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[1] Pumping tests belong to the most common techniques of hydrogeological site
assessment. While the steady state drawdown is determined by the distribution of
transmissivity alone, the transient behavior is also influenced by the storativity field. In
geostatistical inverse modeling the spatial distributions of both transmissivity and
storativity are inferred from the drawdown curves and prior information on the spatial
correlation of the parameter fields. So far, however, transient data have hardly been
analyzed by geostatistical inverse methods because the computational effort is rather high.
In the present study, we characterize the drawdown by its temporal moments. We
present moment-generating equations and corresponding equations to compute the
sensitivity of the temporal moments of drawdown with respect to the distributions of
transmissivity and storativity. We utilize these equations to infer the transmissivity and
storativity fields from transient pumping tests using the quasi-linear geostatistical
approach of inverse modeling. Considering temporal moments rather than full drawdown
curves drastically reduces the computational effort of the estimation procedure. In test
cases we show that the first two temporal moments are sufficient to characterize the
drawdown curves. We investigate how erroneous assumptions regarding the spatial
variability of storativity affect the estimate of the transmissivity field, and we analyze the
effect of truncating the measured drawdown curves.
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1. Introduction

[2] Accurate predictions of flow and transport in geo-
logical formations require detailed knowledge about the
spatial distribution of hydrogeological parameters, such as
the hydraulic conductivity and the specific storage coef-
ficient. Among the most common techniques for hydro-
geological site investigation are pumping tests, in which
water is extracted from a production well and the
drawdown is monitored in adjacent monitoring wells
[e.g., Kruseman and de Ridder, 1991]. At steady state,
the drawdown depends only on boundary conditions and
the distribution of transmissivity. The transient behavior,
by contrast, is also sensitive to the storativity of the
formation.
[3] Conventional analyses of pumping tests yield effec-

tive values of the transmissivity T and the storage coeffi-
cient S by fitting analytical solutions to measurements of
drawdown [e.g., Kruseman and de Ridder, 1991]. The
analytical expressions have been derived for infinite
domains with uniform conditions. The parameters deter-

mined are average properties of the aquifer over a large
volume [e.g., Butler and Liu, 1993; Oliver, 1993]. Sanchez-
Vila et al. [1999] showed that the transmissivities, deter-
mined by Jacob’s method from single observation wells
in transient pumping tests, approach the effective trans-
missivity of the formation, whereas the estimated stor-
ativities differ strongly between the various observation
wells. Neuman et al. [2004] derived a type curve method
for steady state pumping tests, in which geostatistical
parameters of the formation are retrieved from the vari-
ation of drawdown profiles. The type curve approaches,
however, do not resolve the spatial distributions of
transmissivity T and storativity S. At most, they yield a
mean value and statistical parameters regarding the spatial
variability.
[4] Pumping test data have been analyzed with parameter

estimation schemes coupled to numerical groundwater flow
models [e.g., Barrash and Dougherty, 1997; Thorbjarnarson
et al., 1998]. In the latter studies, definite structures of the
subsurface, e.g., layers with known thickness or zones of
well-known geometry, were assumed and uniform parame-
ters within each structure were determined by minimizing
the sum of weighted squared errors. The principal difficulty
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with this type of inverse models is that the deterministic
structure of the aquifer must be known a priori.
[5] In contrast to deterministic models, geostatistical

inverse methods impose minimum prior information
about the spatial distribution of parameters [e.g., Hoeksema
and Kitanidis, 1984; Rubin and Dagan, 1987; Kitanidis,
1995; Mclaughlin and Townley, 1996; Yeh et al., 1996;
Zimmerman et al., 1998]. Here, the hydraulic parameters
are allowed to vary continuously throughout the domain,
and the prior information is limited to the covariance
function of parameter fluctuations and the structure of a
trend model. The approach of Kitanidis and various co-
workers [e.g., Hoeksema and Kitanidis, 1984; Kitanidis,
1995] even allows inferring the structural parameters of the
covariance function from the data.
[6] Like many inverse methods, the geostatistical

approach requires computing the sensitivity of all measured
quantities with respect to the log transmissivity at each
point within the domain. These computations are performed
most efficiently by the adjoint state method [e.g., Sun and
Yeh, 1990], in which only a single adjoint partial differential
equation per observation point has to be solved.
[7] Sun and Yeh [1992] presented a geostatistical inverse

method to identify the transmissivity under transient
groundwater flow conditions. Yeh [1992] discussed appli-
cations of the method to transient pumping tests. The
approach requires computing cross-covariance functions
between log transmissivity and hydraulic head at all obser-
vation times. Thus the computational efficiency of the
adjoint state method is counteracted by the number of
observation points in time. Recently, Zhu and Yeh [2005]
showed that only a few measurement points in time need to
be considered in inverse modeling because the transient
heads at a given location are strongly correlated in time.
Other geostatistical inverse methods, such as the pilot point
method [Certes and de Marsily, 1991] and the method of
sequential self calibration [Hendricks Franssen et al.,
1999], do not rely on cross-covariance matrices and are
more efficient in handling transient data. However, they still
require repeatedly computing multiple time steps.
[8] As a computationally efficient alternative to solving

the standard transient groundwater flow equation, a group
of authors has transferred ray-tracing techniques, derived in
seismic tomography, to the analysis of transient head data
[DattaGupta et al., 1997; Vasco et al., 2000; Brauchler et
al., 2003; Vasco and Finsterle, 2004]. Here, the propagation
of pressure waves is computed along trajectories. That is,
the original parabolic equation is replaced by an asymptotic
hyperbolic equation, for which efficient particle-tracking-
like techniques can be used. On the basis of the solution of
the asymptotic equation, an inverse modeling technique has
been developed, in which the ratio of transmissivity over
storativity can be determined.
[9] In the present study, we suggest a different approach

to reduce the computational effort associated with the geo-
statistical analysis of transient pumping test data. Rather
than directly using pressure heads during transient flow, we
consider the temporal moments of drawdown. For a unit
pulse extraction, the zeroth temporal moment depends on
the transmissivity distribution only, whereas all higher
moments also depend on the distribution of storativity. In
section 2, we derive moment-generating equations that are

formally equivalent to steady state flow equations with
distributed sources. In contrast to the hyperbolic equations
of Vasco et al. [2000], our elliptic equations are exact. Also,
we need not compute trajectories of pressure waves, which
by themselves depend on the pressure field.
[10] The concept of moment-generating equations has

been introduced to subsurface hydrology by Harvey and
Gorelick [1995b], who analyzed solute transport of kinet-
ically sorbing compounds. Temporal moments have been
used in geostatistical inverse models by Harvey and
Gorelick [1995a], James et al. [2000], and Cirpka and
Kitanidis [2000]. In these studies, the moments of tracer
data were used, while we consider here those of head-
related quantities. The main advantage in both applications
is the same: a transient equation is replaced by a series of
steady state equations.
[11] While a pulse-like injection of tracer may reflect

experimental conditions of a tracer test, it is uncommon to
extract only a single pulse of water in a pumping test. Thus
we present how the pulse-related moments correspond to
quantities that can be measured in a pumping test with
continuous extraction or extraction over a time period.
[12] We combine the method to compute temporal

moments of drawdown with the quasi-linear geostatistical
approach of inverse modeling [Kitanidis, 1995], which
minimizes the likelihood of the parameters, given observa-
tions of dependent quantities. The prior knowledge about
the parameters is restricted to uncertain drift coefficients and
a covariance function for the fluctuations about the trend. In
our implementation, the method is accelerated by the
continuous adjoint state method to compute sensitivities
[Sun and Yeh, 1990], and spectral methods to compute the
cross covariances between drawdown moments and the
hydraulic parameters [Nowak et al., 2003]. We stabilize
the method by a modified Levenberg-Marquardt approach
[Nowak and Cirpka, 2004]. The inverse procedure and the
evaluation of sensitivities are briefly described in sections 3
and 4, whereas sections 5 and 6 contain applications to
hypothetical test cases and discuss some properties of the
estimated parameter fields.

2. Governing Equations

[13] In this section, we present moment-generating equa-
tions for drawdown and demonstrate how transient data
from pumping tests relate to the temporal moments of a
pumping test with unit pulse extraction.

2.1. Transient Drawdown in Confined Aquifers

[14] Consider regional, depth-integrated flow in a con-
fined aquifer. Prior to the pumping test, the system is
assumed to be in steady state. Over the time period of the
test, the boundary conditions, except for the pumping, do
not change. Then, we can define the drawdown s (m):

s x; tð Þ ¼ h x; t0ð Þ � h x; tð Þ; ð1Þ

in which h(x,t) (m) is the hydraulic head at location x (m)
and time t [s], whereas t0 [s] is the time at which pumping
starts. The drawdown meets the following parabolic partial
differential equation:

S
@s

@t
�r � Trsð Þ ¼ Q tð Þd x� xwð Þ; ð2Þ
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with the initial and boundary conditions:

s ¼ 0 at t ¼ t0; ð3Þ

s ¼ 0 on GDiri8t; ð4Þ

n � rs ¼ 0 on GNeu8t; ð5Þ

in which the depth-integrated coefficients S (dimensionless)
and T (m2/s) are the storativity and transmissivity,Q(t) (m3/s)
is the pumping rate, d(x � xw) (1/m2) is the Dirac delta
function, xw (m) is the location of the well, GDiri and GNeu

denote Dirichlet and Neumann boundaries, and n (dimen-
sionless) is the unit vector normal to the boundaries.
[15] In practice, we conduct a pumping test either by

extracting water with a rate Q(t) over a finite period of time,
or by pumping with a constant rate Q until steady state is
reached. Because of the linearity of equation (2), the draw-
down sQ(x, t) for an arbitrary pumping regime Q(t) can be
computed from the drawdown sd(x, t) (s/m2), valid for
instantaneous extraction of a unit volume, by convolution

sQ x; tð Þ ¼
Z t

0

sd x; t � tð ÞQ tð Þdt: ð6Þ

[16] For the case of continuous extraction, i.e., Q(t) = Q,
we consider the steady state drawdown s1(x) = Q

R
0
1sd(x,

t)dt, and the deviation from the steady state drawdown
Dh(x, t) = s1(x) � s(x, t) = Q

R
t
1sd(x, t)dt.

[17] Figure 1 shows the transient head curves for pump-
ing tests with pulse-like extraction (Figure 1a), extraction
over a time period (Figure 1b), and continuous extraction
(Figure 1c). In the following, we will discuss how to
characterize these curves by temporal moments and how
the moments of the cases in Figures 1b and 1c are related to
those of the case in Figure 1a.

2.2. Temporal Moments of Drawdown

[18] We characterize the transient behavior of the draw-
down s(x, t) by its temporal moments. The kth moment
mk(s(x)) [ms

k+1] is defined by

mk s xð Þð Þ ¼
Z1
0

tks x; tð Þdt: ð7Þ

[19] In this study, we consider the zeroth moment
m0(s(x)) and the first moment m1(s(x)). For a unit pulse
extraction, the zeroth moment corresponds to the steady
state drawdown of a corresponding pumping test with
continuous extraction, whereas the normalized first moment
m1(s(x))/m0(s(x)) is a characteristic time of drawdown.
[20] The moments of the unit pulse response sd(x, t) are

related to those of the drawdown sQ(x, t) due to extraction
Q(t) over a time period by

m0 sd xð Þð Þ ¼
m0 sQ xð Þ

� �
m0 Qð Þ ; ð8Þ

m1 sd xð Þð Þ
m0 sd xð Þð Þ ¼

m1 sQ xð Þ
� �

m0 sQ xð Þ
� �� m1 Qð Þ

m0 Qð Þ ; ð9Þ

whereas the moments of sd(x, t) can be computed from
quantities of continuous extraction by:

m0 sd xð Þð Þ ¼ s1 xð Þ
Q

; ð10Þ

m1 sd xð Þð Þ
m0 sd xð Þð Þ ¼

m0 Dh xð Þð Þ
s1 xð Þ : ð11Þ

[21] In Figure 1, zeroth moments are marked as shaded
areas, and characteristic times m1/m0 by vertical lines. For
the cases of a pulse-like extraction and an extraction over a
time period, the characteristic times are the centers of
gravity of the shaded areas.
[22] Because of the identities given above, it is clear that

the zeroth and first moments for unit pulse extraction,
m0(sd(x)) and m1(sd(x)), can be computed for any type of
pumping regime occurring in practical applications.

2.3. Moment-Generating Equations

[23] Harvey and Gorelick [1995b] derived moment-
generating equations for the transport of sorbing solutes
using the Laplace transform of the transport equation. Here

Figure 1. Transient hydraulic heads in a pumping test as
function of time for various regimes of extraction.
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we derive the moment-generating equations for drawdown
sd due to unit pulse extraction, without applying the Laplace
transformation. In order to compute the kth moment, we
multiply equation (2) with tk, integrate over time, apply
rules of partial integration to the term with the time
derivative, and consider the initial condition, equation (3).
For Q(t) = d(t), we arrive at

�r � Trmkð Þ ¼ dk0d x� xwð Þ þ kSmk�1: ð12Þ

Here, dk0 is the Kronecker delta, which is unity for k = 0 and
zero otherwise. The boundary conditions are obtained by
multiplying equations (4) and (5) with tk and integrating
over time:

mk ¼ 0 on GDiri8t; ð13Þ

n � rmk ¼ 0 on GNeu8t: ð14Þ

[24] The equation generating the zeroth moment
m0(sd(x)), equation (12) with k = 0, is a steady state
groundwater flow equation with an extraction rate of unity
at the well location. It does not depend on the storativity S.
Because we consider the normalized case of a unit pulse,
m0(sd(x)) neither depends on the pumping rate. By contrast,
the moment-generating equations for the higher-order
moments mk>0(sd(x)), equation (12) with k > 0, are steady
state flow equations with a distributed rather than a point-
like source. The distributed source term is proportional to
the next lower-order moment mk�1(sd(x)) and the storativity
S(x). Therefore the zeroth moment m0(sd(x)) can be used to
infer the distribution of transmissivity T(x), whereas at least
the zeroth and first moments, m0(sd(x)) and m1(sd(x)), are
needed to jointly estimate the storativity S(x).
[25] By applying moment-generating equations, we trans-

fer the transient groundwater flow problem into a steady
state framework. In this paper, we use the two most
important and characteristic temporal moments, i.e., the
zeroth and first moments, to characterize drawdown curves.
For given parameter distributions, they are computed by
solving two elliptic equations. In comparison to solving for
transient hydraulic heads in multiple time steps, we thus
drastically reduce the computational costs.

3. Geostatistical Inverse Method

[26] We identify the unknown distributions of log trans-
missivity Y = ln(T) and log storativity Z = ln(S) following
the quasi-linear geostatistical approach of Kitanidis [1995],
which finds the peak of the conditional probability density
function of the parameters p, given the measurements m.
We consider uncertain prior knowledge of the trend coef-
ficients describing the mean values of the parameters. In this
section, we briefly review the inverse approach.
[27] We discretize the domain into nY elements. For

each element, we assume an element-wise uniform log
transmissivity Yi and a log storativity value Zi. Thus the
set of all values for Yi and Zi forms the (2nY 
 1) vector
p of parameters. We consider p to be random, drawn
from a multi-Gaussian distribution with expected value
E[pjB] = XB and covariance matrix Cpp: p � N(XB,Cpp).
Here, X is a (2nY 
 nb) matrix of known base functions,
and B is a (nb 
 1) vector of uncertain drift coefficients.

The prior knowledge of B is quantified by a multi-
Gaussian distribution with prior mean B* and covariance
matrix CBB: B � N(B*, CBB). Then, p is distributed: p �
N(XB*,Gpp), where Gpp = Cpp + XQBBX

T is the (2nY 

2nY) generalized autocovariance matrix of p, whereas Cpp

is the covariance of p given B. If the log transmissivity
Y(x) and the log storativity Z(x) are assumed uncorrelated,
the parameter vector p, the drift function X, the vector
of drift coefficients B, and the covariance matrix of
parameters Cpp are aggregated from the corresponding
quantities for log transmissivity and log storativity by

p ¼
Y

Z

� �
; X ¼

XY 0

0 XZ

� �
;

B ¼
BY

BZ

� �
; Cpp ¼

CYY 0

0 CZZ

� �
:

[28] The (nobs 
 1) vector of observations m consists of
measured zeroth and first moments of drawdown at the
locations of observation. It is related to the parameters p via
a nonlinear transfer function f: y = f(p) + r, in which r is the
(nobs 
 1) vector of observation error with zero mean and
the (nobs 
 nobs) covariance matrix R. In the quasi-linear
approach, the transfer function is linearized about the
current estimate pk:

f pð Þ  f pkð Þ þHkp�Hkpk ; ð15Þ

in which Hk is the (nobs 
 2nY) sensitivity matrix with
entries Hij = @fi(p)/@pj, derived about the current estimate
pk, and k is the iteration index. For convenience, we define a
modified vector of observations m0

k:

m0
k ¼ m� f pkð Þ þHkpk : ð16Þ

[29] Linearized uncertainty propagation yields that m0
k �

N(HkXB*, Gmm,k), in which Gmm,k = HkGppHk
T + R is the

(nobs 
 nobs) generalized autocovariance matrix of m0
k.

[30] On the basis of the current linearization, the condi-
tional mean of the parameters pk+1, given the measurements
m, is defined by

pkþ1 ¼ XBkþ1 þ CppH
T
k Xkþ1; ð17Þ

in which the (nb 
 1) vector Bk+1 of conditional drift
coefficients and the (nobs 
 1) vector Xk+1 of weights are
the solution of the system

HkCppH
T
k þ R HkX

XTHT
k �C�1

BB

2
4

3
5 Xkþ1

Bkþ1

2
4

3
5 ¼

m0
k

�C�1
BB B*� Bkð Þ

2
4

3
5:
ð18Þ

[31] Conceptually, the quasi-linear approach [Kitanidis,
1995] consists of a single Bayesian updating step, in which
all measurements are accounted for at once. The iterations
are needed only to obtain the sensitivity about the posterior
rather than the prior parameter vector. This is different to the
approach of Yeh et al. [1996] and Zhu and Yeh [2005],
where the measurements are introduced sequentially in a
series of Bayesian updating steps.
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[32] In the original quasi-linear approach [Kitanidis,
1995], the iterative procedure consisted of the following
steps: (1) evaluation of the forward model using the current
estimate, (2) derivation of the sensitivities about the esti-
mate, (3) update of the parameters pk+1 according to
equation (17) using the modified measurement vector m0

k

according to equation (16) and the drift coefficients Bk+1
and weights Xk+1 computed by equation (18). This proce-
dure was repeated until a convergence criterion was met. In
cases of high variability, unfortunately, the original scheme
may become instable, that is, the updated parameter vector
may not approach a unique solution. Therefore we stabilize
the scheme by a modification of the Levenberg-Marquardt
algorithm as described by Nowak and Cirpka [2004]. Also,
we evaluate the terms HkCppHk

T and CppHk
T, appearing in

equations (17) and (18) using periodic embedding and
spectral methods [Nowak et al., 2003].
[33] Once the scheme has converged, the conditional

covariance matrix Cppjm of the parameters p given the
observations m is computed by

Cppjm � Cpp �
HCpp

XT

� �T
HCppH

T þ R HX

XTHT �C�1
BB

� ��1
HCpp

XT

� �
;

ð19Þ

in which we have dropped the iteration index, and H is
derived about the posterior mean of the parameter vector p.

4. Evaluation of Sensitivities

[34] In the quasi-linear geostatistical approach of inverse
modeling, we repeatedly need to evaluate the sensitivity
matrix H, i.e., the matrix of partial derivatives of all
measured quantities with respect to all parameters. A two-
dimensional domain may be discretized into O(nY)  104–
105 elements, with two parameters per element. Thus the
computational effort of direct numerical differentiation
would be prohibitive. Instead, we adopt the continuous
adjoint state method, derived by Sun and Yeh [1990], to
measurements of drawdown moments.
[35] Consider a particular step in the iteration procedure

with the current estimates ~T (x) and ~S(x). First, we solve for
the current estimates of the zeroth and the first temporal
moments, ~m0(sd(x)) and ~m1(sd(x)), using the finite element
method (FEM). Subsequently, we solve for a set of adjoint
state equations for each measurement. In the following, x‘
denotes the measurement location, k 2 [0, 1] is the index for
the type of measurement, whereas y1 and y0 are the adjoint
states of the first and zeroth moment, meeting the adjoint
state equations:

�r � ~Try1

� �
¼ dk1d x� x‘ð Þ; ð20Þ

�r � ~Try0

� �
¼ dk0d x� x‘ð Þ þ ~Sy1; ð21Þ

subject to the boundary conditions:

yi ¼ 0 on GDiri; ð22Þ

n � ryi ¼ 0 on GNeu; ð23Þ

for both i = 0 and i = 1.

[36] Subsequently, the sensitivity densities of the kth
moment measured at x‘ with respect to the log transmissivity
Y(x) and log storativity Z(x) at location x are computed by

@mk x‘ð Þ
@Y xð Þ ¼ �ry0 xð Þ � ~T xð Þr~m0 xð Þ

� �
�ry1 xð Þ � ~T xð Þr~m1 xð Þ

� �
;

ð24Þ

@m1 x‘ð Þ
@Z xð Þ ¼ y1 xð Þ~S xð Þ~m0 xð Þ: ð25Þ

[37] Since we consider the parameters to be uniform
within elements, the sensitivity densities in equations (24)
and (25) need to be integrated over the volume of the
respective element. In the FEM context the temporal
moments and adjoint states are defined at nodes, and the
sensitivities have the form Ŷi

TMm̂j, in which quantities with
a hat are vectors of node-related values, and the matrix M is
an element-related storage matrix for the sensitivity with
respect to log storativity, and an element-related mobility
matrix for the sensitivity with respect to log transmissivity.
[38] In summary, we arrive at the following procedure for

the computation of sensitivities.
[39] 1. In case of a measurement of the zeroth temporal

moment, y1 is zero throughout the domain. A single adjoint
pde of y0, equation (21), needs to be solved. This equation is
identical to a steady state groundwater flow equation with a
point-like extraction at the observation point. Ameasurement
ofm0(sd(x)) is insensitive to storativity, whereas its sensitivity
with respect to log transmissivity can be computed for each
element by integrating equation (24) over the element.
[40] 2. In case of a measurement of the first temporal

moment, both adjoint state variables, y1 and y0, must be
computed. First, one solves for y1 by equation (20), which
is a steady state groundwater flow equation with a point-like
extraction at the observation point. Subsequently, one
solves for y0 by equation (21). This is a steady state
groundwater flow equation with a distributed source term.
The sensitivities with respect to log transmissivity Y and
log storativity Z can be computed for each element by
integrating equations (24) and (25) over the element.

5. Application to Synthetic Data

[41] To test our approach, we apply it to a series of
artificially generated numerical test cases which differ in the
spatial distribution of storativity.

5.1. Model Assumptions

[42] Our test cases represent two-dimensional, confined
aquifers. The variability of drawdown with depth is
neglected, so that equations (2) and (12) apply. For conve-
nience, the model domain is assumed rectangular, with a
fully penetrating well in the center of the domain. The
boundary conditions are either of the Dirichlet or Neumann
type, resulting in no drawdown or no flux, respectively.
[43] Over the past two decades, the fields of log trans-

missivity and hydraulic conductivity have been character-
ized intensively at various sites by geostatistical methods
[e.g., Rubin, 2003, Tables 2.1 and 2.2]. To the best of our
knowledge, a geostatistical characterization of the (specific)
storativity, or its logarithm, has been done much less
frequently. Typically, only a range of storativity values
has been reported, for example, 10�6 to 10�3 for confined,
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or 0.03 to 0.3 for unconfined aquifers [e.g., Thorkildsen and
Price, 1991]. Knowles et al. [2004] stated that storativity
ranges from 5 
 10�5 to 5 
 10�3 in confined aquifers.
Two orders of magnitude is a typical range reported in
textbooks for confined sedimentary aquifers [e.g., Weight
and Sonderegger, 2000, Table 3.5]. Sun et al. [1995]
examined the specific storage coefficients associated with
different kinds of geological materials, finding an overall
factor of 20 between the smallest and largest values. One of
the few geostatistical inverse modeling studies estimating
the spatial distribution of storativity from field data was
performed by Hendricks Franssen et al. [1999], who
analyzed data from the WIPP site. These authors obtained
a variance of the log storativity of 1.78. In test cases with
artificial data, much smaller values were assumed [e.g., Zhu
and Yeh, 2005]. Thus, at the given state of knowledge, it is
unclear which value the variance of log storativity has in a
typical formation. In the following, we will use a value of
unity.
[44] The studies of Botha and Cloot [2004] indicate that

hydraulic conductivity and specific storativity are indepen-
dent parameters. For the depth-integrated quantities, trans-
missivity and storage coefficient, a slight correlation is
given via the thickness of the aquifer. Nonetheless, because
there is no field evidence, we treat those two parameter
fields as uncorrelated quantities.

5.2. General Setup

[45] All test cases are based on two-dimensional fields
within rectangular domains. The parameters are defined on
a regular grid, facilitating the application of spectral meth-
ods for the evaluation of cross covariances [Nowak et al.,
2003]. The field dimensions, grid spacing and pumping
conditions are listed in Table 1. An extraction well with

pumping rate Q is located at xw. No flow is assumed across
the top and bottom boundaries, whereas the head is fixed at
the left- and right-hand side boundaries, the latter resulting
in a fixed drawdown of zero according to equation (4).
[46] The fields of log transmissivity Y = ln(T) and log

storativity Z = ln(S) are generated using the spectral method
of Dietrich and Newsam [1993]. We use the nonseparable
exponential covariance function for the fluctuations of both
ln(T) and ln(S), together with a uniform, but uncertain prior
mean, i.e., XY(x) = XZ(x) = 1. The values of the geostatistical
parameters are summarized in Table 1. Here, b*Y and b*Z
are the uncertain prior mean values of the scalar drift
coefficients for ln(T) and ln(S), whereas sbY

2 and sbZ
2 are

the corresponding prior variances, quantifying the uncer-
tainty of b*Y and b*Z. The variances sbY

2 and sbZ
2 form the

diagonal elements of QBB, which has off-diagonal entries of
zero. sY

2 and sZ
2 denote the variances of ln(T) and ln(S) about

their mean values, and l1 and l2 refer to the correlation
length in x1 and x2 direction, respectively.
[47] Figures 2a and 2b display the fields of the generated

hydrogeological parameters. The actual mean of the gener-
ated fields and the corresponding geometric means of T and S
are listed in Table 2. While the targeted variances of ln(T)
and ln(S) are unity, the actual values of the generated fields
are 0.89 and 0.67, respectively. The stars in Figure 2 mark
the location of the observation wells on a grid of x = 15 m,
32 m, 50 m, 67 m, 85 m and y = 5 m, 15 m, 25 m, 35 m,
45 m. The pumping well, indicated by a square, is at the
center point of the field.

5.3. Base Case

[48] On the basis of the ‘‘true’’ hydraulic parameters, we
solve the transient groundwater flow equation using the
Finite Element Method in space and central differentiation
in time. A continuous pumping regime is assumed. Transient
drawdown curves are recorded at the points marked by stars
in Figure 2. Artificial measurement errors with zero mean
and a standard deviation of 2 mm are added to the recorded
values. These values are taken as measurements of transient
drawdown. On the basis of these curves, we compute the
normalized zeroth temporal moments m0(sd(x‘)) and the
characteristic times m1(sd(x‘))/m0(sd(x‘)) according to
equations (10) and (11), which we use as data for our
inverse method.
[49] In the following, we consider that n1 head observa-

tions are needed until steady state is reached. The value of
n1 differs between the various applications (see Table 2).
Subsequently, we take n2 = 100 measurements of steady
state drawdown. Then, linearized uncertainty propagation
yields the following identities for the variances sm0

2
(sd)

and sm1

2
(sd)
, expressing the measurement error of m0(sd(x‘))

and m1(sd(x‘)), respectively, as well as the covariance Cm0m1

among the measurements of zeroth and first moments at
the same measurement location x‘:

s2m0 sdð Þ ¼
s2s

n2Q2
; ð26Þ

s2m1 sdð Þ ¼
Dt2s2s
Q2

n1 þ
n21
n2

� �
; ð27Þ

Cm0m1
¼ � Dt

Q2
s2s

n1

n2
; ð28Þ

Table 1. Geometric Parameters and Pumping Conditions of All

Test Cases, Geostatistical Parameters of Log Transmissivity, and

Log Storativity in the Base Case

Parameter Definition Value

Geometric Parameters
L1 domain length 1000 m
L2 domain width 500 m
Dx1 grid spacing in x1 10 m
Dx2 grid spacing in x2 5 m

Pumping Conditions
Q pumping rate 4 
 10�3m3/s
x1,w well coordinate 500 m
x2,w well coordinate 250 m

Geostatistical Parameters
sY
2 prior variance of ln(T) [T in m2/s] 1

actual variance of ln(T) 0.89
sZ
2 prior variance of ln(S) 1

actual variance of ln(S) 0.67
b*Y prior mean value of ln(T) [T in m2/s] �6
b*Z prior mean value of ln(S) �9
sbY
2 prior variance of b*Y 1

sbZ
2 prior variance of b*Z 1

l1
Y correlation length in x1 for ln(T) 200 m
l2
Y correlation length in x2 for ln(T) 100 m
l1
Z correlation length in x1 for ln(S) 200 m

l2
Z correlation length in x2 for ln(S) 100 m

Measurement Error
ss
2 variance of drawdown measurement 4 
 10�6m2
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Figure 2. ‘‘True’’ parameter fields, true distribution of zeroth temporal moment and characteristic
time, estimated parameter fields of the base case, and their standard deviations of estimation. Contour
levels are Dm0(sd) = 12.5 s/m2 per line in Figure 2 (left) and D(m1(sd)/m0(sd)) = 500 s per line in
Figure 2 (right).

Table 2. Performance Criteria for the Various Test Casesa

Definition True Base Case Section 6.1 Section 6.2 Section 6.3 Section 7

n1 number of time steps needed to reach steady state (104) 3.37 2.32 2.32 3.37 1.11
n2 number of measurements in steady state 100 100 100 100 100
sm0

2
(sd)

variance for measurement error of m0 (10
�3 s2/m4) 2.5 2.5 2.5 2.5 2.5

sm1

2
(sd)

variance for measurement error of m1 (10
6 s4/m4) 2.84 1.34 1.34 2.84 0.31

Cm0m1
covariance for measurement error of m0 and m1 (s

3/m4) �84.11 �57.66 �57.66 �84.11 �27.59
bY mean log tansmissivity (T in m2/s) �5.37 �5.32 �5.33 �5.28 �5.38 �5.12
Tg geometric mean of transmissivity (10�3m2/s) 4.70 4.90 4.80 5.10 4.60 6.00
bZ mean log storativity �8.62 �8.43 �8.63 �8.66 �8.21 �8.65
Sg geometric mean of storativity [10�4] 1.80 2.18 1.79 1.73 2.72 1.75
~sY mean standard devaition of estimation for ln(T) n.a. 0.62 0.53 0.64 0.60 0.62
~sZ mean standard deviation of estimation for ln(S) n.a. 0.74 0.007 0.72 0.03 0.73
NRMSE(Y) see equation (32) for ln(T) n.a. 0.87 0.98 0.86 1.28 1.00
NRMSE(Z) see equation (32) for ln(S) n.a. 0.88 0.78 0.30 26.80 0.90
r(Y) aliasing ratio for ln(T) n.a. n.a. n.a. 3.4% 5.0% n.a.
r(Z) aliasing ratio for ln(S) n.a. n.a. n.a. 2.4% 6.1% n.a.

aTrue, realization shown in Figures 2a and 2b; base case, ln(S) correctly assumed spatially variable in the estimate; Section 6.1, ln(S) correctly assumed
uniform in the estimate; Section 6.2, ln(S) erroneously assumed spatially variable; Section 6.3, ln(S) erroneously assumed uniform; Section 7, estimate
using truncated drawdown curve; NRMSE, normalized root mean square error; n.a., not applicable.
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in which ss
2 is the variance expressing the uncertainty of the

drawdown measurements, whereas Dt is the size of the time
steps. We consider no correlation of measurement errors
between measurements at different locations. The values for
sm0

2
(sd)
, sm1

2
(sd)

and Cm0m1
computed for the various test cases

are listed in Table 2.
[50] Figures 2c and 2d show the distributions of the

zeroth temporal moment, the characteristic time, and the
location of the measurement points. In Figure 2c
the difference in the zeroth temporal moments from one
line to the next corresponds to 10 cm of steady state
drawdown in the original pumping test with continuous
extraction. In Figure 2d the difference in the characteristic
time between two adjacent contour lines is 500s.
[51] With the artificially generated measurements of

m0(sd(x)) and m1(sd(x)), we infer the distributions of ln(T)
and ln(S) by the quasi-linear geostatistical approach of
inverse modeling as described in section 3. For the given
test case, 10 iterations are needed. The estimated parameter
fields are shown in the Figures 2e and 2f. We use the same
color scale for the true and estimated fields. In the following
discussion, we refer to this test case, in which the correct
geostatistical parameters are applied in the inverse method,
as the base case.
[52] Besides the best estimate, the method also yields

the estimation variance, quantifying the remaining uncer-
tainty after conditioning. We display the conditional stan-
dard deviations of the estimate in Figures 2g and 2h.
Table 2 contains the performance criteria for the various
test cases. Here we list the estimated mean values of
ln(T) and ln(S), the mean standard deviations of estimation
for both parameters, and additional measures explained
below.
[53] Comparing the true and estimated fields, Figures 2a

versus 2e and 2b versus 2f, it is obvious that the estimate
recovers the large-scale features, whereas the small-scale
fluctuations are smoothed out. As seen in Table 2, the
estimated mean transmissivity is slightly higher than the
true value, whereas the estimated storativity is slightly
smaller.
[54] Further studies (not shown) indicate that the method

performs well for variances of the fields up to a value of 4.
Because an increasing variance increases the degree of non-
linearity in the relationship between parameters andmeasured
quantities, however, more iteration steps are needed.

5.4. Test of Unbiasedness

[55] With only a few locations of drawdown measure-
ments, which are affected by measurement error, we do not
expect that the estimated and true values of ln(T) and ln(S)
agree perfectly. In the context of Bayesian analysis, the
uncertainty of the estimate is expressed by the conditional
covariance matrix Cppjm, as computed by equation (19).
Our estimate is unbiased when the deviations between the
true and estimated parameters, ptrue and pest, have zero
mean and covariance Cppjm:

E ptrue � pest½ � ¼ 0; ð29Þ

E ptrue � pestð Þ � ptrue � pestð Þ½ � ¼ Cppjm: ð30Þ

[56] We test this by performing two types of tests. In the
first test, we consider only the estimation variance ~spi

2 of
each parameter pi, that is, the corresponding diagonal entry
of Cppjm. We normalize (ptrue � pest) for each parameter by
the standard deviation of estimation:

en;i ¼
pi;true � pi;est

~spi
; ð31Þ

in which pi is either the log transmissivity or log storativity
in element i, and ~spi

2 is the estimation variance of that
parameter.
[57] If our estimate of the conditional mean and variance

is correct, the set of all normalized errors En follows a
standard normal distribution. We can summarize the overall
error by the normalized root mean mean square error
(NRMSE):

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nY

XnY
i¼1

e2n;i

s
ð32Þ

[58] The normalized error En, computed by equation (31),
does not account for the conditional correlation of the
parameters. We compute a vector of more accurate normal-
ized errors E*n by

En* ¼ L�1 ptrue � pestð Þ; ð33Þ

in which L is the Cholesky decomposition of the condi-
tional covariance matrix Cppjm, that is, a lower triangular
matrix meeting LLT = Cppjm. If the entries of E*n follow a
standard normal distribution, the computed conditional
covariance matrix Cppjm accurately describes the uncertainty
about the estimate, including the correlation among the
parameters.
[59] It is computationally more demanding to compute E*n

rather than En, because for the former the full conditional
covariance matrix Cppjm must be evaluated and decom-
posed. Because of memory limitations, we have performed
the full analysis only for a test case with reduced spatial
resolution (50 
 50 elements). Figure 3 shows histograms
of the diagonally scaled errors En for ln(T) and ln(S), as well
as the normalized error vector E*n of all parameters account-
ing for conditional correlations. It is obvious that all three
quantities follow a standard normal distribution, which is
included in Figure 3 for reference. From this we conclude
that our estimate is unbiased.
[60] For the original problem (100 
 100 elements), the

values of NRMSE for ln(T) and ln(S) are listed in Table 2.
They are close to the expected value of unity.

5.5. Reproduction of Drawdown Curves

[61] In the inverse model, we use the zeroth temporal
moments m0 and the characteristic time m1/m0 to summarize
the most significant information conveyed by the transient
drawdown curves. This raises the question, how much
information is lost by disregarding all higher moments,
such as the second to fourth central moments, which are
related to the diffuseness, skewness, and kurtosis of the
drawdown curves.
[62] In order to test the validity of restricting the analysis

to the first two moments, we simulate transient drawdown
curves using the true and estimated parameter fields of the
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base case. Figure 4 shows these two drawdown curves in
the observation well with the poorest match. The root mean
square difference between the true and estimated transient
heads in all wells is 1.3 mm, which is about 0.7 times of the
measurement error. If we normalize the deviation of heads
by the final drawdown of each observation well, we obtain a
relative error of 0.3%. Therefore we conclude that the zeroth
and first temporal moments are sufficient to characterize the
transient drawdown curves in the inverse procedure. This is
different to many solute transport applications, where pro-
cess-specific tailing becomes obvious in higher-order
moments of the breakthrough curve [e.g., Harvey and
Gorelick, 1995b]. The main difference between solute
transport and groundwater flow is that the pde of pressure
head is strictly diffusive, whereas solute transport is dom-
inated by advection. It may be possible, however, that
higher-order moments of drawdown become more impor-
tant in leaky than in confined aquifers.

6. Aliasing Between Transmissivity and
Storativity

[63] As seen in equation (25), the sensitivity of the first
temporal moment m1 with respect to ln(S) is a function of
the zeroth temporal moment m0, which depends on the
current estimate ~T . If ~T is uncertain, then the sensitivity
gives uncertain information on S. Likewise, the sensitivity
of m1 with respect to ln(T) depends on ~S. Because of these
interdependencies, the estimated distributions of ~T and ~S
depend on each other, and an error in one of them causes an
error in the other. In this context, it is important to keep in
mind that m0 depends on the transmissivity only. Therefore
a sufficient number of accurate measurements of m0 will
help to fix the estimate of ln(T), and the variability of m1

measurements will correctly be attributed to the spatial
variability of storativity. In many applications, however,
the number of observation wells will be insufficient to fix
the estimate of ln(T) rigidly.
[64] We refer to the misinterpretation of a particular

parameter due to the uncertainty in another parameter as
aliasing. As long as ~T and ~S are uncertain estimates, aliasing
cannot be avoided. It will be the strongest when we base our
estimate on wrong structural assumption about the param-
eters. In the following, we will focus on the assumptions

made for the storativity field. For this purpose, we perform
three test cases: In section 6.1 the true ln(S) field is uniform,
and we also estimate a uniform value; in section 6.2, the
true ln(S) field is uniform, but we assume spatial variability
of ln(S) in the estimation procedure; in section 6.3, finally,
the true ln(S) field is spatially variable, but we estimate a
uniform value.
[65] In the latter two cases, we analyze the deviation

between the estimated values of ln(S) and ln(T) using the
correct and wrong assumption regarding the spatial vari-
ability of storativity. We denote the root mean square
deviation over the mean value, determined in the correct
model, as aliasing ratio r(p):

r pð Þ ¼ 1

best;corr:p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nY

XnY
i¼1

p
est;wrong
i � p

est;corr:
i

� �2s
ð34Þ

in which p stands for the parameter (Y for log transmissivity
and Z for log storativity), and the superscripts ‘‘wrong’’
and ‘‘corr.’’ refer to the wrong or correct assumption about

Figure 3. Distribution of normalized errors in a test case with coarser resolution. (A) Diagonally scaled
error En of the ln(T) field according to equation (31); (b) diagonally scaled error En of the ln(S) field
according to equation (31); (c) normalized error E*n of all parameters accounting for conditional
correlation among the parameters according to equation (33). Lines are standard normal distribution.

Figure 4. Comparison of transient drawdown curves
applying the true and estimated fields at the observation
well with the poorest match. Solid line shows true
drawdown; dashed line shows drawdown based on the
estimate using only temporal moments in the inversion.

W08403 LI ET AL.: INVERSE MODELING OF TRANSIENT PUMPING TESTS

9 of 13

W08403



the spatial variability of ln(S) in the inverse procedure.
Values of r(Y) and r(Z) for various test cases are listed in
Table 2.

6.1. Estimation With Constant ln(S)

[66] In this test case, we take the true ln(T) field of the
base case (see Figure 2a). For storativity, we take a
constant value, which is the geometric mean of the field
used in the base case. After repeating the forward
simulation and taking ‘‘measurements,’’ we estimate a
uniform value of ln(S) together with a spatially varying
ln(T) field.
[67] In this test case, our prior knowledge about the

storativity is strong. We know that ln(S) is uniform. This
leads to an estimate of ln(S), which is close to the true value,
and the corresponding estimation variance is very small (see
Table 2). In practice, however, our prior knowledge regard-
ing the storativity is limited. As discussed above, hydro-
geological literature does not include many studies on the
spatial variability of storativity. In the following, we test two
limiting test cases: in the first we assume a spatially varying
ln(S) field, although the true field is uniform. In the other
test case we assume ln(S) to be uniform, although the true
field is heterogeneous. In both cases we use the same ln(T)
field as in the base case.

6.2. Aliasing Into ln (S)

[68] In this test case, the true ln(S) field is uniform. In the
inverse procedure, however, we erroneously assume hetero-
geneity of the ln(S) field.
[69] Figure 5 shows the estimated fields. The estimate of

ln(S) exhibits some fluctuations, although the true field
was uniform. Obviously, parts of the variability observed
in the measurements is mistakenly attributed to ln(S). As
listed in Table 2, the aliasing ratio for ln(S) is 2.4% and
for ln(T) 3.4%. From the statistical measures, it is practi-
cally impossible to determine that the estimate is based on

a wrong structural assumption concerning the variability of
storativity.

6.3. Aliasing Into ln (T)

[70] In this test case, the true ln(S) field is that of the base
case, thus exhibiting spatial fluctuations. In inversing,
however, we erroneously assume that ln(S) is uniform.
[71] As listed in Table 2, the estimated uniform value of

ln(S) is rather close to the mean value of the true field. The
conditional standard deviation of the estimated uniform
ln(S) value is much smaller than the spatial variability of
the true field. The resulting NRMSE of the estimated ln(T)
field is 1.28. That is, the true values of ln(T) deviate more
strongly from the estimated values than expressed by the
conditional variance. This finding indicates that the wrong
structural assumption regarding the spatial variability of
ln(S) impairs the estimate of the log transmissivity distri-
bution, which is also expressed in the aliasing ratio for ln(T)
of 5.0%. In practical applications, however, it may be
difficult to determine the correct geostatistical parameters
of ln(S). In results not shown here, we have tried to estimate
the structural parameters of ln(S) from the data using the
method of Kitanidis [1995]. In these attempts, we could
sufficiently estimate the variance, but not the integral scales
of the ln(S) fluctuations.
[72] In summary, both test cases using wrong structural

assumptions about the spatial variability of storativity
showed significant, but not dramatic deviations in the
estimated log transmissivity fields.

7. Truncation of Drawdown Curves

[73] In practice, measurements of drawdown are prone to
fluctuating errors. Consequently, the measured curves are
not smooth. This poses difficulties to determine the time
point at which steady state is reached. Truncating the
drawdown curves too early will introduce a systematic
measurement error and thus shifts the corresponding esti-
mate. For demonstration purposes we perform a test with
truncated measurements.
[74] In this test case, the time point at which the measure-

ments are stopped is based on the rate of change of heads. If
the maximal rate of change of drawdown in all monitoring
wells is smaller than 2.4 
 10�6m/s, we declare the process
to have reached steady state and evaluate the ‘‘steady state’’
drawdown s1 from the next n2 = 100 measurements of
drawdown. Figure 6 shows the time point of truncation as
a shaded vertical line, whereas the horizontal dashed line
indicates the value of drawdown erroneously considered
as steady state value. The corresponding zeroth temporal
moment of Dh is calculated by integration from zero to
the truncation time. From the final drawdown and
m0(Dh), we compute m0(sd) and m1(sd)/m0(sd), according
to equations (10) and (11).
[75] With these measurements of m0(sd) and m1(sd)/

m0(sd), we perform our geostatistical inverse method. Plots
of the estimated distributions of ln(T) and ln(S) (not shown)
look rather similar to the estimates based on the extended
time curves.
[76] As listed in Table 2, using the truncated measure-

ments leads to slightly higher estimates of ln(T) and lower
estimates of ln(S). These shifts reflect systematic errors
caused by truncation: Both the final drawdown s1 and

Figure 5. Estimated parameter fields in the test case
assuming a spatially variable ln(S) field although the true
field is uniform. Color scale is identical to Figures 2a and 2b.
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the characteristic time of drawdown m1(sd)/m0(sd) are under-
estimated due to truncation. While, the true values are still
within ± one standard deviation of the estimates, the
systematic error is not accounted for in the estimation error,
because the latter exclusively quantifies random deviation
from the estimate.
[77] Nonetheless, because the shifts are rather small, we

conclude that truncating drawdown curves in a responsible
manner has only a minor impact on the estimate. In practice,
other systematic errors, such as a wrong correction for
atmospheric pressure fluctuations, may be more important.

8. Discussion and Conclusions

[78] We have successfully derived and implemented a
new, computationally efficient method to identify transmis-
sivity and storativity fields from transient drawdown curves
obtained in pumping tests. We characterize the drawdown
curves by their first two temporal moments. We have
presented equations generating temporal moments of draw-
down, which are formally identical to steady state equa-
tions. This leads to a dramatic reduction of computational
costs in predictive modeling, in the evaluation of sensitiv-
ities, and thus in the overall inverse procedure. We have
shown how the moments for a pulse-like extraction can be
computed from measurements taken in pumping tests with
continuous extraction or extraction over a time period.
[79] The concept of moment-generating equations has

been introduced to subsurface hydrology by Harvey and
Gorelick [1995b], who analyzed solute transport. In analogy
to Harvey and Gorelick [1995a], James et al. [2000], and
Cirpka and Kitanidis [2000], who used temporal moments
of concentration in geostatistical inverse modeling, we use
the temporal moments of drawdown. As inverse method, we
have chosen the quasi-linear geostatistical approach of
Kitanidis [1995]. Temporal moments of drawdown could
also be considered in any other inverse method, both based
on a geostatistical description of the parameter fields or a
deterministic one. Replacing transient equations by a series

of steady state equations will reduce computational costs
regardless of the inverse method chosen.
[80] We have restricted our analysis to the zeroth and first

moment of a pumping-test with pulse-like extraction. We
have shown that this restriction leads to acceptable results in
the reproduction of transient drawdown curves. If even a
better match is desired, the method can easily be extended
to include higher-order moments. The moment-generating
equation, equation (12), is not restricted to the zeroth and
first moments, and extending the evaluation of sensitivities
is straightforward. In practice, however, it may be difficult
to obtain accurate measurements of higher-order moments.
[81] The pde of drawdown, equation (2), and the mo-

ment-generating equation derived from it, equation (12),
require a clear separation between the drawdown induced
by pumping and the natural hydraulic head. This is given
when the heads are in steady state prior to pumping, and
when the boundary conditions do not change in the course
of the test. If these conditions are not met, the measurements
of drawdown will become more uncertain, which has to be
accounted for by larger values in the covariance matrix R
expressing the measurement error.
[82] We have applied our method to two-dimensional

confined aquifers. The method may also be applied to
two-dimensional, depth-integrated flow in phreatic aquifers,
described by the Boussinesq equation, if the thickness of the
groundwater body is much larger than the drawdown. For
shallow phreatic aquifers, the nonlinearity of the Boussinesq
equation prohibits using the moment-generating equations.
[83] Extension to three dimensions is straightforward.

Then, of course, the transmissivity is replaced by the
hydraulic conductivity, and the storage coefficient by the
specific storage coefficient. In our two-dimensional appli-
cation, we assume that the Dupuit assumption holds, that is,
flow is strictly oriented into horizontal directions and
drawdown does not vary with depth. If the true flow field
exhibits significant vertical components, e.g., in the vicinity
of a partially penetrating well, a three-dimensional descrip-
tion will be needed. This restriction does not impart the
applicability of moment-generating equations or the geo-
statistical approach of inverse modeling.
[84] Even though our model roots in a stochastic descrip-

tion of the aquifer properties, certain conceptual assump-
tions are deterministic. An example is the choice of
boundary conditions. With the exception of the pumping
rate in the well, most boundary conditions in practical
applications are uncertain. In principle, it is possible to
include parameters related to boundary conditions, such as
leakage coefficients, in the set of parameters to be esti-
mated, which we have not done in the current application.
Thus, in practical applications the remaining uncertainty
may be higher than in the given example. This uncertainty
in the choice of boundary conditions, however, affects all
inverse modeling schemes. It is unrelated to the question
whether temporal moments are used as data or whether the
aquifer parameters are characterized by geostatistics.
[85] Like in any application of geostatistical inverse

modeling, the density of the observation wells must corre-
spond to the integral scale of the formation. Our experience
with test cases, not reported here, is that about one mea-
surement per correlation length provides sufficient informa-
tion to identify the unknown parameters within acceptable

Figure 6. Transient drawdown curve with fluctuations due
to measurement error. Shaded stripe shows time points,
erroneously taken as steady state; dashed line shows final
drawdown as determined from the truncated curve.
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error bounds. If the typical distance of wells is considerably
larger than the integral scale, the obtained patterns of
hydraulic parameters reflect the distribution of observation
points rather than the true parameter distributions. If the
largest distance of wells is considerably smaller than the
integral scale, the estimated parameter fields correlate
strongly. In such a case, fitting deterministic trend models
may lead to equally good estimates of the parameter fields
as geostatistical inverse methods.
[86] All relevant scales, that is, the ‘‘radius of influence’’

of the pumping test, the distance between the wells, and the
integral scale of the heterogeneities, must match. As is
evident from Figures 2g and 2h, the parameters can be
estimated best in the direct vicinity of the extraction well. In
order to infer parameters in large domains, it is thus
necessary to combine results of several pumping tests using
different wells for extraction. This technique is called
hydraulic tomography [Gottlieb and Dietrich, 1995; Yeh
and Liu, 2000]. Our approach to characterize transient head
data by temporal moments may be applied to data from
transient tomographic pumping tests, acting as an alterna-
tive to the steady shape analysis applied by Bohling et al.
[2002], the ray-tracing technique of Brauchler et al. [2003],
and the transient geostatistical approach by Zhu and Yeh
[2005].
[87] Altogether, geostatistical inverse modeling of tran-

sient pumping tests using temporal moments of drawdown
appears to be a promising technique for simultaneously
identifying the spatial distribution of transmissivity and
storativity. Its computational efficiency and robustness
makes it possible to apply geostatistical inverse methods
to transient pumping tests even if large computational
domains are used.
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