to compute the travel
time uncertainty in domains discretized by several hundred thousand log conductivity
values on standard personal computers within a reasonable time-frame. For demonstration,
we apply the method to a binary medium and a medium exhibiting a continuous trend in
the covariance function. In the latter application we also demonstrate the effects of
marginalization and conditioning. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1869

Hydrology: Stochastic processes; 1832 Hydrology: Groundwater transport; KEYWORDS: adjoint-state method,
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1. Introduction

[2] Over the past two decades, stochastic theory has been
proven useful in dealing with heterogeneity and uncertainty
in natural porous formations. In the geostatistical frame-
work, the hydraulic conductivity and other properties of the
formation are treated as random space variables character-
ized by their statistical moments. From these, one may
derive the statistical moments of dependent quantities such
as heads, velocities, and concentrations. A common mea-
sure of uncertainty in solute transport is the variance of
travel time, i.e., the time it takes for a solute particle to be
transported from the release point to an observation plane
[Shapiro and Cvetkovic, 1988; Dagan et al., 1992]. The
travel time is also given by the first temporal moment of a
concentration breakthrough curve normalized by its zeroth
moment [Harvey and Gorelick, 1995]. Together with the
variance of lateral displacement, the travel time variance has
been used in solute-flux approaches to macrodispersion in
heterogeneous formations [see Rubin, 2003, chap. 9–10].
[3] Closed-form and semi-analytical expressions of travel

time statistics exist for stationary velocity fields [Shapiro
and Cvetkovic, 1988; Cvetkovic et al., 1992]. The latter

require stationarity of the underlying (log)conductivity
field, an unbounded domain, and a uniform mean hydraulic
gradient. Accounting for realistic boundary conditions in the
flow problem leads to nonstationarity in the velocity field
even when the log conductivity field is stationary. Some
studies on nonstationary flow consider boundary conditions
as the only cause of nonstationarity [Rubin and Bellin,
1994; Fiori et al., 1998]. Others allow for a nonuniform
expected value of the log conductivity but require its
covariance function to be invariant with respect to transla-
tion [Li and McLaughlin, 1995; Indelman and Rubin, 1995].
The most general case also includes nonstationarity in the
covariance function of the log conductivity field [Zhang,
1998]. In the present study, we consider numerical methods
for uncertainty propagation in media with a nonstationary
log conductivity covariance function. Nonstationarity due to
boundary conditions is implicitly included.
[4] Zhang et al. [2000] analyzed moments of travel time

and lateral displacement in nonstationary flow using a
Lagrangian approach in which they integrated the velocity
covariance, plus two correction terms accounting for spatial
trends in mean flow, along the mean trajectory. The non-
stationary covariance function of the velocity field was
evaluated by the numerical method of moments introduced
by Zhang [1998]. A major difficulty of this approach lies in
the effort required to compute the statistical velocity
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moments. A log conductivity field discretized by nY values
requires the numerical solution of a multiple of nY moment-
generating equations. Nonstationary (cross)-covariance
matrices relating the fluctuations of discretized log conduc-
tivities, hydraulic heads and specific-discharge components
need to be stored. Each of these matrices is sized nY � nY.
The numerical method of moments and its application to
computing solute-flux statistical moments is thus restricted
to fairly coarsely discretized domains. Three-dimensional
applications, requiring many more cells or elements than
two-dimensional ones, are difficult to handle.
[5] In the present study, we follow an alternative numer-

ical approach in which we avoid the evaluation and storage
of huge intermediate covariance matrices. We apply strict
first-order propagation of uncertainty from discretized log
conductivity values to simulated travel time values at
observation points. We determine the sensitivity of the
travel times with respect to the discretized log conductivity
field by the adjoint-state method [Townley and Wilson,
1985; Sun and Yeh, 1990; Cirpka and Kitanidis, 2000a;
James et al., 2000]. The sensitivities are the total derivatives
of travel time with respect to the log conductivity values in
all cells. Subsequently, we evaluate the covariance matrix
of travel times at the observation points by quadratic
multiplication of the log conductivity covariance matrix
with the sensitivity matrix of travel times. Thus we apply a
matrix-based first-order second-moment (FOSM) approach
[Dettinger and Wilson, 1981].
[6] Applying FOSM to travel times has already been

done by LaVenue et al. [1989], who, however, considered
only a few discrete values of hydraulic conductivities
corresponding to definite layers rather than many log
conductivity values corresponding to a discretized auto-
correlated field. Obviously, applying FOSM to large dis-
cretized domains, with nY ranging between 105 to 106, one
needs efficient methods for matrix calculations. For covari-
ance matrices corresponding to stationary fields discretized
on a regular grid, periodic embedding and multiplication in
the Fourier domain has been shown to be very efficient
[Nowak et al., 2003]. This technique can be applied directly
to the evaluation of the travel time variance in fields where
the nonstationarity of flow is not caused by the covariance
of log conductivities. In the present study, we extend these
methods to cases with nonstationary covariance functions of
the log conductivity field that can be traced back to
stationary counterparts. All matrix-multiplications are su-
perfast (O(nplog2(np)) in which np is the number of elements
in the periodic domain), and not a single nonstationary
covariance matrix of size nY � nY needs to be stored.

2. Problem Statement

2.1. Governing Equations

[7] We consider steady state groundwater flow without
internal volumetric sources or sinks, meeting the ground-
water flow equation:

r � Krfð Þ ¼ 0 ð1Þ

in which K is the hydraulic conductivity, here assumed
isotropic at the local scale, and f is the hydraulic head. The
boundary G of the domain is subdivided into a section G1

with prescribed head values f̂, and a remaining section G\G1

with prescribed normal flux qG:

f ¼ f̂ on G1

�n� Krfð Þ ¼ qG on GnG1

ð2Þ

in which n is a unit vector normal to the boundary pointing
outward. The specific discharge vector throughout the
domain is defined by Darcy’s law:

q ¼ �Krf ð3Þ

We consider advective-dispersive transport of an ideal
tracer, not undergoing mass transfer or other reactive
processes:

q
@c

@t
þ q�rc� qr � Drcð Þ ¼ 0 ð4Þ

in which q is the (flow-effective) volumetric water content, c
denotes concentration, and D is the pore-scale dispersion
tensor. For transport, the boundary is subdivided into the
inflow boundary Gin, at which n � q is negative, and the
remaining section of the boundary G\Gin. At inflow sections,
we define an inflow flux concentration cin as the boundary
condition, whereas the dispersive flux is zero at all other
boundary sections:

n�ðqc� qDrcÞ ¼ n � qcin on Gin

n�ðDrcÞ ¼ 0 on GnGin
ð5Þ

[8] We characterize transport at a given observation point
by the mean time a particle takes to travel from the inflow
boundary to that point. This quantity has been used fre-
quently in the Lagrangian analysis of solute-flux statistics
[Shapiro and Cvetkovic, 1988; Dagan et al., 1992;
Cvetkovic et al., 1992; Zhang et al., 2000]. Like Harvey
and Gorelick [1995], we obtain the same quantity in an
Eulerian context.
[9] In order to calculate the mean travel time of a particle

arriving at an observation point, we imagine an experiment
in which the tracer is introduced homogeneously into the
flux over the entire inflow boundary, i.e., cin = d(t)m/Q.
Here m is the total tracer mass and Q is the total discharge.
Since the inflow concentration is considered uniform with
respect to the lateral coordinate along the inflow boundary,
the zeroth temporal moment of the concentration is uniform
throughout the domain. The mean arrival time t(x) at any
point x within the domain is the first temporal moment
normalized by the zeroth moment. For the given boundary
conditions, t(x) meets the following steady state transport
equation (see Appendix A):

q

q
�rt�r � Drtð Þ ¼ 1 ð6Þ

n� qt� qDrtð Þ ¼ 0 on Gin

n� Drtð Þ ¼ 0 on GnGin
ð7Þ

[10] Equation (6) gives the travel time to a point within
the domain, regardless of the injection point. In the case of a
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nonuniform injection of the tracer into the inflow, we would
solve for the nonuniform distributions of the zeroth and first
temporal moments. The travel time would subsequently be
evaluated by normalizing the first moment with the zeroth.
Extensions to steady state flow with source/sink terms and to
transport with sorption are straightforward.

2.2. First-Order Second-Moment Approximation
of Travel Time

[11] We consider the log conductivity Y = ln(K) a random
space variable characterized by second-order statistics:

exp Y ðxIÞh ið Þ ¼ Kg xIð Þ ð8Þ

Y 0ðxIÞY 0ðxIIÞh i ¼ QYY xI; xIIð Þ ð9Þ

in which hi denotes the expected value of the argument,
primed quantities denote deviations from the expected
value, Kg(xI) is the geometric mean of the conductivity
which may depend on the actual location xI, and QYY(xI, xII)
is the covariance function of the log conductivity fluctua-
tions at locations xI and xII. In stationary media, Kg is
uniform throughout the domain, and QYY depends only on
the distance vector xII � xI.
[12] Since the travel time field t(x) depends on Y(xI), it is

also a random space variable which may be characterized by
its expected value and covariance function. We get the
zeroth-order approximation of t(x) in random heteroge-
neous media by calculating flow and transport with the
field of the expected log conductivity values, keeping all
other parameters, namely the dispersion coefficients, to their
pore-scale values:

tð0ÞðxÞ ¼ t x;Kg xIð Þ
� �

ð10Þ

The zeroth-order approximation also holds as the first-order
approximation of the mean, since the first-order terms are
proportional to the log conductivity fluctuations Y0(xI) and
cancel out when taking expected values. Second-order
corrections of the mean require second derivatives of t(x)
with respect to all log conductivity values Y0(xI). Due to the
accompanying high computational costs, these terms are not
evaluated in the present study.
[13] The uncertainty in t(x) is given by simple error

propagation [Dettinger and Wilson, 1981]:

Qtt x; x0ð Þ ¼
Z
W

Z
W

dtðxÞ
dY ðxIÞ

QYY ðxI; xIIÞ
dtðx0Þ
dY ðxIIÞ

dxIIdxI ð11Þ

in which Qtt(x, x0) is the covariance function of the
travel time at locations x and x0, and dt(x)/dY(xI) is the
sensitivity of t(x) with respect to Y(xI), whereas

R
Wdx

denotes integration over the entire domain. When we
discretize the log conductivity field in cells of constant
values, we replace the double integral by a quadratic
matrix-matrix multiplication:

QTT ¼ HTQYYH
T
T ð12Þ

in which QTT is the covariance matrix of all considered
t values and QYY is the covariance matrix of the discretized

log conductivity values, whereas HT is the sensitivity
matrix:

HT ¼ dT

dYT
ð13Þ

with dimensions nt � nY. Here nt is the number of
travel time observations and nY denotes the number of
log conductivity values.

2.3. Computational Effort

[14] Evaluating equation (12) by standard techniques is
computationally demanding. Consider a typical two-dimen-
sional domain discretized by �104 nodes. We may be
interested in travel times at �102 outflow nodes. Then,
QYY has dimensions 104 � 104, whereas HT is a 102 �
104 matrix. Using direct numerical differentiation, we
would have to solve 104 flow- and transport-problems to
evaluate the sensitivity matrix. These costs can be reduced
to solving O(102) flow and transport problems using
adjoint-state methods [Townley and Wilson, 1985; Sun
and Yeh, 1990; Cirpka and Kitanidis, 2000a; James et al.,
2000]. The adjoint-state equations for the problem at hand
are reviewed in section 3.
[15] With a nonstationary covariance matrix QYY, it

appears that we need to store all 108 entries (or at least,
due to symmetry, one half of them). Using standard tech-
niques, the matrix-matrix product in equation (12) would
take O[1010] floating-point operations. This effort is
prohibitive with respect to both storage and CPU time.
[16] For stationary media, it has been shown that the

matrix multiplications mentioned above can be accelerated
dramatically by periodic embedding of the covariance
matrix [Golub and Loan, 1996; Nowak et al., 2003]. Each
stationary covariance matrix, representing the correlation
among values within a finite domain, can be interpreted as a
submatrix of the covariance matrix belonging to a larger,
periodic domain. For the latter, we can perform matrix-
vector multiplications using Fast Fourier Transformation
(FFT) techniques requiring only O(nplog2(np)) floating-
point operations, in which np is the number of nodes in
the embedding periodic domain. In section 5, we briefly
review these techniques. In section 6, we extend them to
cases with certain types of nonstationary covariance matri-
ces that we introduce in section 4.

3. Evaluation of Sensitivity Matrices

[17] In this section, we recall the calculation of sensitivity
matrices by the continuous adjoint-state method [Sun and
Yeh, 1990]. The steps in the derivation of the adjoint-state
equations for the travel time t are listed in Appendix B. A
more detailed description is given by Cirpka and Kitanidis
[2000a] [see also James et al., 2000]. Here we only present
the basic results. The general procedure is first to solve for
the zeroth-order approximation of the flow and transport
problem and then to evaluate adjoint-state equations. The
sensitivities are finally computed by element-wise postpro-
cessing in a finite element context.
[18] For each type of measurement, we have to solve for

one set of adjoint partial differential equations. The con-
centration moments depend, via the velocity field, on the
log conductivity distribution. Since the velocity depends on
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log conductivity both directly and indirectly via the hydrau-
lic-head field, we need to solve for two adjoint states
representing the two types of impact. The structures of the
adjoint-state equations are very similar to the original
equations: they consist of an adjoint transport equation
and an adjoint flow equation.
[19] In the following, we denote the zeroth-order solution

of the hydraulic head, specific discharge and travel time
f(0), q(0), and t(0) respectively. Consider a point-like obser-
vation of the arrival time at location x0,t. Then, the adjoint
transport equation is:

� qð0Þ

q
� ryt �r � Drytð Þ ¼ �d x0;t

� �
ð14Þ

subject to

n� Drytð Þ ¼ 0 on G n Gout ð15Þ

n� yt
qð0Þ

q
þ Dryt

� �
¼ 0 on Gout ð16Þ

which is essentially identical to the forward transport equation
of t(0), equation (6), with reversed direction of the flow field
and a Dirac source term at the point of observation. yt is the
adjoint state of travel time, and Gout is the fraction of the
boundary with an outward flow component in the forward
problem, i.e., q � n > 0. The corresponding adjoint flow
equation, representing the impact of log conductivity on the
travel time via the hydraulic heads, is:

r � Kgryft
� �

¼ �r � rtð0Þ
Kg

q
yt

� �
ð17Þ

subject to the boundary conditions:

yft ¼ 0 on G1 ð18Þ

�n� Kgryft
� �

¼ n� rtð0Þ
Kg

q
yt

� �
on GnG1 ð19Þ

in which yft is an adjoint state of the hydraulic head in the
context of travel time sensitivities. We consider element-wise
constant values of log conductivity. Then, the sensitivity of
the travel time t at location x0,t with respect to the log
conductivity Yl in the element l with volume Vl is [Cirpka
and Kitanidis, 2000a; James et al., 2000]:

@tðx0;tÞ
@Yl

¼
Z
Vl

�Kg

q
rtð0Þ � rfð0Þyt � Kgryft � rfð0Þ

� �
dV

ð20Þ

We solve both the forward and the adjoint equations by
the finite element method (FEM). In the simulation of
flow, we apply the standard Galerkin technique for spatial
discretization and solve the resulting system of linear
equations by a conjugate-gradient method with algebraic
multigrid preconditioning [Stüben, 2001]. We discretize the

temporal-moment generating equations by the Streamline-
Upwind Petrov-Galerkin method [Brooks and Hughes,
1982], solving the resulting system of linear equations by
the stabilized biconjugate gradient method with incomplete
LU decomposition as preconditioner. All codes are written as
Matlab scripts.

4. Covariance Matrices for Certain Cases of
Nonstationarity

[20] In this section, we discuss covariance matrices of
nonstationary media that can be traced back to stationary
counterparts. We believe that most practical applications fall
into this category. We discuss (1) nonstationarity due to
variance scaling in which the variance has a spatial trend,
(2) blending of two covariance matrices which includes the
case of zonal stationarity, (3) nonstationarity because of
uncertainty in trend parameters for the mean, and (4) non-
stationarity due to conditioning.

4.1. Variance Scaling

[21] One of the simplest nonstationary models is based on
variance scaling, in which the general shape of the covari-
ance matrix is not altered but the variance is scaled by a
trend function. This leads to the following expression:

QYY ¼ AQsA ð21Þ

in which Qs is a nY � nY symmetric positive-definite matrix
representing the covariance matrix of a stationary, finite,
discretized field. A is a nY � nY real diagonal scaling matrix.
For the case of stationary media, A is the identity matrix.
A typical example of a nonstationary model is a linear
trend of the variance with direction xi requiring a square-
root expression of xi at the corresponding entry on the main
diagonal of A.

4.2. Blending of Two Covariance Matrices

[22] The covariance function of a random field may have
a different shape in different parts of the domain. As an
example, the integral scale may have a spatial trend. We can
parameterize such situations by blending two (or more)
covariance matrices:

QYY ¼ A1Q1A1 þ A2Q2A2 ð22Þ

in which Q1 and Q2 are nY � nY covariance matrices of
stationary fields, whereas A1 and A2 are nY � nY real
diagonal matrices. The simplest blending model represents
zonal stationarity, in which the diagonal entries of A1 and
A2 are either zero or one, and the sum A1 + A2 is the
identity matrix.

4.3. Marginal Covariance Matrix for Uncertain Trend
Parameters of the Mean

[23] Consider a trend model describing the expected
value of the log conductivity field Y(x):

E Y½ � ¼ XB ð23Þ

in which B is a nb � 1 vector of trend parameters with
the number of trend parameters nb, and X is a nY � nb
matrix of discretized base functions with entries that depend
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on the location x at which the log conductivity Y(x) is
considered. For known trend parameters B, we assume Y to
fluctuate about XB with a multi-Gaussian distribution. The
corresponding covariance function QYY(xI, xII) is not
necessarily stationary. In addition, the trend parameters B

may be uncertain. To account for the uncertainty of B, we
assume amulti-Gaussian distribution of Bwith prior mean B*
and covariance QBB. Marginalization leads to the marginal
mean

~
Y and the marginal covariance GYY of Y with

uncertain value of the drift coefficients B:

~
Y ¼ XB* ð24Þ

GYY ¼ QYY þ XQBBX
T ð25Þ

Equation (25) exemplifies the fact that the marginal
covariance GYY of Y without exact knowledge of B is larger
than the covariance QYY for known B values. Even if QYY is
stationary, the marginal GYY may be nonstationary because
of the spatial dependence in the underlying trend model.
[24] If there is no information on the trend parameters

whatsoever, i.e., QBB
�1 = 0, the marginal variance of Y

is infinite, and the marginal covariance matrix GYY is a
generalized rather than a regular matrix. The inverse GYY

�1,
however, is still regular [e.g., Kitanidis, 1995, and
references therein]:

G�1
YY ¼ Q�1

YY �Q�1
YYX XTQ�1

YYX
� ��1

XTQ�1
YY ð26Þ

4.4. Conditional Covariance Matrix

[25] Conditioning a random space function by measure-
ments of either the function itself or a dependent quantity is
a classical case in which a potentially stationary field
becomes nonstationary. As an example, we may consider
measurements of the hydraulic head f that are used to
condition the log conductivity field Y. In the following, we
denote the m � 1 vector of the measured quantity at the m
measurement points by Z; the measurements themselves,
which may be prone to a measurement error, are denoted
Zm. The covariance matrix of the measurement errors is
denoted RZZ. We evaluate the conditional mean, or best
estimate, Ŷ and the conditional, or posterior, covariance
matrix QYYjZm of Y given Zm by the quasi-linear method of
geostatistical inversing as outlined by Kitanidis [1995].
The estimate Ŷ is given in the function estimate form:

Ŷkþ1¼ XbBkþ1 þQYYH
T
Z;kZkþ1 ð27Þ

in which bBk+1 is the estimate of the trend parameters after
the (k + 1)-th iteration, HZ,k is the nY � m sensitivity matrix
of the measured quantity with respect to the Y field
evaluated at the previous estimate Ŷk, and Zk+1 is a m � 1
vector of weights associated with the measurements. The
vectors bBk+1 and Zk+1 are determined by solving the
cokriging system of equations:

HZ;kQYYH
T
Z;k þ RZZ HZ;kX

XTHT
Z;k �Q�1

BB

" #
Zkþ1bBkþ1

" #

¼
Zm � ZðŶkÞ þHZ;kŶk

�Q�1
BB B*

" #
ð28Þ

in which Z(Ŷk) is the model prediction for the measured
quantity, applying the previous estimate Ŷk. The iterative
cokriging procedure has to be repeated until convergence is
reached. We stabilize the method further by adopting the
Levenberg-Marquardt algorithm for underdetermined pro-
blems (W. Nowak and O. Cirpka, A modified Levenberg-
Marquardt algorithm for application to iterative cokriging,
submitted to Advances in Water Resources, 2003). It can be
shown that the cokriging solution is the Bayesian update of
the prior field ~Y conditioned on the dependent data Zm

[Kitanidis, 1995]. Equation (28) is written here for uncertain
rather than completely unknown trend parameters. Should
there be no prior information on the drift coefficients B, the
corresponding inverse covariance matrix QBB

�1 is a zero
matrix.
[26] A lower bound of the conditional covariance QYYjZm

is given by:

QYYjZm � QYY

�
HZQYY

XT

� �T HZQYYH
T
Z þ RZZ HZX

XTHT
Z �Q�1

BB

" #�1
HZQYY

XT

� �
ð29Þ

which is exact for linear problems. It is quite obvious that
the conditional covariance matrix is nonstationary even
when the unconditional covariance QYY is stationary. When
QYY is nonstationary, efficient matrix multiplications are
not only needed for further error propagation of the condi-
tional covariance matrix QYYjZm but also for the evaluation
of HZQYY and HZQYYHZ

T occurring in the cokriging
equations, equations (27) and (28).

5. Periodic Embedding

5.1. Structure of the Covariance Matrices of
Stationary and Periodic Fields

[27] In the discussion above, we have shown that
several important cases of nonstationary covariance func-
tions can be traced back to stationary counterparts, the
latter being invariant to translation. Consider the spatial
discretization on a regular grid as is quite common, for
example when using a Finite Differences scheme. Then,
the covariance matrix Qs of a stationary field includes only
a limited set of values representing the covariance function
for the repeated distance vectors between two points on the
grid. The entire covariance matrix can be constructed from
the covariance relating the cell in the lower left corner to all
other cells. Mathematically, the covariance matrix of a
regularly discretized stationary field has block-Toeplitz
structure with Toeplitz blocks [Dietrich and Newsam,
1997].
[28] The structure of the matrix is extremely important.

Consider a three-dimensional domain discretized by
106 nodes. Then, the full covariance matrix would have
1012 entries which is beyond the storage capacity of any
contemporary computer. If we consider the block-Toeplitz
structure of the covariance matrix, we need to store only
106 entries.
[29] A mathematically even more convenient, structured

matrix is circulant. A circulant covariance matrix describes
the covariance among the entries of a discretized unit cell
within a periodic domain. Here all values repeat themselves
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at distances that are an integer multiple of the unit cell’s
length ‘. When the distance h approaches the unit cell’s
length ‘, the parameters become increasingly correlated. In
fact, the following identity holds:

Qcð‘� hÞ ¼ QcðhÞ ð30Þ

In multidimensional applications, periodicity is enforced in
all directions, leading to block-circulant matrices with
circulant blocks. As we will see in the following, it is
computationally efficient to embed a nonperiodic finite
domain with spatially invariant statistics (and a Toeplitz
covariance matrix) in a virtual, larger, periodic field (with a
circulant covariance matrix) [Dietrich and Newsam, 1997].
In practical applications, one generates the first line of the
circulant covariance matrix directly from the periodic
covariance function.
[30] Formally, we can write the construction of a station-

ary covariance from the periodic counter-part as:

Qs ¼ MTQpM ð31Þ

in which the np � nY mapping matrix M transfers the entries
of the finite stationary domain to those of the periodic
domain. np is the number of entries in the embedding
periodic domain. M has a single entry of unity per column.
MT extracts the entries occurring in the stationary field from
those in the periodic field. In practice, a multiplication Mu
implies mapping the entries of the finite domain onto the
unit cell of the periodic domain. All entries in the periodic
domain that do not exist in the finite domain are filled in by
zeros (zero padding). Likewise, the operation MTup is
carried out by extracting those entries of the periodic field
up that also occur in the finite field, discarding the extra
entries.

5.2. Matrix-Vector and Matrix-Matrix Multiplications

[31] In the following, we will apply the discrete Fourier
transformation as implemented in Matlab (http://www.
fftw.org). The Fourier transform of a periodic field up
is denoted ~up = F (up), and the inverse Fourier transforma-
tion up = F�1(~up). The diagonalization theorem states that
the eigenvalues of a circulant matrix are identical
to the Fourier transform of the first column of the matrix.
As a consequence, a matrix-vector product involving
a circulant matrix becomes [see Golub and Loan, 1996, p.
202]:

Qpup ¼ F�1 F q1ð Þ � F up
� �� �

ð32Þ

in which a � b is the Hadamard product, i.e., the element-
wise multiplication of vectors a and b, whereas q1 is the
first column of Qp.
[32] Formally, we may write the multiplication of a

Toeplitz matrix with a vector as:

Qsu ¼ MTQpMu

¼ MTF�1 F q1ð Þ � F Muð Þð Þ ð33Þ

which implies that we have to embed the vector u, here
representing entries on a discretized finite domain with

stationary covariance function, in a larger vector up = Mu
in the corresponding periodic domain. The new entries
are padded with zeros. Now we apply the circulant
matrix-vector product, equation (32), i.e., we take the
discrete, multidimensional Fourier transform of up and
multiply each entry with the Fourier transform of q1.
After back-transformation into the spatial domain, we
extract the part of the resulting expression that is related
to the finite stationary field [Dietrich and Newsam, 1997;
Nowak et al., 2003]. The multiplication thus requires
three fast Fourier transformations (FFT), each with a
computational effort of O(nplog2(np)), whereas the tradi-
tional matrix-vector product requires O(nY

2) operations.
Hence the periodic embedding is advantageous for large
domains, even when the periodic domain has four times
the number of entries occurring in the finite stationary
domain.
[33] In matrix-matrix multiplications, we consider each

column of the right-hand matrix separately. With m
columns, we need (2m + 1) FFT operations. Consider
the quadratic matrix-matrix product in equation (12),
QTT = HTQYYHT

T , for a covariance matrix QYY

corresponding to a stationary covariance function of the
log conductivity field. A nonuniform mean in the log
conductivity or boundary conditions in the flow problem
may lead to a nonstationary velocity field. In that case,
dt(xI)/dY(xII) depends on the actual position of xI and xII
rather than on the separation vector xII � xI. This means
that the sensitivity matrix HT does not exhibit a simple
structure, whereas the covariance matrix of the log
conductivity values QYY is a Toeplitz matrix. The
calculation of the covariance matrix QTT of travel time
observations T may be written formally by substituting
equation (31) in equation (12):

QTT ¼ HTM
TQpMHT

T ð34Þ

Using Fourier-transformation techniques, equation (33), the
terms of QTT are evaluated by:

Qtitj ¼ htiM
TF�1 F q1ð Þ � F MhTtj

� 
� 

ð35Þ

in which hti is the i-th row of the sensitivity matrix HT.
In the physical context, hti is the sensitivity of the i-th
travel time observation with respect to all log conductivity
values in the finite stationary domain. We perform the
multiplication QYYhtj

T for each sensitivity field htj by
applying equation (32), and subsequently multiply the
resulting matrix by the full sensitivity matrix HT. The
principles of this procedure have already been described
earlier [Golub and Loan, 1996; Nowak et al., 2003].
[34] It may be worth noting that the principles of

periodic embedding can also be used for fields that are
characterized by a power law variogram [Zhang, 2002,
pp. 76–81]. In this case, we extend the variogram for
distances larger than the domain size such that it asymp-
totically approaches a finite variance, here denoted �s2.
We transform the extended variogram to a regular co-
variance function �QYY(xI � xII), which can be embedded
in a periodic domain. The discrete cross-variogram matrix

6 of 14

W03507 CIRPKA AND NOWAK: VARIANCE OF TRAVEL TIME IN NONSTATIONARY FORMATIONS W03507



&YT = &YYHT
T of the discretized log conductivity values Y

and the travel time observations T is then given by:

&YT ¼ &YYH
T
T ¼ �s2UHT

T � �QYYH
T
T ð36Þ

in which &YY is the variogram matrix of the discretized log
conductivity values, and U is a matrix containing unit
entries only. �QYY is the discrete form of �QYY(xI � xII) for
all points within the domain, and the matrix-matrix product
�QYYHT

T is computed by applying equation (32) to each row
of HT.

6. Evaluation of First-Order Second Moments
Involving Matrices of Discretized Nonstationary
Covariance Functions

[35] In this section, we discuss the evaluation of the first-
order travel time variance for the cases of nonstationarity in
the log conductivity field discussed in section 4. We first
analyze the case in which nonstationarity in the covariance
function appears due to variance scaling, as described in
section 4.1. Substituting equation (21) in equations (31) and
(12) yields:

QTT ¼ HTAM
TQpMAHT

T ð37Þ

which can be traced back to the stationary case under
application of an auxiliary matrix L:

L¼ HTA ð38Þ

leading to:

QTT ¼ LMTQpMLT ð39Þ

[36] This is identical to the stationary case, using L rather
than HT. Obviously, it is advantageous to perform the
multiplication L = HTA

T prior to the quadratic multi-
plication with the stationary covariance matrix MTQpM.
Since A is a diagonal matrix, we need to store only nY
entries, and the evaluation of the auxiliary matrix L can
be done by element-wise multiplication of the sensitivity
matrix HT with the spatial scaling factor included in A. The
remaining multiplication of MTQpM and LT is performed
by the same Fourier-transformation technique as applied in
equation (35):

Qtitj ¼ ‘iM
TF�1 F q1ð Þ � F M‘Tj

� 
� 

ð40Þ

in which ‘i is the ith row of matrix L.
[37] When we blend two covariance matrices, as

explained in section 4.2, we perform the variance scaling
with two or more stationary covariance matrices and sum
up the resulting terms, see equation (22). Consequently,
we can perform the uncertainty propagation from log
conductivity to travel time values for each stationary
submatrix as outlined above and sum up the matrices.
[38] Next, we consider nonstationarity due to margin-

alization, using a nonuniform trend model as described in
section 4.3. If the vector of drift coefficients B is uncertain,

the uncertainty in T increases accordingly. Substituting
equation (25) in equation (12) yields:

QTT ¼ HTGYYH
T
T ¼ HtQYYH

T
T þ HTX|ffl{zffl}

¼L

QBB X
THT

T|fflffl{zfflffl}
¼LT

ð41Þ

The first term, HTQYYHT
T , has been discussed above. For

the second term, it is advantageous to perform the calcula-
tion HTX prior to the quadratic multiplication with QBB,
since QBB is sized nb � nb and HTX is sized nt � nb. There
is no need to evaluate the huge nY � nY matrix XQBBX

T. If B
is completely unknown, QBB has entries of infinite value,
and the uncertainty in travel times is also infinite.
[39] Finally, we may consider nonstationarity in the log

conductivity field due to conditioning, as described in
section 4.4. Substituting equation (29) into equation (12)
yields:

QTTjZm ¼ HTQYYjZmHT
T

¼ HTQYYH
T
T � L

HZQYYH
T
Z þ RZZ HZX

XTHT
Z �Q�1

BB

� ��1

LT

with L ¼ HT
HZQYY

XT

� �T

in which QTTjZm is the conditional covariance matrix of the
travel time at the observation points, given the measure-
ments Zm. It may be worth noting that the sensitivity matrix
HT differs in the unconditional and the conditional cases.
The term HTQYYHT

T can be evaluated by the methods
discussed above. For the remaining contribution to QTTjZm,
there is no need to store the complete conditional covariance
QYYjZm of the log conductivity values, given the measure-
ments Zm. Instead, one should perform the calculation of the
nt � (m + np) auxiliary matrix L = HT[QYYHZ

T , X] first, and
subsequently perform the quadratic multiplication with the
inverse of the (m + nb) � (m + nb) cokriging matrix. The
matrix products HZQYY and HZQYYHZ

T appearing in the
cokriging equations may be computed with the same
embedding and Fourier-transformation techniques discussed
in this paper for HTQYYHT

T.

7. Illustrative Examples

[40] We demonstrate the performance of our method with
two example applications. Both of them describe a two-
dimensional aquifer of size 100 m � 50 m discretized by
1000 � 500 elements with piecewise constant log conduc-
tivity values. Mean flow is from the left to the right. The
mean hydraulic gradient is one per cent. The line of travel
time observations is located at x1 = 90 m. We consider 50
equally distributed observation points.

7.1. Travel Time Variance for a Formation With
Zonal Stationarity

[41] In the first application, we consider a domain made
of two materials with differing mean values and covariance
functions of the conductivity. Within both materials, the log
conductivity is stationary. Figure 1a shows the known
distribution of the materials. The white areas are occupied

(42)
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by material 1 with a geometric mean of the conductivity of
10�4 m/s. In the black areas, we find material 2 with a
higher mean conductivity of 10�3 m/s. The materials also
differ in their variance and spatial correlation, material 1
being less variable and exhibiting spatial correlation with a
smaller integral scale than material 2. For both materials, we
have assumed an isotropic exponential covariance function.
All relevant parameters are listed in Table 1.
[42] Figure 1b shows the mean flow net in the aquifer, for

fixed-head conditions to the left and right boundaries and
no-flow conditions to the top and bottom boundaries. It is
evident that the mean flow passes around the low-conduc-
tivity zones. The velocities in these zones are significantly
lower than in the high-conductivity regions. The complex
flow pattern results in the distribution of mean travel times
shown in Figure 1c. In the low-conductivity zones, the
travel time increases dramatically over small travel distan-
ces but remains small in the high-conductivity areas. Where
the two materials form an interface parallel to the direction
of flow, we observe strong transverse gradients of travel
time which are smoothed out only by transverse dispersion.

[43] Figure 2 shows the profile of the mean travel time
t(0), which is subject to the known distribution of the two
materials shown in Figure 1a, and the corresponding stan-
dard deviation st along the line of observation at x1 = 90 m.
The standard deviation is evaluated by the FOSM approach
outlined in the previous sections. In agreement
with Figure 1c we see a strong gradient of travel time at

Table 1. Parameters for Application 1: Zonal Stationarity

Parameter Value

Geometry of the Domain
Domain size L1 = 100 m, L2 = 50 m
Discretization D x1 = 0.1 m, Dx2 = 0.1 m

Geostatistical Parameters of Log Conductivity in the Zonesa

Zone 1
Mean log conductivity E[Y1] = ln(10�4)
Type of covariance model isotropic exponential
Variance sY

2 = 0.5
Correlation length l = 2 m

Zone 2
Mean log conductivity E[Y2] = ln(10�3)
Type of covariance model isotropic exponential
Variance sY

2 = 1.0
Correlation length l = 10 m

Boundary Conditions for Flow
Top boundary no flow
Bottom boundary no flow
Left boundary f = 1 m
Right boundary f = 0 m

Transport Parameters
Porosity q = 0.3
Eff. diffusion coefficient De = 10�9 m2/s
Longitudinal dispersivity a‘ = 0.01 m
Transverse dispersivity at = 0.01 m

Locations of Travel Time Observation
Longitudinal coordinate x1 = 90 m
Transverse coordinates y2 = 1 m, 3 m, 5 m, . . ., 49 m

aDistribution of materials is according to pattern shown in Figure 1.

Figure 1. Application 1: (a) Distribution of materials,
(b) flow net, and (c) expected value of travel time
distribution. White line in Figure 1c is the control plane
for travel time observations.

Figure 2. Application 1: Profile of travel time on the
control plane. Asterisks are expected value; circles are
standard deviation.
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x2 � 30 m. Here we observe a local maximum of the first-
order standard deviation st. Intuitively, this local maximum
makes sense. Although small fluctuations in the log
conductivity field will cause only small fluctuations of the
streamline pattern, the latter may cause significant fluctua-
tions in the travel time when the mean travel time shows a
strong transverse gradient.
[44] The overall profile of st, however, is nontrivial.

From the Lagrangian analysis of travel time variance
[Zhang et al., 2000], it is clear that st

2 is essentially a
cumulative measure of the velocity uncertainty sampled
along the trajectory leading to the observation point. Thus
the differences in the profile of st reflect cumulated
differences in the velocity covariance upstream of the
observation plane, and the st-profile cannot be explained by
local effects on the observation plane alone.

7.2. Unconditional and Conditional Travel Time
Variance for a Formation With Continuous
Blending of Two Covariance Functions

[45] In the second application, we consider a domain
similar to in the first one. In this case, however, we assume
a covariance function that is generated by continuous
blending of two stationary functions. These functions are
both of the Gaussian type, reflecting small-scale structures
with low variability in function 1 and large-scale structures
with high variability in function 2. The blending leads to a
linear transition of the variance in the transverse direction:

QYY ðxI; xIIÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xI;2

L2

� �
1� xII;2

L2

� �s
s21 exp � xI � xIIð Þ � xI � xIIð Þ

l2
1

 !

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xI;2

L2

xII;2

L2

r
s22 exp � xI � xIIð Þ � xI � xIIð Þ

l2
2

 !

[46] In this application, we will cover several aspects.
First, we show the effect of nonstationarity in the covariance
function under otherwise uniform conditions, i.e., uniform
mean log conductivity and hydraulic gradient. Second, we
show that uncertainty in the mean log conductivity leads to
a dramatic increase in the uncertainty of travel time. Third,
we condition the log conductivity field on accurate mea-
surements of hydraulic head and fairly inaccurate measure-
ments of the log conductivity itself. We show how these
measurements reduce the uncertainty of travel time predic-
tions in a nonstationary manner. All relevant parameters are
listed in Table 2.
[47] Figure 3 shows the log conductivity distributions, the

flow nets, and the travel time distributions for a single
realization, the prior mean, and the conditional mean
after zhead and log conductivity measurements have been
accounted for. The related travel time profiles along
the observation plane are plotted in Figure 4. The
corresponding variances are shown in Figure 5.
[48] The log conductivity field of the particular realiza-

tion shown in Figure 3, plot A1, illustrates the effect of
covariance blending. The structures at the top of the
domain are significantly larger than those at the bottom.
The resulting flow net, shown in Figure 3, plot A2, and

the travel time distribution, shown in Figure 3, plot A3,
reflect these structures: we see large-scale variations in the
flow net and large ‘‘fingers’’ in the travel time at the top
part of the domain in contrast to small-scale variations at
the bottom. The travel time distribution shows a particu-
larly pronounced finger of high travel time values origi-
nating from a low-conductivity zone at x1 � 50 m, x2 � 35
m. This finger leads to the maximum in the travel time
profile at the observation plane shown in Figure 4.
[49] Figure 3, plots B1–B3, shows the uniform prior

mean of the log conductivity distribution, the resulting
regular flow net and the uniformly increasing travel time
distribution. The corresponding variance stjB

2 of travel
time along the observation plane is plotted as dashed-
dotted line in Figure 5. This line refers to the case of a
perfectly known and uniform mean value of the log
conductivity. Although the mean travel time is uniform
over the cross-section, its variance exhibits a distinct
trend. This is caused by the trend in the covariance
function of log conductivities. At small x2 values, the
smaller variance and integral scale of covariance function 1
dominate the uncertainty in travel time, whereas, at large x2

Table 2. Parameters for Application 2: Continuous Blending of

Two Covariance Functionsa

Parameter Value

Trend Model of Log Conductivity
Type linear
Equation E[Y(x)] = b0 + b1x1 + b2x2
Prior mean

Intercept E[b0] = ln(10�4)
x1 component of gradient E[b1] = 0
x2 component of gradient E[b2] = 0

Prior standard deviation
Intercept sb0 = ln(10)
x1 component of gradient sb1 = 0.01
x2 component of gradient sb2 = 0.01

Covariance of Random Log Conductivity Fluctuations
Covariance model 1

Type isotropic Gaussian
Variance sY

2 = 0.5
Correlation length l = 2 m

Covariance model 2
Type isotropic Gaussian
Variance sY

2 = 1.0
Correlation length l = 10m

Covariance blending
Type linear blending in x2

Scaling function for model 1 A1(x) =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

L2

r
Scaling function for model 2 A2(x) =

ffiffiffiffiffi
x2

L2

r
Measurements of Heads and Log Conductivities

Measurement locations
General setup regular grid
Longitudinal coordinates x1 = 10 m, 20 m, . . ., 90 m
Transverse coordinate x2 = 5 m, 15 m, . . ., 45 m

Standard deviation of measurement errors
Type uncorrelated, Gaussian
Log conductivity measurements smeas,Y = 1
Head measurements smeas,f = 10�3m

aGeometry of the domain, boundary conditions for flow, transport
parameters, and locations of travel time observation are identical to
application 1.

(43)
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values, the larger variance and integral scale of covariance
function 2 become effective.
[50] In the inversing procedure, we assume an uncertain

mean log conductivity following a linear trend model. The
standard deviation sb0 of the uniform part in the trend model
reflects prior uncertainty in the conductivity by one order of
magnitude. We believe that our choice of sb0 is a realistic

value for many situations in which the aquifer material is
only characterized qualitatively. A priori, the linear trend
coefficients are assumed zero with only a small uncertainty.
The uncertainty in the mean log conductivity enhances the
uncertainty in the travel time dramatically. The prior vari-
ance of travel time after marginalization, st

2, is plotted in
Figure 5 as a solid line. The spatial trend in the marginal

Figure 3. Application 2: Log conductivity fields, flow nets, and travel time distributions.

Figure 4. Application 2: Travel time distribution on the
control plane.

Figure 5. Application 2: First-order variance of travel time
on the control plane.
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variance st
2 is slightly enhanced in comparison to the case

with known trend parameters, stjB
2 , although this is hardly

visible in the logarithmic plot of Figure 5. In the given
application, the highest contribution to the uncertainty in the
travel time comes from the uncertainty in the uniform
coefficient of the trend model.
[51] In Figure 3, plots A2 and C2, the locations of head and

log conductivity measurements are marked by black dots. We
assume a standard deviation of the head measurements of
1 mm and of the log conductivity measurements of one
logarithmic unit. The rationale for these values is that heads
can be measured fairly accurately, whereas the log conduc-
tivity measurements are typically indirect estimates, for
instance derived from the grain-size distribution of the
material obtained during drilling of the monitoring wells.
The artificial measurements are the actual values plus artifi-
cially generated measurement errors. Figure 3, plot C1,
shows the estimate of the log conductivity distribution
derived by iterative cokriging using the measurements. The
large-scale features of the log conductivity field are repro-
duced well. The small-scale fluctuations, dominating the
bottom part of the domain, can hardly be recovered, simply
because the characteristic length of these features is smaller
than the distance between measurement points. Figure 3, plot
C2, shows the conditional mean flow net. Again, large-scale
features like the overall meandering of streamlines are recov-
ered well whereas the small-scale fluctuations are smoothed
out. In general, heads are reproduced better than velocities.
[52] Figure 3, plot C3, shows the mean conditional

distribution of the travel time throughout the domain. In
Figure 4 the mean conditional travel time along the obser-
vation plane is plotted as solid line supplemented with
asterisks. Although the hydraulic heads of the measure-
ments are met within the measurement error of 1 mm, the
conditional mean of the travel time still differs significantly
from the true values of the realization. The true values,
however, fall within the error bound of E[tjZm] ± stjZm. The
conditional variance stjZm

2 of the travel time given the head
and log conductivity measurements is plotted in Figure 5 as
a dashed line. Conditioning reduces the uncertainty in travel
time. In inversing with uncertain trend parameters, however,
it is important that the reference covariance is the marginal
one, which accounts for the uncertainty of the trend
parameters. In our application, the conditional variance of
travel time, stjZm

2 , is even larger than the corresponding
unconditional covariance stjB

2 for the case with perfectly
known trend parameters. As has been emphasized by
Kitanidis [1996], one needs to take into account the prior
uncertainty in the mean when evaluating the conditional
variance. In our inversing application, the conditional
covariance QYYjZm of the log conductivity values is the
very basis of uncertainty propagation and must not be
biased by ‘‘forgetting’’ the marginalization.

8. Discussion and Conclusions

[53] We have presented an efficient numerical method for
evaluating the variance of travel time in formations with a
nonstationary covariance function of the log conductivity
field. In our applications, we considered 1000 � 500 = 5 �
105 log conductivity values. On a 2GHz Pentium IV
computer, it took about seven minutes to compute the

sensitivity of a single travel time value with respect to all
log conductivity values. Once the sensitivity matrix HT was
computed, evaluating the covariance matrix of travel time
observations QTT took only a few additional minutes. In
other words, our combination of methods makes it possible
to compute travel time statistics for highly resolved nonsta-
tionary log conductivity fields within a reasonable time-
frame and with reasonable requirements for computer
memory. More realistic three-dimensional applications are
merely a matter of numerical implementation.
[54] Our method requires that the log conductivity values

are discretized on a regular grid. Otherwise, the stationary
counterpart of the covariance function would not be dis-
cretized as a Toeplitz matrix, which is a prerequisite for
embedding in a circulant matrix and subsequent multiplica-
tion by FFT techniques. Irregularly shaped domains could be
accounted for by deactivating elements outside the domain,
as is common in Finite Differences schemes. Local grid
refinement in the simulation of flow and transport is possible
as long as the conductivity is defined on the regular grid.
[55] We have covered four basic types of nonstationarity

in the covariance function. The first one results from
variance scaling of stationary covariance functions, and
the second from combining several scaled functions. On
the discretized level, the scaling can be expressed as a
quadratic matrix-matrix multiplication. The third and fourth
types of nonstationarity in the covariance function result
from marginalization or conditioning. Here we consider the
sum of a standard covariance matrix, which itself may not
be of the Toeplitz type, and a quadratic matrix-matrix
product with a center matrix that is typically much smaller
than the covariance matrix. For all four types of nonsta-
tionary covariance function, we can save computational
effort and memory in the uncertainty propagation when
we choose the right order of performing the resulting matrix
multiplications. Among the models for nonstationary media
that we have not covered is the model of multimodal
distributions resulting from zonal stationarity with uncertain
distribution of the zones [see Zhang, 2002, sect. 2.3.3;
Rubin, 2003, chap. 2.5].
[56] Thematrix-based first-order second-moment (FOSM)

method is subject to the limits of first-order stochastic
analysis. Cases with high variance may be biased because
of the nonlinear dependence of travel times t(x) on log
conductivities Y(xI). For nonstationary formations discre-
tized by many log conductivity values, however, second-
order corrections are not practical because the matrix of
second derivatives, or Hessian, @2t(x)/(@Y(xI)@Y(xII)) of a
single travel time value with respect to all log conductivity
values has a size of ny � ny and requires the solution of
O(ny) adjoint problems. For the domain sizes discussed in
the present study, performing several thousand Monte Carlo
simulations would be computationally less demanding than
evaluating second-order correction terms.
[57] Our analysis is restricted to the variance of the mean

travel time observed at defined observation points. We do
not evaluate the expected spread of actual breakthrough
curves at these points. Cirpka and Kitanidis [2000b] used
the local second-central temporal moments to predict mixing-
controlled reactive transport in heterogeneous domains,
and Vanderborght and Vereecken [2001] used it to estimate
pore-scale dispersion coefficients from field measurements.
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Thus extending existing methods to estimate the spread of
point-related breakthrough curves in stationary flow fields
to nonstationary ones would be valuable. We believe,
however, that this goal is still beyond current capacities. In
the Lagrangian method of Zhang et al. [2000] the expected
spread of point-related breakthrough curves is zero because
these authors neglected pore-scale dispersion altogether. In
our framework, we could easily evaluate the zeroth-order
second-central moments of breakthrough curves by solving
an additional moment-generating equation. The result,
however, would neglect the impact of unresolved spatial
variability on the spread of local breakthrough curves. To
predict how solutes actually mix in nonstationary forma-
tions, one would need to apply a second-order first-moment
(SOFM) approach for the second-central temporal moment.
The formalism can be written down easily. However, it
requires the evaluation of the Hessian which is, as discussed
above, computationally demanding.

Appendix A: Derivation of Moment-Generating
Equations

[58] In this appendix, we restate the derivation of the
temporal moment-generating equations as given by Cirpka
and Kitanidis [2000a]. The k-th temporal moment Mk(x) of
the concentration c(x, t) is defined as:

MkðxÞ ¼
Z1
0

tkcðx; tÞdt ðA1Þ

We consider the advection-dispersion equation for an ideal
tracer:

@c

@t
þ q

q
�rc�r � Drcð Þ ¼ 0 ðA2Þ

subject to the initial condition:

cðx; t0Þ ¼ 0 8x ðA3Þ

and the boundary conditions:

n� q

q
c� Drc

� 

¼ n � q

q
dðtÞm
Q

on Gin

n� Drcð Þ ¼ 0 on GnGin

ðA4Þ

We multiply equation (A2) by tk and integrate over time,R1
0

dt, to obtain:

Z1
0

tk
@c

@t
dt þ

Z1
0

tk
q

q
�rcdt �

Z1
0

tkr � Drcð Þdt

¼ �
Z1
0

ktk�1cdt

þ tkc
� �1

0
þ q

q
�r

Z1
0

tkcdt

0@ 1A�r � Dr
Z1
0

tkcdt

0@ 1A0@ 1A
¼ 0 ) q

q
�rMk �r � DrMkð Þ ¼ kMk�1

in which we have applied integration by parts to the storage
term, considered that the initial concentration and the

concentration at the infinite time limit equal zero, and
exchanged the order of spatial differentiation and temporal
integration in the advective-dispersive terms. We repeat
the same procedure with the boundary conditions,
equation (A4):

Z1
0

tkn� q

q
c� Drc

� 

dt ¼

Z1
0

tk
n � q
q

dðtÞdt on Gin

) n� q

q

Z1
0

tkcdt � Dr
Z1
0

tkcdt

0@ 1A0@ 1A ¼
n�q
q

m
Q

for k ¼ 0

0 for k > 0

8<:
) n� q

q
Mk � DrMk

� 

¼

n�q
q

m
Q

for k ¼ 0

0 for k > 0

8<:
ðA6Þ

and analogously:

Z1
0

tkn� Drcð Þdt ¼ 0 GnGin

) n� DrMkð Þ ¼ 0 GnGin

ðA7Þ

[59] Equation (A5) is a steady state transport equation
with a distributed source term of kMk�1. For the zeroth
moment M0, the source term is zero. Since the input of the
zeroth moment is distributed uniformly over the inflow
boundary, equation (A6), M0 is uniform over the entire
domain, M0 = m/Q8x. For a nonuniform injection
concentration cin in equation (4), the zeroth moment would
become nonuniform within the domain.
[60] The mean travel time is defined as the first temporal

moment M1 normalized by the zeroth moment M0:

tðxÞ ¼ M1ðxÞ
M0ðxÞ

ðA8Þ

[61] Because the zeroth moment M0 is uniform, we can
bring the normalization with M0 into the differential
operators of equation (A5). Normalizing the right-hand
side of equation (A5) for k = 1 yields a source term of unity
throughout the domain. Thus we arrive at the steady state
transport equation for the mean travel time t given by
equation (6) subject to the boundary conditions given by
equation (7).

Appendix B: Derivation of Adjoint-State
Equations

[62] The principles of the continuous adjoint-state method
have been explained by Sun and Yeh [1990]. Cirpka
and Kitanidis [2000a] have given the expressions for
the temporal-moment generating equations discussed in
Appendix A. In this appendix, we repeat the most important
steps of the derivation. For brevity, we will not discuss the
boundary integrals. For the derivation of the complete set of
equations including the boundary conditions, please refer to
Cirpka and Kitanidis [2000a].

(A5)
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[63] The starting points are the first-order expansions in
the log conductivity of the groundwater flow equation,
equation (1):

r � Kgrf0 þ Kgrfð0ÞY 0
� 


¼ 0 ðB1Þ

and the transport equation for the travel time, equation (6):

�Kg

q
rtð0Þ � rf0 � Kg

q
rtð0Þ � rfð0ÞY 0 � Kg

q
rfð0Þ � rt0

� r � Drt0ð Þ ¼ 0 ðB2Þ

Here primed quantities are first-order perturbations, quan-
tities with the superscript (0) are zeroth-order expected
values, and Kg = exp (Y(0)) is the geometric mean of the
conductivity which may be a function of space. Note that
the dispersion tensor D is assumed deterministic.
[64] Now we consider a weak form of equation (B1) by

multiplying it with a test function yjt and integrating over
the domain. We apply Green’s theorem sufficiently often so
that all primed quantities appear as a derivative-free factor
within the integral:Z

W

r � Kgryft
� �

f0dx �
Z
W

Kgrfð0Þ � ryftY
0dx þ B:T : ¼ 0

ðB3Þ

B.T. denotes the boundary integrals appearing from the
application of Green’s theorem.
[65] We also consider a weak form of equation (B2) by

multiplying it with a different test function yt, integrating
over the domain, and applying Green’s theorem:

Z
W

r � Kg

q
rtð0Þyt

� �
f0dx�

Z
W

Kg

q
rtð0Þ

� rfð0ÞytY
0dx�

Z
W

qð0Þ

q

� rytt
0dx�

Z
W

r � Drytð Þt0dx þ B:T : ¼ 0 ðB4Þ

In addition, a perturbation t0(x0,t) of the travel time at the
measurement location x0,t may be expressed by the
following integral:

t0ðx0;tÞ ¼
Z
W

dðx0;tÞt0dx ðB5Þ

Adding equations (B3) and (B4) to equation (B5) yields:

t0ðx0;tÞ ¼
Z
W

r � Kgryft
� �

þr � Kg

q
rtð0Þyt

� �� �
f0dx

�
Z
W

Kgrfð0Þ � ryft þ
Kg

q
rtð0Þ � rfð0Þyt

� �
Y 0dx

�
Z
W

qð0Þ

q
� ryt þr � Drytð Þ � dðx0;tÞ

� �
t0dx þ B:T :

ðB6Þ

[66] Obviously, if we choose the test functions yt and yft
to meet equations (14) and (17), the integrals containing the
perturbations of the heads f0 and of the travel time t

0
vanish.

The remaining expression relates the perturbation of the travel
time t0(x0, t) at location x0,t to the field of log conductivity
fluctuations Y0(x). Discretizing the log conductivity field by
a set of piecewise constant values Yl, and replacing t0(x0, t)/
Y0l by @t(x0,t)/@Yl yields the sensitivity given in equation
(20). The test functions are now called adjoint states, and
their partial differential equations are known as adjoint-state
equations. The boundary conditions given in section 3 are
derived from the boundary conditions of the perturbed
equations and the boundary integrals due to the application
of Green’s theorem [Cirpka and Kitanidis, 2000a].
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