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[1] Hydraulic failure of a funnel-and-gate system may occur when the contaminant
plume bypasses the funnels rather than being captured by the gate. We analyze the
uncertainty of capturing the plumes by funnel-and-gate systems in heterogeneous aquifers.
Restricting the analysis to two-dimensional, steady state flow, we characterize plume
capture by the values of the stream function at the boundaries of the plume and the
funnels. On the basis of the covariance of the log conductivity distribution we compute the
covariance matrix of the relevant stream function values by a matrix-based first-order
second-moment method, making use of efficient matrix-multiplication techniques.
From the covariance matrix of stream function values, we can approximate the probability
that the plume is bypassing the funnels. We condition the log conductivity field to
measurements of the log conductivity and the hydraulic head. Prior to performing additional
measurements, we estimate their worth by the expected reduction in the variance of stream
function differences. In an application to a hypothetical aquifer, we demonstrate that our
method of uncertainty propagation and our sampling strategy enable us to discriminate
between cases of success and failure of funnel-and-gate systems with a small number of
additional samples. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1869 Hydrology:

Stochastic processes; 1832 Hydrology: Groundwater transport; KEYWORDS: conditioning, data worth,

funnel-and-gate systems, heterogeneous aquifers, stream function, uncertainty propagation
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1. Introduction

[2] During the last 15 years, permeable reactive barriers
have become an accepted technology for passive remedia-
tion of plumes in contaminated aquifers [Day et al., 1999;
Gavaskar, 1999; Richards, 2002]. The reactive barrier
consists of a highly permeable material facilitating the
decrease in the mass flux of a contaminant passing through
the permeable reactive barrier. In the funnel-and-gate de-
sign, sheet piles or other hydraulic barriers are installed to
guide the plume, which moves with natural groundwater
flow, toward the in situ reactor [Starr and Cherry, 1994].
[3] Although numerous funnel-and-gate systems have

been in operation over several years, open questions remain
in their design and long-term performance. Here we focus
on the probability that the plume indeed passes through the
gate and does not bypass the funnels, due to heterogeneity
of the aquifer. An example for this type of hydraulic failure
was documented for the reactive barrier at Denver Federal
Center in Denver, Colorado, where approximately 25% of
the flux bypassed the funnel-and-gate system [McMahon et
al., 1999]. Hydraulic failure is of particular importance
because the investment costs of funnel-and-gate systems

are high. When the system is not capturing the plume,
upgrading is more cost intensive than the upgrade of a
comparable pump-and-treat system. For the evaluation of
the funnel-and-gate design, calibrated numerical models for
groundwater flow and solute transport are needed but may
prove insufficient if the uncertainty of the model predictions
is not quantified.
[4] Besides temporal fluctuations of the hydrological

regime, a main cause of uncertainty in the hydraulic design
of funnel-and-gate systems is the spatial variability of
natural geological formations. With the effort typically used
at a site, it is impossible to determine hydraulic aquifer
parameters with a resolution that allows for deterministic
modeling. The incomplete knowledge of aquifer properties
leads to uncertain model predictions. Thus uncertainty has
to be addressed in the design of in situ groundwater
treatment systems.
[5] Previous studies on the reliability of permeable reac-

tor barriers using funnel-and-gate systems in heterogeneous
aquifers were based on Monte Carlo simulations, that is, the
simulation of flow and transport using multiple, equally
likely realizations of the conductivity field or reactions rates
[Eykholt et al., 1999; Bilbrey and Shafer, 2001; Elder et al.,
2002; Bürger et al., 2003]. To obtain good estimates of
uncertainty, however, at least a few hundred realizations are
required. The latter is demonstrated, e.g., in the study of
[Bürger et al., 2003] who considered 500 unconditional
realizations of hydraulic-conductivity fields and constructed
reliability curves for different designs of funnel-and-gate
systems. These calculations are computationally costly;
each realization requires the simulation of groundwater flow
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and particle tracking for solute transport. When measure-
ments of conductivities, heads, or concentrations are
accounted for in the generation of the realizations, a
conditioning step has to be added to each realization.
[6] In the present study, we approximate the uncertainty of

the log hydraulic conductivity and its spatial correlation by
the marginal covariance function of log conductivity. The
marginal covariance summarizes the uncertainty caused by
random fluctuations about the mean and the uncertainty in
parameters describing large-scale trends. We propagate the
uncertainty of log conductivity onto that of model outcomes,
in which the latter are used to assess the hydraulic reliability,
or failure, of the funnel-and-gate system. We apply first-
order uncertainty propagation that does not require the
simulation of multiple realizations. We account for measured
data by conditioning, leading to a shift in the estimated
parameter field and a reduction of the remaining uncertainty.
The more measurements are accounted for, the smaller is
the uncertainty. In any practical application, however, it will
never become zero.
[7] In good engineering practice, uncertainty is addressed

by the introduction of a margin of safety. In our case, the
funnel-and-gate system has to be designed in such a way
that more water passes through the gate than that within the
width of the plume. A design may be defined reliable when
the probability that clean water passes through the gate on
both sides of the plume exceeds a defined threshold value.
In this case, the volumetric fluxes of clean water passing the
gate at both sides of the plume can be seen as the margins of
safety. Obviously, more intensive site investigation reduces
the uncertainty and thus allows for a design with a smaller
safety factor. Since installing additional sampling wells is
expensive, they should be placed at locations where the
maximum reduction of uncertainty is expected.
[8] The determination of optimal sampling locations for

hydrogeological applications has been studied earlier. In
1992, the Task Committee on Groundwater Quality Moni-
toring Network Design of the American Society of Civil
Engineers (ASCE) published a review on groundwater
sampling strategies [Loaiciga et al., 1992], devoting a large
section on statistical methods for the selection of optimal
sampling locations. In our study, we essentially adopt the
variance reduction analysis of Rouhani [1985]. It is widely
recognized that the best additional sampling location does
not only depend on the location of greatest parameter
uncertainty, but also on the decision being made or the
objective that it is sampled for [Andricevic, 1993; Christakos
and Killam, 1993; James and Gorelick, 1994]. The known
applications that are closest to our study address the detec-
tion of plumes or their boundaries [Meyer and Brill, 1988;
McGrath and Pinder, 2003].
[9] In a full economical analysis, the worth of additional

data points is quantified by the difference between the
management costs at present information state and the
expected management costs taking a sample at a particular
location. The difference in costs is called the expected
value of sample information [Freeze et al., 1992; James
and Gorelick, 1994]. The measurement location maximiz-
ing the expected value of sample information is chosen as
the next sampling point, provided that the sampling is
economically feasible. The computation of the expected
costs requires a complete design optimization process for

each possible outcome of the proposed measurement.
Relying on nested optimization loops, such an analysis
easily becomes unworkable due to the computational
effort.
[10] In this study, rather than performing a full cost

analysis, we adopt the standpoint of a decision maker
who designed a funnel-and-gate system based on a deter-
ministic, homogeneous model [Starr and Cherry, 1994;
Teutsch et al., 1997; Sedivy et al., 1999], accounting for
heterogeneity by a subjective safety factor. A rigorous
stochastic analysis of the design based on the current
information does not yield the targeted reliability. The
decision maker is willing to spend an additional amount
of money on site investigation and seeks guidance on where
to place samples in order to gain the most decisive infor-
mation about design functionality. In this sense, we evaluate
the worth of additional data.
[11] Our analysis is restricted to steady state flow in

essentially two-dimensional aquifers. Contaminant transport
is assumed to be dominated by advection. This allows for
using an advective control strategy [Mulligan and Ahlfeld,
1999] to check the functionality of a given funnel-and-gate
design. While the method of Mulligan and Ahlfeld [1999] is
based on particle tracking, we outline the boundaries of the
contaminant plume by streamlines, that is contour lines of
stream function values. Deterministic plume capture is
considered achieved when the interval of the stream func-
tion values representing the bounding streamlines of the
plume is a subset of the interval given by the two stream
function values computed at the gate boundaries. We
evaluate the uncertainty of stream function values by a
matrix-based first-order second-moment method [Dettinger
and Wilson, 1981] and derive a measure for the hydraulic
reliability of the funnel-and-gate system. Conditioning to
conductivity or head data is achieved by the quasi-linear
method of geostatistical inversing [Kitanidis, 1995; Nowak
and Cirpka, 2004]. The considered hydraulic head data are
for the situation prior to the construction of the funnel-and-
gate system, whereas the stream function values are com-
puted for the situation after installation. The linearized
uncertainty propagation relies on periodic embedding and
fast Fourier transformation techniques [Nowak et al., 2003;
Cirpka and Nowak, 2004]. Depending on the spatial
arrangement of the existing data and the design under
investigation, we determine optimal sampling locations
for additional conductivity measurements by linearized
approaches. Here the optimal sample location maximizes
the expected gain of information regarding the functionality
of a particular system design.

2. Mathematical Methods

2.1. Governing Equations

[12] We consider two-dimensional steady state ground-
water flow without internal volumetric sources or sinks,
satisfying the groundwater flow equation:

rrrrr � Krrrrhð Þ ¼ 0 ð1Þ

in which K is the hydraulic conductivity, here assumed
isotropic at the local scale, and h is the hydraulic head. The
boundary G of the domain is subdivided into a section G1
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with prescribed head values ĥ, and a remaining section G\G1

with prescribed normal flux qG:

h ¼ ĥ on G1

�n � Krrrrhð Þ ¼ qG on GnG1

ð2Þ

in which n is the outward pointing unit vector normal to the
boundary.
[13] In two-dimensional, nondivergent flow, we can

define a stream function � satisfying [Bear, 1972,
section 6.5]:

q1 ¼
@�

@x2
ð3Þ

q2 ¼ � @�

@x1
ð4Þ

in which q1 and q2 are the components of the specific-
discharge vector q in the x1 and x2 directions, respectively.
The stream function � satisfies the following pde [Bear,
1972, equation (6.5.26)]:

rrrr � 1

K
rrrr�

� �
¼ 0

n � rrrr� ¼ 0 on G1 ð5Þ
� ¼ �̂ on GnG1

in which the fixed value �̂ is to be determined by
integration of qG over the boundary G\G1.
[14] It is well known, that contour lines of equal stream

function values are streamlines. In the given context of
capturing a plume by a funnel-and-gate system, four stream
function values are of interest: the two values representing
the bounding streamlines of the plume, and the two values
at the funnels. For illustration, see Figure 1. The discharge
in a stream tube bounded by two streamlines is the differ-
ence of the two stream function values times the thickness
Dz of the aquifer. Thus we can evaluate the total discharge
passing through the gate from the � values of the two
funnels, QG = Dz (�top

G � �bot
G ) in Figure 1. When a plume

is captured by the gate, the difference in stream function
values between the bounding streamlines and the funnels,
D�top and D�bot, quantify the margin of safety:

D�top ¼ �G
top ��P

top ð6Þ

D�bot ¼ �P
bot ��G

bot ð7Þ

[15] Both D�top and D�bot can take negative values. The
negative values quantify how much plume-related water
bypasses the funnels at the top and bottom funnels.
[16] The objective of the following analysis is to estimate

the margins of safety, D�top and D�bot, and their variances,
sD�top

2 and sD�bot

2 , based on uncertain information about the
aquifer properties. The design is considered sufficiently
reliable when D�top > 1.65 sD�top

and D�bot > 1.65 sD�bot

implying 95% confidence that the values are indeed positive
provided that D�top and D�bot are approximately Gaussian.

2.2. First-Order Second-Moment Approximation
of the Stream Function

[17] We consider the log conductivity Y = ln(K) a second-
order random space variable:

exp hY xIð Þið Þ ¼ Kg xIð Þ ð8Þ

hY 0 xIð ÞY 0 xIIð Þi ¼ CYY xI; xIIð Þ ð9Þ

in which hi denotes the expected value operator, primed
quantities denote deviations from the expected value, Kg is
the geometric mean of the conductivity which may exhibit a
spatial trend, and CYY(xI, xII) is the covariance function of
the log conductivity fluctuations at locations xI and xII.
Discretizing the log conductivity field in cells of constant
values, we consider the vector Yof discrete log conductivity
values characterized by its expected value hYi and
covariance matrix CYY. In general, we allow for a trend
model of the expected log conductivity field:

hYi ¼ XB ð10Þ

in which B is a nb � 1 vector of trend parameters with the
number of trend parameters nb, and X is a nY � nb matrix of
discretized base functions with entries depending on the
location x at which the log conductivity Y(x) is considered.
For known trend parameters B, we assume Y to fluctuate
about XB with a multi-Gaussian distribution described by
the covariance matrix CYY. In addition, the trend parameters
B may be uncertain. To account for the uncertainty of B, we
assume a multi-Gaussian distribution of B with prior mean
B* and covariance CBB. Marginalization leads to the
marginal mean Y* and the marginal covariance matrix
GYY of Y with uncertain value of the drift coefficients B:

Y* ¼ XB* ð11Þ

GYY ¼ CYY þ XCBBX
T ð12Þ

In the case that there is no information on the trend
parameters whatsoever, i.e., CBB

�1 = 0, the marginal variance
of Y is infinite, and the marginal covariance matrix GYY is a
generalized rather than a regular covariance matrix. The
inverse GYY

�1 , however, is still regular [see Kitanidis, 1995,
and references therein]. In our application we will assume a
uniform, uncertain mean of the log conductivity Y(x).
Then, X is a ny � 1 vector of unit entries, b is a scalar
coefficient with mean b* and variance sb

2, and the marginal
covariance function of the log conductivity field is given by
GYY(xI, xII) = CYY(xI, xII) + sb2. Trend models differing from
the uniform mean, such as linear trends or uniform mean

Figure 1. Stream function values as measures for the
hydraulic design of a funnel-and-gate system.
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values in distinct zones, are easy to implement. The
different zones may also have different covariance functions
to describe the variability within [e.g., Cirpka and Nowak,
2004]. Applying such zonation models, however, requires
that the geometry of the zones is deterministic.
[18] Since the field of stream function values �(x)

depends on the random space variable Y(xI), it is also a
random variable which may be characterized by its expected
value and covariance function. We get the zeroth-order
approximation �(0)(x) of the stream function �(x) in
random heterogeneous media by solving for the stream
function values applying the field of the expected log
conductivity values:

rrrr � 1

Kg

rrrr� 0ð Þ
� �

¼ 0

n�rrrr� ¼ 0 on G1 ð13Þ
� ¼ �̂ on GnG1

[19] The uncertainty in �(x) can be estimated to the first
order by linear error propagation [Dettinger and Wilson,
1981]:

C�� x; x0ð Þ ¼
Z
W

Z
W

d� xð Þ
dY xIð ÞCYY xI; xIIð Þ d� x0ð Þ

dY xIIð Þ dxIIdxI ð14Þ

in which C��(x, x
0) is the covariance function of the stream

function at locations x and x0, and d�(x)/dY(xI) is the
sensitivity of �(x) with respect to Y(xI), whereas

R
Wdx

denotes integration over the entire domain. Discretizing
the log conductivity field in cells of constant values, the
double integrals are replaced by a quadratic matrix-matrix
multiplication:

C���� ¼ H��CYYH
T
�� ð15Þ

in which C���� is the covariance matrix of all considered �
values, CYY is the covariance matrix of the discretized log
conductivity values, whereas H�� is the sensitivity matrix:

H�� ¼ d8

dYT
ð16Þ

with dimensions n� � nY in which n� is the number of
stream function observations and nY the number of log
conductivity values. In case of an uncertain mean value of
Y, we need to apply the marginal covariance matrix GYY

instead of CYY in equation (15). In case of a conditioned Y
field, as discussed below, we apply the conditional covari-
ance matrix CYYjZm.

2.3. Evaluation of Sensitivities

[20] We evaluate the sensitivity matrix H�� by the adjoint
state method [Townley and Wilson, 1985; Sun, 1994], here
applied to the pde of the heads, equation (1), and the stream
function, equation (5).
[21] For each location x‘ of head observation, we solve

for an adjoint state yh satisfying:

rrrrr � Kgrrrrryh

� �
¼ �d x� x‘ð Þ

yh ¼ 0 on G1 ð17Þ
n � Kgrrrrryh

� �
¼ 0 on G2

in which d(x � x‘) is the Dirac delta function. We consider
the log conductivity field to be piecewise constant within
finite elements. By Yl we denote the log conductivity within
a given element l of volume Vl. Then, the sensitivity of
h(x‘) with respect to any Yl is given by:

@h x‘ð Þ
@Yl

¼ �
Z
Vl

Kgrrrrryh � rrrrrh 0ð ÞdV ð18Þ

That is, we solve once for the head equation, equation (1),
applying the expected values of the log conductivity
field. Subsequently, we solve a single adjoint equation,
equation (17), for each head measurement, and evaluate
the sensitivity with respect to all discretized log conductiv-
ity values Yl by postprocessing using equation (18). This
procedure is well known as the continuous adjoint state
method [see Sun, 1994]).
[22] We apply the same procedure to the local stream

function values of interest. For each observation point x‘ of
the stream function �, we solve for an adjoint state y�

satisfying:

rrrrr � 1

Kg

rrrrry��

� �
¼ �d x� x‘ð Þ

n � rrrrry�; ¼ 0 on G1 ð19Þ

y� ¼ 0 on G2

Then, the sensitivity of �(x‘) with respect to any Yl may be
computed by:

@� x‘ð Þ
@Yl

¼
Z
Vl

1

Kg

rrrrry� � rrrrr� 0ð ÞdV ð20Þ

2.4. Conditioning

[23] The discretized log conductivity values Y are corre-
lated among each other and to the hydraulic head values.
Given point measurements of the hydraulic head h or of the
log conductivity Y itself, we can restrict the space of
possible realizations of Y to those satisfying the measure-
ments within a prescribed measurement error. To this
procedure we refer as conditioning. In the following, Z
denotes the m � 1 vector of the measured quantity at the m
measurement points; Zm denotes the measurements them-
selves, which may be prone to a measurement error. RZZ is
the covariance matrix of the measurement errors. We
evaluate the conditional mean, or best estimate, Ŷ and the
conditional, or posterior, covariance matrix CYYjZm given
Zm by the quasi-linear method of geostatistical inversing as
outlined by Kitanidis [1995]. The estimate Ŷ is given in the
function estimate form by:

Ŷkþ1¼ XbBkþ1 þ CYYH
T
Z;kXkþ1 ð21Þ

in which bBk+1 is the estimate of the trend parameters after
the (k + 1)th iteration, HZ,k is the nY � m sensitivity matrix
of the measured quantity with respect to the Y field
evaluated at the previous estimate Ŷk, and Xk+1 is a m � 1
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vector of weights associated with the measurements. The
vectors bBk+1 and Xk+1 are determined by solving:

HZ;kCYYH
T
Z;k þ RZZ HZ;kX

XTHT
Z;k �C�1

BB

2
64

3
75

Xkþ1

bBkþ1

2
64

3
75

¼
Zm � Z Ŷk

� �
þHZ;kŶk

�C�1
BB B*

2
64

3
75 ð22Þ

in which Z(Ŷk) is the model prediction for the measured
quantity applying the previous estimate Ŷk. The procedure
has to be repeated until convergence is reached. We stabilize
the method further by adopting a special version of the
Levenberg-Marquardt algorithm [Nowak and Cirpka,
2004]. It can be shown that the solution is the linearized
Bayesian update of the prior field Y* conditioned on the
dependent data Zm [Kitanidis, 1995]. Equation (22) is
written here for uncertain rather than completely unknown
trend parameters. For the case that there is no prior
information on the drift coefficients B, the corresponding
inverse covariance matrix CBB

�1 is a zero matrix.
[24] A lower estimate of the conditional covariance

CYYjZ
m is given by:

CYYjZm � CYY �
HZCYY

XT

2
64

3
75
T

HZCYYH
T
Z þ RZZ HZX

XTHT
Z �C�1

BB

2
64

3
75
�1

�
HZCYY

XT

2
64

3
75 ð23Þ

which is exact for linear problems. It is quite obvious that
the conditional covariance matrix is nonstationary even
when the unconditional covariance CYY is stationary.

2.5. Periodic Embedding and Matrix Multiplications

[25] Consider a two-dimensional domain discretized by
105 nodes. Then, the full covariance matrix of log conduc-
tivities would have 1010 entries, a sensitivity matrix HZ

of ten measurements would have 106 elements, and the
evaluation of the cross covariance HZCYY by standard
matrix multiplications would require 1011 floating point
operations. Even with modern computer capacities, this
effort would be prohibitive. However, if the discretization
of the field is regularly spaced, and the covariance function
is stationary, we can apply fast Fourier transformation (FFT)
techniques for the multiplication of the covariance matrix
with a vector [Dietrich and Newsam, 1997; Nowak et al.,
2003]. For this purpose, the stationary field is virtually
embedded into a larger, periodic field which has a (block)
circulant covariance matrix [Zimmerman, 1989]. We only
evaluate the first row c1 of the covariance matrix related to
the embedding periodic field.
[26] Formally, we can write the multiplication of the

embedded covariance matrix with a vector as:

CYYu ¼ MTF�1 F c1ð Þ � F Muð Þð Þ ð24Þ

in which F () and F�1() are the discrete Fourier
transformation and its inverse, respectively, a � b is the

Hadamard product, i.e., the element-wise multiplication of
vectors a and b. Multiplication with the mapping matrix M
and its transpose MT corresponds to embedding (by zero
padding) and extraction (discarding the excessive elements)
of the stationary field into respectively from the periodic
field. A more detailed explanation of the embedding and
extraction procedures is given elsewhere [Dietrich and
Newsam, 1997; Nowak et al., 2003].
[27] The multiplication requires three fast Fourier trans-

formations (FFT), each with a computational effort of O(np
log2(np)) whereas the traditional matrix-vector product
requires O(nY

2) operations. Hence the periodic embedding
saves computational effort and memory especially for large
domains, although the embedding procedure temporarily
enlarges the total domain size. In matrix-matrix multiplica-
tions, we consider each column of the right-hand matrix
separately. With m columns, we need (2 m + 1) FFT
operations. Extensions to certain cases of nonstationary
fields are given by Cirpka and Nowak [2004]. These
include the case of conditional covariance matrices, which
is relevant in the present application.

2.6. Cross-Covariance Matrix CY�� Between Log
Conductivity and Stream Function Values and
Covariance Matrix C���� of Stream Function Values

[28] We assume that the covariance function of the log
conductivity fluctuations is stationary. A nonuniform mean
in the log conductivity or boundary conditions in the flow
problem may lead to a nonstationary velocity field. In that
case, d�(xI)/dY(xII) depends on the actual position of xI and
xII rather than on the separation vector xII � xI. This means
that the sensitivity matrix H�� does not exhibit a simple
structure, whereas the covariance matrix of the log conduc-
tivity values CYY does. The cross covariance CY��j

between
all log conductivity values Y and a single stream function
value �j is given by application of equation (24):

CY�j
¼ CYYh

T
�j

¼ MTF�1 F c1ð Þ � F MhT�j

� �� �
ð25Þ

in which h�j
is the sensitivity of �j with respect to all log

conductivity values, or the jth row of the sensitivity matrix
H��. We perform the multiplication CYYh�j

T for each sensi-
tivity field h�j

in order to compute the cross covariance
CY�� between all log conductivity values and all stream
function observations.
[29] In the conditional case, we need to evaluate the

sensitivity matrix H�� about the conditional mean Ŷ, and
the conditional cross-covariance matrix CY��jZ

m contains
two terms [Cirpka and Nowak, 2004]:

CY��jZm ¼ CYYH
T
�� � CYYH

T
Z;X

� �

�
HZCYYH

T
Z þ RZZ HZX

XTHT
Z �C�1

BB

2
64

3
75
�1

LT ð26Þ

with

L ¼ H8 CYYH
T
Z;X

� �
ð27Þ

[30] The first term in equation (26) can be computed by
equation (25), whereas the second term is computationally
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not very demanding if one solves first for the n� � (m + nb)
auxiliary matrix L according to equation (27).
[31] The covariance matrix C���� of all observed stream

function values is given by the matrix-matrix product:

C���� ¼ H��CY�� ð28Þ

The latter operation does not differ between the uncondi-
tional and the conditional case.
[32] In our application, the differences in stream function

values D�top and D�bot according to Equations (6) and (7)
describe the margins of safety. The first-order variance
sD�top

2 of D�top is:

s2D�top
¼ s2�G

top
þ s2�P

top
� 2C�G

top�
P
top

ð29Þ

in which s2
�G

top

and s2
�P

top
are the variances of �top

G and �top
P ,

respectively, and C�G
top�

P
top

is the covariance. The first-order
variance of D�bot is computed in an analogous way.

2.7. Cross-Covariance Between Stream Function and
Head Values

[33] We now consider the covariance Ch�(x, xj) between
the heads h(x) throughout the entire domain and a single
stream function value �(xj). The procedure outlined in the
following is identical for the unconditional and conditional
cases. Using linear error propagation, Ch�(x, xj) is given by:

Ch� x; xj
� �

¼
Z
W

@h xð Þ
@Y xIð Þ

Z
W

CYY xI; xIIð Þ
@� xj

� �
@Y xIIð Þ dxII|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CY� xI ;xjð Þ

dxI ð30Þ

which becomes in discrete form:

Ch� x; xj
� �

¼
XnY
i¼1

@h xð Þ
@Yi

CYi�j
ð31Þ

[34] At first, equation (31) looks computationally very
demanding because of the sensitivity @h(x)/@Y of all head
values with respect to all log conductivity values: Either we
apply direct numerical differentiation with respect to each
log conductivity value Yi, or we apply the adjoint state
method for all discretized h(x) values. Both procedures
would require solving nY additional groundwater flow
equations. However, we are interested in a weighted sum
rather than in the sensitivities of the heads with respect to
the log conductivities themselves. This allows us to evaluate
Ch�(x, xj) for all values h(x) by solving only a single
additional groundwater equation per observation point of
the stream function.
[35] Consider the direct numerical differentiation ap-

proach to compute the sensitivity of the head field h(x) with
respect to a single log conductivity value Yi. Here we perturb
the single parameter Yi by DYi, keeping all other parameters
constant, and divide the difference of outcomes by the
perturbation DYi. We are interested in the product of
@h(x)/@Yi and CYi

�j. Thus we can take a perturbation DYi =
aCYi

�j that is proportional to CYi
�j, and divide subsequently

only by the proportionality coefficient a:

@h xð Þ
@Yi

CYi�j
� h x;Yþ uiDYið Þ � h x;Yð Þ

DYi
CYi�j

¼
h x;Yþ auiCYi�j

� �
� h x;Yð Þ

a
ð32Þ

in which h(x, Y) is the head field applying the Y field Y and
ui is the unit vector which has entries of zero everywhere
except for entry i which is one. Now the weighted sum of
equation (31) can be computed by:

Ch� x; xj
� �

¼
h x;Yþ aCY�j

� �
� h x;Yð Þ

a
ð33Þ

[36] That is, we perturb the entire vector Y by a multiple
of CY�j

, compute the perturbed head field, and divide the
head perturbation by the proportionality constant a between
DY and CY�j

. The coefficient a must be so small that the
linear approximation is still appropriate, and so large that
the heads in the perturbed case differ significantly from the
unperturbed ones. In our application, we have scaled CY�j

such that the largest entry of DY equals 0.1.

2.8. Worth of Additional Measurement Points

[37] Consider a log conductivity field conditioned on the
measurements Zm. The uncertainty of the estimated stream
function values �� is expressed by the conditional covari-
ance C����jZm. In the design of a funnel-and-gate system, we
evaluate the margins of safety by the differences of stream
function values between the funnel and the bounding
streamline (see the application in section 3). By above
mentioned techniques of uncertainty propagation, we can
compute the related variance of the margin of safety. In
order to reduce the uncertainty, one might take additional
measurements. In the decision process, the costs of addi-
tional measurements must be justified by a sufficient
decrease of the uncertainty. The exact worth of an additional
measurement can, of course, only be determined after
performing the measurement. Before taking the measure-
ment, we can only assume 1) that the most likely value of
the measurement will be its expected value and 2) that the
linearization about the last estimate is appropriate also when
we have the additional data point. On the basis of these
assumptions, we can estimate the reduction in the covari-
ance C����jZm by linear Bayesian updating [Rouhani, 1985].
[38] We denote the new measurement at location x by

z(x). In the given context, the measurement could be a log
conductivity value or a hydraulic head. The (conditional)
covariance of the stream function values prior to taking the
measurement is denoted by C����

prior, the cross-covariance
between the stream function values and the measurement
prior to taking the measurement is C��z(x)

prior , and the
corresponding uncertainty in the measured quantity is
sz(x),prior
2 . Then, the expected conditional covariance C����

post

of the stream function values after taking the measurement
is:

C
post
���� � C

prior
���� � C

prior

��z xð Þ s2z xð Þ;prior

� ��1

C
prior

z xð Þ�� ð34Þ

which is exact only for linear problems.
[39] For log conductivity measurements, we can compute

C����
post for all locations x of the measurement quite easily.

Here the prior variance sY(x),prior
2 of the log conductivity is

given by the diagonal entries of CYYjZ
m evaluated by

equation (23), and the prior cross covariance CY(x)��
prior can

be calculated for all discretized locations x as CY��jZm by
equation (26). That is, we can compute the reduction in
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uncertainty, C����
prior � C����

post, for all locations x of the
supposed log conductivity measurement, plot the result in
a map and pick the location with the highest expected
worth.
[40] For head measurements, mapping the worth of the

measurement at all possible locations is computationally
demanding. As described above, we can evaluate the cross
covariance C8z(x)

prior , here Ch�(x, xj), quite easily for all values
of x by equation (33). However, the prior variance sh(x),prior

2

requires the calculation of the sensitivity @h(x)/@Y for the
specific location x and subsequent quadratic multiplication
of the conditional covariance CYYjZm of log conductivity
values with the sensitivity @h(x)/@Y. That is, for each
location x of a possible new head measurement, we need
to solve for an individual adjoint state yh.

3. Application to a Hypothetical Test Case

3.1. Containment Problem and Design of
Funnel-and-Gate System

[41] The methodology described above is applied to a
two-dimensional synthetic model site, depicted in Figure 2.
It is assumed that a contaminant plume was detected in the
course of a preliminary site investigation program. This
forms the base case scenario of available information. At the
left transect, the plume width is estimated to 30 m. It is
further hypothesized that, e.g., due to accessibility con-
straints, the funnel-and-gate system can only be installed
50 m downstream of the left transect. On the basis of
outcrop analogues, a moderately heterogeneous, sandy
aquifer is expected. It is believed that the conductivity has
a geometric mean Kg = 1.0 � 10�4 m/s. The variance of log
conductivity is assumed sY

2 = 1.0. The covariance of the log

conductivity fluctuations follow an isotropic exponential
model with correlation length lx = ly = 15 m. A regional
hydraulic gradient J = 0.01 is forcing the mean groundwater
flow from the left to the right. The numerical model consists
of a 300 � 300 grid with quadratic elements of 1 m side
length. The funnels are modelled as stripes of impermeable
elements. For the filling of the gates, a hydraulic conduc-
tivity of 0.01 m/s is assumed.
[42] The dimensions and shape of the funnel-and-gate

system are determined by use of a design procedure for
homogeneous conditions, described by [Teutsch et al.,
1997]. In the preliminary design, assumptions about the
type of contaminant, its concentration, and the reactive
behavior of the gate are needed. Since the current study is
on hydraulic failure only, we do not go into the details of the
latter analysis and directly present the resulting design
parameters instead. The system is placed in such a way
that the middle axis of the gate and the middle axis of the
detected plume fall onto the same line. The width wG and
length ‘G of the gate are 8 m and 5 m, respectively. The
funnel is symmetric and the total funnel width wF = wFtop +
wFbot (see Figure 2) is 96 m. From simulations of flow
and transport under homogeneous conditions, one would
approximate that the capture width of the gate is about
1.33 times the plume width.
[43] As can be seen in Figure 2, the base case scenario

comprises a second investigation transect, which is placed at
the proposed location of the funnel-and-gate system. The
arrangement of these sampling locations is based on the
design of the system. As water is forced to flow either
around the funnels or through the gate, the most sensitive
points of the stream function values of interest with respect
to local conductivity are the end points of the funnels and
the gate opening. Hence these points have been selected a
priori for conductivity and head sampling.
[44] The actual measurement values of conductivity and

hydraulic head were taken from selected conductivity real-
izations of the above mentioned geostatistical aquifer model
(and calculated head fields, respectively) serving as hypo-
thetical realities. Two realizations were selected: one is
representing a ‘‘good’’ conductivity field (see Figure 3,
bottom), so that the proposed design is capturing the
plume, the other represents a ‘‘bad’’ conductivity field
(see Figure 3, top), i.e., a situation that would lead to a
design failure. On the basis of the information of the base
case scenario, both realizations are equally likely. Absolute
measurement errors are also accounted for but, for the sake
of simplicity, are assumed to be comparatively small (stan-
dard deviation of log conductivity measurements: 0.01, of
head measurements: 0.01 m).
[45] For the proposed design to be deemed successful a

certain upper probability threshold of plume capture has to
be reached for each plume boundary. The probability of
capture is determined according to the presented method-
ology as follows. Two stream function values (denoted
�top

P and �bot
P ) are computed at the upper (top) and lower

(bot) plume detection boundaries. The same is done for the
upper (�top

G ) and lower (�bot
G ) gate boundary. Therefore

plume capture is considered to be achieved, if the differ-
ences D�top = �top

G � �top
P and D�bot = �bot

P � �bot
G are

positive numbers. As all the stream function values
are random rather than deterministic numbers, the two

Figure 2. Base case scenario. Asterisks, locations of head
and conductivity measurements; shaded rectangle, zone of
contaminant source; thick lines, funnel segments of the
proposed funnel-and-gate design (wFtop, width of top
funnel; wFbot, width of bottom funnel; wG, width of gate;
‘G, length of gate).
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differences, D�top and D�bot are also random. The eval-
uation of the first-order variance of those differences is
given by equation (29). In order to achieve a certain
reliability, the probability of both D�top and D�bot has
to exceed a defined critical value. Approximating the pdf
of D�top as Gaussian distribution, the 95% probability of
exceedance is given for D�top = hD�topi � 1.65 s�top

, in
which hD�topi is the estimated value of D�top and s�top

its
standard deviation. Requiring 95% confidence that D�top

is positive, thus results in the following constraint:

hD�topi � 1:65 s�top
ð35Þ

or

CVD�top
¼

s�top

hD�topi
<
� 0:6; hD�topi > 0 ð36Þ

in which CVD�top
is the coefficient of variation. The same

criterion has to be met by D�bot. Of course, this limit is
intended to be reached only for a successful design. In order
to prove with 95% certainty that a design fails, hD�topi or
hD�boti must be negative, and the corresponding coefficient
of variation 5�0.6. This can be interpreted as abandoning
the proposed design based on the knowledge of a 95%

probability of failure. This is done for demonstration
purposes only, as no practitioner would seek after such a
high probability of failure before discarding a preliminary
design.

3.2. Results of the Probability-Based Design
Evaluation

3.2.1. Base Case Scenario
[46] Figure 4 shows the estimated flow net given the

information of the base case, which accounts for the seven
measurement points shown in Figure 2. As can be seen, it is
expected that the proposed funnel-and-gate design captures
the plume. The coefficient of variation for the lower gate
boundary CVD�bot

= 0.3158 < 0.6 is already within the
required range. The uncertainty within the conductivity
field, though, renders CVD�top

= 2.538 > 0.6. Therefore
additional sampling is needed to ensure whether the plume
is captured also at the top boundary to the given probability
threshold. As the top boundary criterion is decisive, we omit
indexing of the coefficient of variation CV hereafter.
[47] Figure 5 shows the distribution of the expected data

worth of additional log conductivity measurements for the
base case scenario. Here data worth is defined as the expected
decrease in the estimation variance of D�top due to a log

Figure 3. Bad and good virtual realities: (left) distributions of log conductivity; (right) streamline
patterns (gray area marks the plume). (top) Bad case in which design fails; (bottom) Good case with
successful implementation. Both aquifer realizations are conditioned to the same head and conductivity
data (locations denoted by asterisks).
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conductivity measurement according to equation (34). Sev-
eral local maxima can be distinguished. We pick the three
largest local maxima as sampling locations for the next
sampling phase, rather then taking one sample at a time.
Head data, merely a by-product of the pumping tests per-
formed to measure the conductivity values, are collected as
well and used for the further analyses. The sampling is
carried out for both true conductivity fields (i.e., the good
and bad cases of the hypothetical reality), so that their
outcome, and consequently the further analyses, will differ
after the first sampling iteration. The evolution of the mean,

standard deviation, and coefficient of variation through the
different sampling campaigns are given in Table 1.
3.2.2. Assessment After the First Sampling Phase
[48] Figure 6 shows the estimated flow net after the first

sampling campaign for the bad case. As can be seen,
already the first three additional measurements have a
strong effect on the evaluation of plume capture of the
proposed design. Capture is no longer achieved for the
estimated flow field, the probability of failure (defined as
Prob(D�top � 0) with the according mean and standard
deviation taken from Table 1 rises to 83% as opposed to
35% for the base case. The worth of additional data for the
next sampling phase is shown in Figure 7.
[49] For the good case the first additional conditioning

points lead to a slight worsening of the design performance
as the probability of failure rises to 39%. Nevertheless,
the standard deviation sD�top

significantly decreased from

Table 1. Evolution of Estimated Mean hD�topi, Standard

Deviation sD�top
, and Coefficient of Variation CVD�top

of D�top

Through the Different Sampling Campaigns for the ‘‘Bad’’ and the

‘‘Good’’ Casesa

Sampling
Campaign

hD��topi,
�10�6 m2/s

s��top,
�10�6 m2/s CVD�top

Bad Case
0 3.83 9.71 2.54
1 �7.37 7.65 �1.04
2 �14.11 6.03 �0.43

Good Case
0 3.83 9.71 2.54
1 1.68 6.44 3.84
2 4.39 5.25 1.20
3 7.46 5.03 0.67
4 7.32 4.15 0.57

aTrue value of D��top in the bad case is 10.59 � 10�6 m2/s; true value of
D��top in the good case is �23, 43 � 10�6 m2/s.

Figure 4. Estimated flow net for the proposed funnel-and-
gate system design using information of the base case
scenario conditioned on the seven initial measurement
points. Asterisks show locations of head and conductivity
measurements; gray area shows estimated plume extension.

Figure 5. Data worth of additional log conductivity
measurements for D�top for the base case scenario. Already
existing head and conductivity data are denoted by
asterisks. Multiply contour label numbers by 10�12 m4/s2.

Figure 6. Estimated flow net after the first sampling
campaign for the bad case. Asterisks show locations of head
and conductivity measurements; gray area shows estimated
plume extension.
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9.71 � 10�6 m2/s to 6.44 � 10�6 (see Table 1). The worth
of additional data for the good case is shown in Figure 8.
3.2.3. Further Sampling Phases
[50] For the bad case a jCVD�top

j < 0.6 is reached with the
next three samples, so that the proposed design can be
rejected. The estimated flow net is shown in Figure 9. For
the good case, four additional campaigns are needed com-
pared to the bad case (see Table 1) until 95% probability for
the proposed design is reached. Nevertheless, this is
achieved with only 15 additional sampling points. The
estimated flow net is shown in Figure 10 which may be
compared to the true good flow net shown in Figure 3
(bottom right).

[51] As one might expect, the gain in probability per
sampling round decreases with increasing amount of con-
ditioning points already considered. As listed in Table 1, the
standard deviation of the target quantity D�top decreases in
a monotonic matter, apart from a slight deviation at sam-
pling campaign number 4. The deviation is likely to be
caused by an increase in the sensitivities of the stream
function values due to the new measurements, as the overall
uncertainty of the conductivity is reduced. The mean
hD�topi shows an overall trend toward the true value of

Figure 7. Data worth of additional log conductivity
measurements for D�top for the bad case after the first
sampling campaign. Already existing head and conductivity
data are denoted by asterisks. Multiply contour label
numbers by 10�12 m4/s2.

Figure 8. Data worth of additional log conductivity
measurements for D�top for the good case after the first
sampling campaign. Already existing head and conductivity
data are denoted by asterisks. Multiply contour label
numbers by 10�12 m4/s2.

Figure 9. Estimated flow net after the second sampling
campaign for the bad case. Asterisks show locations of head
and conductivity measurements; gray area shows estimated
plume extension.

Figure 10. Estimated flow net after the fourth sampling
campaign for the good case. Asterisks show locations of
head and conductivity measurements; gray area shows
estimated plume extension.
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D�top (�1.06 � 10�5 m2/s), but slightly fluctuates about
this trend. This may be interpreted as follows: Unlike the
variance, the mean is more sensitive to the values of the
measurements, and likewise a new measurement might
capture a feature of the true aquifer pattern, which on its
own, may dominate the model prediction, whereas within
the true parameter field its effect is compensated by another,
not yet captured feature. At least in the commonly encoun-
tered sparse data situation this could always be the case.
Because of the slight fluctuations in the mean, the coeffi-
cient of variation CVD�top

counterintuitively increases with
the first sampling campaign. Overall, however, the proposed
sampling strategy effectively reduces the uncertainty re-
garding plume capture.
[52] The asterisks in Figure 9 (bad case) and Figure 10

(good case) show the sampling locations chosen based on
the data worth calculations for additional conductivity
measurements. It is obvious that focussing on D�top as
design criterion leads to a higher sampling density in the
upper part of the aquifer in both the bad and the good case.
Another feature that is common to both cases is that two
clusters of sampling points develop, which seem to origi-
nate from the two base case locations at the tip of the top
funnel and the upper gate opening. The search progresses
only gradually from these points toward the middle of the
two transects (in the good case). A third cluster of sampling
points seems to be oriented along the left transect increasing
the field resolution there. The overall minimum spacing of
the sampling points of greater than 6 m (roughly smaller
than l/2) appears to be reasonable compared to the under-
lying spatial correlation length of 15 m.

4. Discussion and Conclusions

[53] We have presented an efficient first-order second-
moment method to evaluate the reliability of a funnel-and-
gate design, honoring log conductivity and head data
collected prior to the construction of the system. In contrast
to previous studies [Eykholt et al., 1999; Bilbrey and Shafer,
2001; Elder et al., 2002; Bürger et al., 2003], our method
does not require Monte Carlo simulations. Instead, we
perform linearized uncertainty propagation which, strictly
speaking, is valid only for small values of the (conditional)
variance of log conductivities. We are confident that first-
order propagation of uncertainty is permissible in our
application, because the pde of the stream function has
the same structure as that of hydraulic heads, for which first-
order analysis has been shown adequate up to a variance sY

2

of larger than one [see Rubin, 2003, chapter 4].
[54] We use an advective control strategy to check the

hydraulic functionality of a given funnel-and-gate design,
implying that transverse dispersion can be neglected
[Mulligan and Ahlfeld, 1999]. In contrast to other studies,
however, we do not simulate advective transport itself.
Since we restrict the analysis to two-dimensional steady
state flow, we can analyze stream function values instead.
This is quite advantageous, as the governing pde of the
stream function is elliptic and directly contains the conduc-
tivity as parameter. In contrast, concentrations depend on
the conductivity only indirectly, namely via the velocity
field. In the context of the probability analysis, it is also
advantageous that the stream function values are continuous

and meaningful for both the case of successful design and
that of failure. In an earlier, unpublished study, we tried to
assess the reliability of the funnel-and-gate system by the
total mass flux captured by the gate. The latter quantity is
bounded: the maximum mass flux passing through the gate
is the total mass flux of the plume, and the minimum is zero.
The desired result is total capture, that is, one of the two
bounds. For this condition, the standard deviation of mass
flux is a very unreliable measure of uncertainty, since the
pdf of mass flux is definitely non-Gaussian. By analyzing
stream function values, we avoid these complications.
[55] Our method relies on efficient matrix multiplication

techniques that we have presented earlier in the contexts of
quasi-linear geostatistical inversing and estimation of travel
time uncertainty [Nowak et al., 2003; Cirpka and Nowak,
2004]. The present application is an extension to estimating
the uncertainty of stream function values. However, by
evaluating the cross covariance of stream function values
for conditions with the funnel-and-gate system in operation
and head values prior to the gate construction (section 2.7)
and by estimating the expected worth of additional measure-
ments (section 2.8), we go beyond our previous analyses.
[56] The results of the presented numerical study

demonstrate that our data worth strategy is capable of
discriminating between cases where the true plume is
captured against its counterpart with only a few additional
samples for a specified level of probability. Because of its
computational simplicity, we have computed only the data
worth of additional log conductivity measurements. We
have presented how to evaluate the expected worth of a
head measurement at a given location. Since the latter
computation requires the solution of an additional adjoint
state problem per proposed measurement point, however,
it is not feasible to map the data worth of head measure-
ments as function of the measurement location. Determin-
ing the best location of an additional head measurement
requires a numerical search algorithm which we have not
yet implemented.
[57] Our method is restricted to cases where two-

dimensional analysis seems reasonable because, unlike its
two-dimensional counterpart, a three-dimensional stream
function approach is computationally and conceptually
cumbersome. In most applications, the funnels vertically
extend to an underlying aquitard, and the horizontal dimen-
sions of the aquifer, and of the funnels, are much larger than
the vertical. Hence the flow field essentially is horizontal.
In such situations, in fact, two-dimensional analysis may be
a conservative estimate with respect to horizontal plume
meandering. In a two-dimensional system, the flow can
pass around a low-transmissivity lens only by horizontal
meandering, whereas in a three-dimensional aquifer, there
is the chance of passing above or below low-conductivity
lenses. This is reflected, e.g., in the corresponding values of
horizontal transverse dispersion macrodispersion coeffi-
cients for heterogeneous, anistropic aquifers [Dagan, 1988].
[58] In future work, our data worth strategy may be

combined with the optimization of the funnel-and-gate
design at a given level of information. In such a step, the
funnel-and-gate system would be redesigned to achieve the
desired certainty that D�top and D�bot are positive numbers.
Finally, the decision on taking additional samples would be
based on a cost comparison between expected cost reduction
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due to reduction of uncertainty versus costs of the measure-
ments, leading to a full analysis of the expected value of
sample information.
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