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ABSTRACT

Computational power and storage capacities often pose heavy limitations to the size of the

problem able to be addressed in Kriging. For estimation on regular grids and the general-

ized case of an uncertain and spatially varying mean, we compile a toolbox of FFT-based

(spectral) methods for Kriging that is highly efficient in storage and computational com-

plexity. The general theme is to apply, improve or extend existing FFT-based algorithms
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for basic operations on covariance matrices which apply when covariance matrices have

Toeplitz structure. The discussed FFT-based algorithms are easily applicable for the case

of regular grids. In case of irregularly scattered data, we trace the problem back to sparse

but regular finer grids of measurements. We also present several fast approximations for

the estimation variance of Kriged fields that are asymptotically exact for certain limiting

cases. The computational efficiency and reduction of storage requirements over existing

Kriging algorithms are discussed and demonstrated in test cases.

KEY WORDS: Fast Fourier Transform, Geostatistical Estimation, Spectral Methods

INTRODUCTION

Spatially distributed quantities such as rainfall intensities, contaminant concentrations or

hydraulic conductivities are frequently interpolated between scattered measurements by

Kriging. Especially when considering large data sets of measurements, Kriging can lead to

systems of equations which are far beyond the storage capacities and computational power

of contemporary desktop computers. The motivation of this work is to make Kriging fast

and the required storage capacities low, permitting the solution of very large problems on

small computers.

In most standard forms of Kriging, there are three computationally most demanding tasks.

These are (1) to solve an m × m system of equations that involves the auto-covariance

matrix of the measurements to obtain the Kriging weights, (2) to perform a superposition

with the cross-covariance function between measurements and unknowns, weighted by the

Kriging weights in order to obtain the values at the points of estimation, and (3) to repeat

this procedure once for the estimator and m times for the estimation variance, where m

is the number of measurements.

Nearest neighborhood Kriging avoids the solution of large systems of equations by only

considering measurements within a certain radius around every point of estimation. This

requires the setting up and solution of as many systems of equations as the number of

different neighborhoods, and may be very time consuming (e.g.Kitanidis, 1997). Also, an
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implicit assumption on a moving-average type of mean value has to be made since the

mean value cannot be estimated globally.

Pegram (2004) published an efficient FFT-based Kriging method. He solves the Krig-

ing equations using an FFT-based algorithm called Iterative Constrained Deconvolution

(ICD). It is restricted to the cases of either known or unknown constant mean. For the

latter case, the sample mean of the measurements is used to estimate the unknown mean

value of the field. The estimation variance is approximated with only one system of equa-

tions to be solved, assuming that the measurements are almost uncorrelated. We will

demonstrate that the ICD algorithm, being formally identical to a non-preconditioned

steepest descent with an empirically chosen step-size coefficient, can be replaced by a

more efficient PCG-based algorithm. Also, we will show how to generalize Kriging in the

FFT-context to the case of uncertain mean, including spatial trends.

We exploit the fact that, in most cases, the auto-covariance function of the unknowns is

assumed to be second-order stationary or at least intrinsic (e.g, Kitanidis 1997), and the

points of estimation lie on a regular and equispaced grid. This setup leads to covariance

matrices with symmetric Toeplitz structure (Golub and van Loan 1996). The Toeplitz

structure can be exploited in terms of storage, because only the first column of the matrix

has to be stored (Zimmerman 1989). The product of a Toeplitz matrix with a vector is the

same as discrete convolution of a vector with a corresponding (covariance) function. This

convolution can be performed quickly using the FFT algorithm for convolution (e.g., van

Loan 1992). We show how to perform superposition based on this convolution algorithm

in order to speed up task (2) of evaluating the values at the points of estimation in Kriging.

With this technique, the associated computational costs can be reduced from the order

of mn to the order of n log2 n, where n is the number of estimation points. This is an

advantage for medium and large numbers of measurements (m > log2 n).

The more fundamental problem, task (1), is to solve the m×m system of Kriging equations

with the auto-covariance matrix of the measurements. If the measurements lie on a

regular grid and the field is second-order stationary, their auto-covariance matrix is again

a Toeplitz matrix. Per definition of covariance functions, the Toeplitz matrix is symmetric

3
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and positive-definite. Solving a Toeplitz system has been the subject of many studies in

the signal processing community (e.g. Gallivan et al. 1996, Kailath and Sayed 1999,

Barel et al. 2001). The iterative Toeplitz solver that we find the most promising within

the Kriging context is the FFT-based Preconditioned Conjugate Gradient (FFT-PCG)

method with circulant preconditioners. Applying this algorithm has the same prerequisites

as convolution via FFT, plus positive-definiteness of the involved Toeplitz matrix. We

refer to Shewchuk (1994) for a graphical review of the PCG algorithm and to Chan and Ng

(1996) for a comprehensive review on the use of circulant preconditioners therein. Using

the FFT-PCG algorithm, the Kriging system can be solved with computational effort in

the order of m log2 m instead of m3 (depending on the conventional solver used).

In case the measurements are irregularly spaced, the Toeplitz structure of the auto-

covariance matrix of measurements is lost. For this case, we present an extension of

the FFT-PCG algorithm to irregular grids. This extension is similar to the idea used by

Pegram (2004) in the ICD algorithm, but embedded in a more powerful iterative solver.

Most intrinsic random space functions can be traced back to special cases of second-

order stationary fluctuations about a spatial varying mean with known base functions

(i.e., trends) but unknown or uncertain coefficients of the base functions (compare Nowak

and Cirpka 2004, Nowak and Cirpka 2006, Kitanidis 1993). In order to be as general as

possible and include such intrinsic cases, we use the generalized form of Kriging for the

case of a spatially variable and uncertain mean. This case also includes the cases of known

and unknown mean as limiting cases.

The remaining problem is that task (1) and (2) need to be performed m times in order

to obtain the estimation variance of Kriging. We show how to reduce the factor of m in

several levels of trade-off versus accuracy. These approximations are asymptotically exact

for certain special cases. The fastest options require exactly one additional solution, using

the approximation for almost uncorrelated measurements as suggested by Pegram (2004),

or by neglecting boundary effects on large regular grids of measurements. At the end of

this study, we demonstrate that these methods allow to handle huge Kriging problems

even on ordinary desktop computers.
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KRIGING WITH UNCERTAIN MEAN

Based on the function-estimate form of Kriging with unknown mean (e.g., Kitanidis 1997

and Kitanidis 1996), Nowak and Cirpka (2004) developed the generalization of Kriging

to the case of uncertain mean. Although their original publication dealt with non-linear

cokriging-like cases, Kriging is obtained from the described method by using the same

covariance function among observed and estimated quantities. The following is a brief

summary of the method.

Let s be an n × 1 multi-Gaussian vector of unknowns (sometimes also called target

point values in regression-like problems) with expectation E [s] = Xβ and covariance

Cov [s|β] = Qss, where X denotes the [n × p] matrix of discrete base functions and β

the [p × 1] vector of trend coefficients. For a spatially constant mean of s, X is a n × 1

vector with unit entries and β is the actual value of the mean. When adding trends, X is

extended by new columns for each additional trend term, with the according coefficient

appended to β. For the case of uncertain mean, the trend coefficients are again set to be

Gaussian variables with mean β∗ and variance Qββ. For given values of s, the distribu-

tion of β is again Gaussian with conditional mean E [β|s] = β̂ and conditional covariance

Qββ|s.

Consider further Y an m×1 vector of measurements (sometimes also called control point

values in regression-like problems) which are sampled from s according to

Y = Hs + r . (1)

Here, H is a m × n sampling defined as

Hi,j =






1

0

for xi = xj

otherwise
, (2)

with xi the coordinates of the i-th measurement location and xj the coordinates of the

j-th estimation point, and r is an m × 1 vector of random measurement errors. The

5
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measurement errors have zero mean and m × m covariance matrix R, typically a scalar

matrix (i.e., a diagonal matrix with constant values along the diagonal). Interpreting

the sampling matrix H as a sensitivity matrix in linear error propagation, the following

identities hold:

Qys = HQss (3)

Qsy = QssH
T (4)

Qyy = HQssH
T + R , (5)

where Qsy is the n×m cross-covariance matrix between the unknowns s and measurements

Y, and Qyy is the m× m auto-covariance matrix of the measurements. In this notation,

the Kriging estimate ŝ is given by

ŝ =




Qys

XT





T 


ξ

β̂



 . (6)

The m × 1 vector of Kriging weights ξ (also called reciprocal data by Pegram 2004) and

the p× 1 vector of trend coefficients β̂ are taken from the solution of the Kriging system




Qyy HX

(HX)T −Q−1
ββ








ξ

β̂



 =




Y

−Q−1
βββ∗



 . (7)

The associated estimation variance σ̂ is the n×1 vector on the diagonal of the conditional

covariance matrix

Qss|y = Qss −




Qys

XT





T 


Qyy HX

(HX)T −Q−1
ββ





−1 


Qys

XT



 . (8)

The special case of unknown mean is recovered by setting Q−1
ββ = 0 and using a vector of

unit entries for X. The case of known mean is included by setting p = 0, i.e., by omitting

all rows and columns that refer to β.
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The covariance of s for uncertain β is Gss = Qss + XQββXT , where Gss is a generalized

covariance matrix Gss(Kitanidis 1993). If Qss is second-order stationary, then Gss is at

least intrinsic. By adequate choice of X, the most common intrinsic cases can be expressed

via generalized covariance matrices, which in turn can be decomposed into second-order

stationary parts plus terms related to an uncertain mean value.

The expensive tasks referred to the introduction are (1) solving the Kriging system (Eq. 7)

to obtain the Kriging weights, (2) perform the superposition Qsyξ in Eq. (6) to evaluate

the estimate, and (3) evaluate m + p equivalents to task one and two to obtain the

estimation variance (Eq. 8) .

TOOLBOX OF SPECTRAL METHODS

In this section, we provide and extend a collection of FFT-based methods which speed

up matrix operations for so-called Toeplitz matrices. The connection between spatial

estimation and Toeplitz matrices is explained in the following section. The basic trick of

all FFT-based methods is that their periodic counterparts, called circulant matrices, have

highly exploitable properties in the Fourier space. Their most central property is that

the discrete Fourier transform of their first column equals their eigenvalues and that the

eigenvectors of all circulant matrices are combined in the discrete Fourier matrix (Varga

1954). This so-called diagonalization theorem has also been proved by Trapp (1973).

Hence, Toeplitz matrices are first converted to circulant matrices in a step called periodic

embedding, then FFT-techniques are applied, followed by conversion back to the Toeplitz-

equivalent in a step called extraction. Illustrated reviews of this procedure are provided

by Kozintsev (1999) or by Nowak (2005).

Exploitable structure of covariance matrices

For finely resolved Kriging problems in larger domains, the unknowns s are typically

discretized on a regular and equispaced grid. Under the common assumption that the

unknowns s are statistically second order stationary (or intrinsic in such a way that an

adequate choice of X yields Qss second-order stationary), Qss has symmetric Toeplitz

7
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structure. In Toeplitz matrices, the entries along each diagonal have the same value.

Hence, the (i + 1)-th row equals the i-th row translated by one entry to the right, with

a new element appearing on the first position on the left. In the d-dimensional case, the

Qss has level-d block-Toeplitz structure, where the same pattern applies to nested block

structures.

As a consequence, the first column of a symmetric Toeplitz matrix contains all the in-

formation. This has been shown to be computationally exploitable (Zimmerman 1989).

First of all, only one column has to be stored instead of a full matrix, reducing storage

requirements from n2 to n elements. Second, many algorithms have been found that work

on the first column only, or that work on the generating vectors only (e.g., Kailath and

Sayed 1995).

A Toeplitz matrix with a first column in the form of a0, a1, ..., aN , ..., a1 is called a circulant

matrix. Any Toeplitz matrix Qss with first column q0, q1, ..., qn can be embedded in a larger

circulant matrix Qss,e. The physical analog is embedding a finite domain in a larger

periodic one. The easiest way to do this is to simply append the elements q1, . . . qn−1

in reverse order qn−1, qn−2, ..., q1 to the first column. For specific applications, smaller

embedding sizes may be allowable, or larger ones to ensure positive-definiteness may be

required. For example, the generation of random fields require the resulting circulant

matrix to be non-negative, and it should be positive-definite if used together with certain

iterative solvers, while convolution via FFT unaffected by the definiteness. These issues

are discussed in more detail by Newsam and Dietrich (1994), Dietrich and Newsam (1997),

or Nowak et al. (2003).

Embedding and Extraction

In matrix notation, embedding and extraction may be formally expressed via an ne × n

mapping matrix M (Cirpka and Nowak (2004)):

M =




In×n

0(ne−n)×n



 (9)
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Then, embedding an n × 1 vector x is

embedding: xe = Mx (10)

and extracting from an ne × 1 vector xe is

extraction: x = MT xe (11)

The Toeplitz matrix can formally be extracted from the embedding circulant one by

Qss = MT Qss,eM . (12)

Of course, embedding and extraction are achieved via zero-padding or disregarding ex-

cess elements instead of performing actual matrix-vector products, or by using a sparse

representation of M. Throughout the remaining paper, Qss denotes Toeplitz-structured

covariance matrices and Qss,e denotes larger circulant covariance matrices with first col-

umn qss,e that embed Qss. Subscript e denotes vectors embedded according to Eq. (10).

Sampling and injection

Operations similar to embedding and extraction are injection and sampling. Measurement

as a process of sampling from a vector has been defined in Eq. 2, and injection is the

opposite operation. As formal matrix operations, sampling and injection are denoted by:

sampling: x = HX (13)

injection: X = HTx (14)

Sampling is performed by reading specific values x from the larger vector X. Injection is

achieved by writing the values of x into a larger vector of initial zeros X at the sampling

positions. Accordingly, we call H a sampling and HT an injection matrix. Sampling and

injection will be useful in the context of superposition and for the extension of spectral

9
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methods to irregular grids.

Convolution via FFT

One of the most interesting properties of Toeplitz matrices is that multiplication with

a vector is the same as a discrete convolution of the vector with the first column of a

Toeplitz matrix. This simple and well-known trick is the basic building block for all

further efficient spectral methods discussed in this paper.

Consider x an n × 1 vector, Qss a n × n Toeplitz matrix, qss,e the first column of the

embedding circulant matrix, and let F [·] and F−1 [·] denote the Fourier transform and

its inverse, respectively. Then:

Qssx = MTF−1 [F [Mx] ◦ F [qss,e]] , (15)

where (·) ◦ (·) denotes the element-wise (Hadamard) product. Using the fast Fourier

transform (FFT) or its extension to arbitrary vector length (Cooley and Tukey 1965,

Frigo and Johnson 1998), Fourier transforming an n× 1 vector has a computational com-

plexity of O (n log2 n). Taking a small detour into a larger periodic system via circulant

embedding, the product Qssx can be evaluated efficiently while only storing the first

column of the matrix (e.g. van Loan 1992). The computational complexity is reduced

from O (n2) to O (n log n) and storage requirements are reduced from O (n2) to O (n).

The storage requirements for standard evaluation of Qssx may also be reduced to O (n)

by n successive additions of the shifted integral kernel of convolution without storing

more than the current shifted version. The shifting procedure, however, also requires an

embedding procedure and the same number of memory access operations as the explicit

brute-force matrix product. The same FFT-based procedure and some extensions are

used for evaluating auto- and cross-covariance matrices of dependent quantities in the

context of cokriging and geostatistical inverse modeling in Nowak et al. (2003)).

Figure 1 (solid line and bold dash-dotted line) shows a comparison of CPU time and

storage requirements depending on vector length n on a contemporary desktop computer

10
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(i386, 2.8GHz Intel Xeon dual-core, 2GB RAM, Suse Linux 9.2, implemented in MATLAB

R2006b). Although convolution via FFT has a certain overhead for embedding, it is faster

even for very small problems since only n instead of n2 elements of Qss need to be generated

and handled in memory. The costs of conventional convolution are included as bold dash-

dotted line for n/m = 1, while the other ratios of n over m refer to the superposition

problem in the following section. Convolution via FFT is faster by almost three orders of

magnitude unless for very small problems, where lower orders of computational complexity

play a role. The X-marked circles indicate memory overflow. For simple conventional

superposition, where n2 elements need to be stored, storage is the main restriction to

the problem size. Successive shifting of the integral kernel remedies this restriction, but

does not save computational costs, resulting in the straight-line extension of the standard

methods beyond the point of memory overflow.

Superposition via FFT

Evaluating the term Qsyξ Eq. (6) is identical to a ξ-weighted superposition of the auto-

covariance of the unknowns, where the individual offset between the single superimposed

terms is given by the measurement locations. In a formal step which at first looks counter-

productive, we show how to trace this operation back to a convolution using Eq. (4):

Qsyξ = QssH
T ξ = Qss

(
HT ξ

)
︸ ︷︷ ︸

Ξ

. (16)

The parentheses on the right-hand side of this equation points out that we first inject the

m × 1 vector ξ into an n × 1 vector Ξ . The remaining matrix-vector product QssΞ is

again a convolution, so that:

Qsyξ = MTF−1
[
F

[
MHT ξ

]
◦ F [qss,e]

]
, (17)

in which we combine the injection and embedding of ξ into one operation. At a com-

putational complexity of O (n log n), this scheme is faster than direct superposition for

m > log n, i.e., for relatively large numbers of measurements. We also avoid the effort of

11
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cutting/pasting /shifting the covariance function to different locations prior to summation

or, even worse, to store all of these shifted functions simultaneously. Instead, only the

first column qss,e needs to be stored, keeping the storage requirements at O (n) instead of

O (nm).

The resulting computational effort and storage requirements are shown in Figure 1 for

different values of n/m. In spite of its overhead and independence of m, the FFT-based

algorithm is faster than the standard method in the explored range of n/m. The largest

speedup, nearly three orders of magnitude compared to conventional superposition, is

achieved for high numbers m of injections relative to n.

Efficient solution of Toeplitz systems

Eqs. (7) and (8) require the solutions of systems using the m×m auto-covariance matrix

of the measurements, Qyy. If the measurements are arranged on a regular grid, Qyy has a

Toeplitz structure just like Qss. In that case, we suggest solving the Kriging equations via

the FFT-based Preconditioned Conjugate Gradient (FFT-PCG) solver described below.

Other techniques, with slightly lower performance and less adequate for combination with

the superposition task, include look-ahead Schur algorithms and algorithms based on

generalized displacement structures (e.g. Gallivan et al. 1996, Kailath and Sayed 1999,

Barel et al. 2001) and are not discussed here.

The preconditioned conjugate gradient (PCG) method (Shewchuk 1994) iteratively solves

a linear system of equations Ax = b. The PCG method converges in as many iteration

steps as there are distinct eigenvalues of A. If there exists a preconditioning matrix V

which clusters the eigenvalues of the product V−1A around unity, the algorithm will

converge in only a few steps.

The advantage in this context is that PCG only requires evaluation of the product Ax,

which may be performed without explicitly storing or knowing all elements of A. The

same holds for applying the preconditioner. In the FFT-PCG algorithm, these steps are

evaluated through convolution via FFT, i.e. in O (n log2 n) operations. Solving a circulant

system is identical to convolution via FFT with only the Hadamard product replaced by

12
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element-wise division (compare Good 1950, Rino 1970). If choosing a circulant matrix as

preconditioner for the Toeplitz system, then applying the preconditioner is once again an

n log2 n operation, and only one column of the preconditioner needs to be stored.

Chan and Ng (1996) review and compare circulant preconditioners that have the same

size as the original Toeplitz matrix and differ in the norm of V−1A they satisfy. For

poor-conditioned Toeplitz systems, e.g., for Gaussian covariance matrices with high cor-

relation lengths (e.g., Wesson and Pegram (2004)), the preconditioners themselves have

a very poor condition, causing numerical noise to be amplified. Wesson and Pegram

(2004) showed that singular value decomposition is very powerful in suppressing numeri-

cal artifacts when Kriging with such poorly conditioned systems. Trapp (1973) discussed

generalized inverses of circulant matrices which could be used in this context, but we

encountered poor convergence of generalized inverses with our iterative solver in prelim-

inary studies. Along similar lines, Nowak (2005) proposed a regularization term, which

is added to the diagonal of circulant preconditioners and evenly increases all eigenvalues

(Appendix) instead of disregarding the almost-zero ones. We chose the Strang precon-

ditioner (Strang 1986) on the embedded level, which is identical to the circulant matrix

already in use for convolution via FFT, in conjunction with the regularization suggested

by Nowak. However, if measurement error is included so that R 6= 0, then R regular-

izes the entire system anyway and it is unlikely that additional regularization is required

(compare Dietrich and Newsam 1989).

Figure 2 compares CPU times and storage requirements for standard Gaussian elimina-

tion (built-in solver for dense systems in MATLAB R2006b) versus the FFT-based PCG

algorithm for the solution of Toeplitz systems of different sizes m. For a number of un-

knowns of m ≈ 300, a break-even point of the two algorithms can be observed. Still below

m = 1, 000, FFT-based PCG is faster than the standard solver by more than an order

of magnitude. At m = 10, 000, the standard solver broke down due to memory overflow,

whereas the FFT-based PCG worked up to m = 1.6 · 107. The figure also demonstrates

the superiority of the FFT-PCG over other standard solvers equipped with FFT-based al-

gorithms for handling the Toeplitz matrix. Iterative Constrained Deconvolution (Pegram

13
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2004, see also next section) is still faster than steepest descent (e.g., Press et al. 1992).

The largest individual speedup is achieved by preconditioning, which requires more effort

per iteration step but drastically reduces the number of iterations. The conjugation of

gradients increases the effort per step once more, but the net effect of even fewer iteration

steps prevails.

Extension of Toeplitz solvers to irregular grids

In order to solve Eq. 7 for irregularly scattered measurements, Pegram (2004) uses an

algorithm called Iterative Constrained Deconvolution (ICD). The ICD algorithm can be

identified as a steepest descent algorithm of the form ξi+1 = ξi + α (Y − Qyyξi), where α

denotes a user-defined step size coefficient. For the matrix-vector product Qyyξi, he uses

an injection/sampling combination

Qyyξi = H
[
Qss

(
HT ξi

)]
(18)

and evaluates the product with Qss using convolution via FFT. To be more precise,

the sampling (multiplication with H) is never actually performed during the algorithm.

Instead, the final value within the square brackets is used for Qsyξ in Eq. 6, thus avoiding

one additional superposition.

In order to extend the FFT-based PCG to irregular sampling grids, we seized Pegram’s

suggestion to inject the irregularly scattered measurements into a finer regular grid, as

also done in Eq. 18. The corresponding injection/sampling procedure Qyy = HQssH
T ,

where Qss is a larger Toeplitz matrix, is formally identical to the embedding/extraction

procedure Qss = MTQss,eM to embed a Toeplitz matrix in a larger circulant matrix, and

both procedures can be combined into one:

Qyy = HQssH
T

Qss = MTQss,eM

→ Qyy =
(
HMT

)
Qss,e

(
MHT

)
(19)
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All other particulars are identical to the FFT-based PCG algorithm for Toeplitz matri-

ces (regular measurement grids). Placed within the PCG framework, the idea of sam-

pling/injection is much more efficient than within the framework of steepest descent as

used in the ICD algorithm. The resulting FFT-based PCG solver for almost-Toeplitz

matrices (irregularly scattered measurements) is described in Appendix.

Figure 3 compares CPU times and storage requirements for FFT-based solvers for nearly-

Toeplitz systems with those of standard Gaussian elimination for different problem size

m and sizes of the finer regular grid n. The finer grid introduces a substantial overhead if

a high spatial accuracy of measurement locations on the finer grid is desired. Therefore,

the standard solver is faster than the FFT-PCG in the majority of cases. However, the

reduced storage requirements allow FFT-based algorithms to solve much larger systems

of equations. On our reference computer, the limiting size of the underlying regular grid

was n = 1.6 · 107. The FFT-PCG solver proposed in this study outperforms the ICD

algorithm by a factor of roughly ten.

APPLICATION OF FFT-BASED ALGORITHMS

TO KRIGING

Kriging Estimator

In order to apply the efficient solvers discussed above for solving the Kriging system of

equations (Eq. 7), we exploit the fact that the coefficient matrix (also called the Kriging

matrix) consists of an m × m sub-matrix Qyy with exploitable structure and structural

perturbations of rank p ≪ m. First, we introduce three auxiliary variables which will be

re-used several times in the following procedures:

x = HX (20)

y = Qyy
−1Y (21)

z = Qyy
−1HX = Qyy

−1x (22)
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Then, we partition the inverse of the Kriging matrix in 7 as follows (Kitanidis 1996, Nowak

and Cirpka 2004):




Qyy HX

XTHT −Q−1
ββ





−1

=




Pyy Pyβ

Pβy Pββ



 (23)

Now, we express the sub-matrices P in Eq. (23) according to Schweppe (1973) and im-

mediately simplify using our auxiliary quantities:

Pββ = −
(
xTz + Q−1

ββ

)−1
(24)

Pβy = Pyβ
T = −PββzT (25)

Pyy = Qyy
−1 + zPββzT (26)

where Eq. 24 is also known as the Schur complement. Using these sub-matrices yields a

partitioned form of the coefficient vector (compare Nowak and Cirpka 2004):

ξ = y − zβ̂

β̂ = −Pββ

(
zTY + Q−1

βββ∗
)

(27)

Altogether, the entire estimator requires to:

1. Compute the auxiliary quantities x, y and z according to Eqs. (20) to (22), using

the most appropriate solver (e.g. the FFT-based PCG),

2. Evaluate the partitioned solution vector of the Kriging system according to Eq. (27),

3. Evaluate the estimate according to Eq. (6), using superposition via FFT (Eq. 17)

for Qsyξ and simple matrix-vector multiplication for Xβ̂

Step one requires p sampling processes to obtain x, and 1+p solutions of a (nearly) Toeplitz

system to obtain y and z, with an asymptotic cost estimate of O ((1 + p) m log2 m) (when

Qss is second-order stationary and the measurements y fall onto a regular grid so that the

FFT-PCG for regular grids can be applied). Step two involves only smaller operations of

16
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O (mp) and O (p2) to treat the rank p perturbations in the structure of the Kriging matrix.

Step three is an O (np + n log2 n) operation. This yields a total of O (n log2 n + m log2 m)

for the entire estimation with storage requirements of only O (n), given that n ≫ m ≫ p.

Estimation Variance

To obtain an efficient procedure for evaluating the estimation variance, we re-combine

some terms in Eq. (8):

Qss|y = Qss −




Qys

XT





T 


Qyy HX

(HX)T −Q−1
ββ





−1

︸ ︷︷ ︸
S




Qys

XT



 (28)

S =




Qys

XT





T 


Qyy HX

(HX)T −Q−1
ββ





−1

I(m+p) (29)

Here, we appended the (m + p)×(m + p) identity matrix I to S without actually changing

the equation. However, it clarifies that the (m + p) columns of S are unit estimators si

that arise from using the (m + p) unit vectors ei in I(m+p) as data vectors for Kriging in

Eq. (7).

For the estimation variance σ̂2, we only need the diagonal of Qss|y. The diagonal of a

matrix product or of dyadic matrices (i.e., matrices defined by dyadic products) with low

rank can be directly and efficiently evaluated using

diag
(
A(n×m)B

T
(n×m)

)
=

m∑

i=1

(ai ◦ bi) (30)

where ai and bi are the i-th columns of A and B, respectively. Then, Eq. (28) simplifies

to:

σ̂2 = diag
(
Qss|y

)
= σ2 −

m+p∑

i=1

si ◦

[
Qsy X

]

i︸ ︷︷ ︸
σ2

kriging

(31)

17
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To efficiently evaluate this expression:

1. Initialize σ̂2 = σ2,

2. Evaluate the unit estimator si for the (m + p) × 1 unit vector ei as data vector

for Kriging, using FFT-based algorithms and Eqs. (20) to (27) as described in the

previous section,

3. Perform the Hadamard product of the unit estimator with the i-th column of[
Qsy X

]
and subtract the result from σ̂2 and

4. Repeat steps 2 and 3 for i = 1 . . .m + p.

In total, this makes evaluating σ̂2 an effort of (m + p) estimations, (m + p) Hadamard

products and summation of (m + p) vectors, each sized n × 1, resulting in an asymptotic

complexity of O (mn log2 n + m2 log2 m).

Efficient Approximations to the Estimation Variance

For the sake of the following analysis, we revert to the partitioned form of the Kriging

matrix. Starting from Eq. (8), inserting Eqs. 24 to 26 and applying Eq. 30 yields after

some rearrangement:

σ2
kriging =

m∑

i=1

[
QsyQyy

−1
]
i
◦Qsy,i +

p∑

i=1

[QsyzPββ]
i
◦ [Qsyz]

i

−2

p∑

i=1

[QsyzPββ]
i
◦ Xi +

p∑

i=1

[XPββ]
i
◦Xi (32)

The first term is the one required for Kriging with known mean, i.e. with a number

of base functions p = 0, and represents m unit estimators similar to those defined in

Eq. 29. Hence, it has well-known properties. The approximations in the following sections

will focus on the asymptotic behavior of this first term under specific conditions. With

no further simplifications, this term requires full inversion of Qyy, m superpositions via

FFT to evaluate QsyQyy
−1 and then m Hadamard vector-vector products, followed by

summation over index i.

18



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

All other terms relate to the uncertainty in estimating the trend coefficients. We will not

simplify them any further, since their computational complexity is negligible over that of

the first term, given that m ≫ p: We first evaluate p superpositions of O (n log2 n) each

to obtain the individual columns of the n × p matrix ζ = Qsyz via FFT. The remaining

steps are O (np2) for the multiplication with Pββ and the 3p Hadamard products.

Single-Point Approximations

In the single-point approximations discussed here, correlation between measurements is

neglected. They have been suggested by Pegram (2004) for zero measurement error and

the specific cases of known/unknown mean. These approximations reduce the computa-

tional complexity of the estimation variance by one order in m.

1. For vanishing correlation among the measurement points on both irregular and

regular grids, Qyy approaches a scalar matrix Qyy ≈ (σ2 + σ2
err) I with σ2

err being

the variance of measurement error. Then, the first term can be approximated by:

m∑

i=1

[
QsyQyy

−1
]
i
◦ Qsy,i ≈ 1

σ2+σ2
err

m∑

i=1

Qsy,i ◦ Qsy,i (33)

2. For the case of known-mean Kriging, the estimation variance is equal to the value

of the measurement error variance σ2
err at measurement locations. If the correlation

among measurements is too large for the above simplification, the latter condition

may still be enforced by requiring that the first term equals σ2−σ2
err at the locations

of measurements. This is achieved by solving the subsidiary Kriging problem:

m∑

i=1

[
QsyQyy

−1
]
i
◦ Qsy,i ≈ Q∗

sy

(
Q∗

yy

)−1
um

(
σ2 − σ2

err

)
(34)

where um is a m × 1 vector of ones used as data vector in the subsidiary problem,

Qss
∗ = σ−2Qss ◦ Qss, Q∗

sy = Qss
∗HT , and Qyy

∗ = HQss
∗HT .

Infinite Regular Grid Approximations

If the grid of measurements is regular and equispaced and its extent is much larger than the
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range of correlation, the number of mutually correlated measurements differs only within

a thin boundary area. Besides that area, the inner section of the measurement behaves

statistically stationary. If the application permits, one may neglect these boundary effects

and assume that all measurement points have the same correlation to the same number of

neighbors. Then, the contribution of one single representative measurement point in the

center of the domain towards the estimation variance may be used to approximate that

of all others by shifting:

QsyQyy
−1 ≈ shiftm [Qsyξc] (35)

The term within square brackets is a n × 1 zero-mean Representative Unit Estimator

(RUE) for a unit measurement in the center of the domain, and shiftm [·] denotes an

n × m matrix obtained from concatenating the RUE m times, each time shifted to the

respective next measurement location. To allow this shifting operation, the RUE needs

to be larger than the actual domain. This is achieved by performing the superposition

Qsyξc for a virtual larger domain, using the embedded version of the covariance function.

Since measurements in the interior convey less independent information than those at

the boundaries, this approximation yields a conservative upper bound of the estimation

variance. It is exact for the case of an infinite (or periodic) grid of measurements. The

remaining complexity is again reduced by one order in m.

Hybrid Regular Grid Approximation

In the infinite regular grid approximation, the largest errors occur along the boundaries

of the measurement grid. The corresponding unit estimators may be evaluated separately

in their exact form, whereas the bulk inner part of the unit estimators are approximated

by shifting the RUE. A user-defined break criterion for the observed difference between

RUE and exact unit estimator can be used to determine the boundary zone in which to

use the exact version.
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Infinite Regular Grid Average

Another option to simplify the estimation variance is to start with a conditional covariance

made stationary by averaging over all starting points of separation vectors with same

length, i.e. by averaging each diagonal of Qss|y. A semi-analytical solution for the averaged

conditional covariance has been developed by Cirpka and Nowak (2003). We will translate

the formalism into the notation and context used here for the sake of completeness. Due

to averaging, the diagonals diag (·) in Eqs. (30) and (31) become traces Tr (·) multiplied

by a factor of 1/n. Since the trace is invariant with respect to cyclic permutations, the

averaged equivalent of Eq. (32) is:

σ2
kriging =

1

n
Tr

(
Qyy

−1QysQsy

)
+

1

n
Tr

(
PββzTQysQsyz

)

−
2

n
Tr

(
PββX

TQsyz
)

+
1

n
Tr

(
PββXTX

)
(36)

In this form, all terms but the first have boiled down to traces of p × p matrices. If

we again evaluate ζ = Qsyz via FFT, these small matrices are obtained from 3p scalar

products and are computationally cheap.

For regular measurement grids, the first term is the inverse of an m × m Toeplitz ma-

trix multiplied with another m × m Toeplitz matrix QysQsy = HQssQssH
T . For small

numbers of measurements, it may be evaluated exactly in a manner similar to the unit

estimator technique described above, but the procedure may quickly explode in compu-

tational effort for larger m. If the measurement grid is sufficiently large or periodic, we

may approximate both matrices by circulant counterparts, and evaluate first column of

the circulant resulting from the martrix product by convolution via FFT of the individual

first columns. The trace of the resulting circulant is quite trivially given by m times the

first element (e.g., Davis 1979).

Generation of unconditional and conditional random fields

The fast and exact generation of random fields via FFT has been described by Dykaar
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and Kitanidis (1992) and by Dietrich and Newsam (1993). The generation of statistically

stationary random fields on regular grids is based on the symmetric decomposition of Qss

achieved by taking the element-wise square root of is eigenvalues obtained from F [qss,e],

followed by convolution via FFT with a white-noise vector. The overall computational

effort is as low as O (n log2 n) at storage requirements of, once again, only O (n). Con-

ditioning to direct or linearly dependent measurements has been dealt with by Dietrich

and Newsam (1996). For the non-linear case, the same procedure is suggested by Ki-

tanidis (1995). They correct unconditional realizations to conditional ones by subtracting

a Kriging estimator with adequately chosen measurements. Without going into further

details, we point out that the FFT-based algorithms for Kriging described in this study

can also be applied in this correction step, keeping the asymptotic cost estimate down at

O (mn log2 n + m2 log2 m) and memory consumption at O (n).

PERFORMANCE TESTS

In this section, the performance of the described FFT-based methods is demonstrated

in comparison with standard methods. Our performance analysis was carried out on a

contemporary desktop computer (i386, 2.8GHz Intel Xeon dual-core, 2GB RAM, Suse

Linux 9.2) purchased in 2004. All methods were implemented in MATLAB (Release

2006b). As conventional solver for dense systems, the built-in Gaussian elimination in

MATLAB was used. MATLAB also includes the Basic Linear Algebra Package and an

implementation of the FFTW (Frigo and Johnson 1998). In order to keep the FFTW

algorithm efficient for arbitrary domain sizes, we implemented a small algorithm that

chooses embedding sizes with prime factors of 2, 3, 5 and 7 only. Required relative error

norm for all iterative solvers was set to 10−10.

In all performance tests, we used random measurement data and varied both the number n

of estimation points and the number m of measurements. All tests assumed an uncertain

but spatially constant mean value, so that the number p of trend coefficients is one and X

is a n × 1 vector of ones. The individual test series are composed of n = 2k, k = 2 . . . 24

estimation points and ratios between n and the number m of estimation points given by
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n/m = 2ℓ, ℓ = 2 . . . 14. All computations above 105s (approx. 1 day) were stopped and

their CPU times estimated by extrapolation of fitted complexity models.

Kriging with conventional solver

Standard Kriging on a regular estimation grid and with irregularly scattered measure-

ments serves as our base-case for comparison. With standard Kriging, we refer to Gaus-

sian elimination for solving the Kriging system, conventional superposition by successive

addition of the shifted covariance kernel, and evaluation of the exact estimation variance

The results are displayed in Figure 4 (solid lines). The auto-covariance matrix of the

unknowns s is represented by its first column only in our conventional superposition algo-

rithm. Hence, mainly the size of the Kriging matrix, i.e. the number m of measurements

squared, is the limiting factor to the problem size. Had we chosen a brute-force matrix

product approach to superposition and had we explicitly stored the n × m matrix Qsy,

the limitation would have been even more severe. Due to the restriction in size, CPU

time never rose above one day. When using the one-point approximation to simplify the

estimation variance (not shown here), the computational effort reduces by a factor of

roughly m.

The speedup of superposition via FFT versus conventional superposition can be read

from the dashed lines in Figure 4. Since the overall complexity is dominated by the

solution of the system, the order of the asymptotic cost estimate does not change for high

measurement numbers, but speedup factors of up to fifty occur. The memory-related

restrictions of measurement numbers still holds, and the storage requirements of both

versions coincide.

Kriging with FFT-based solvers

Now, we demonstrate the effect of using the FFT-based PCG solver instead of Gaussian

elimination, combined with superposition via FFT (Figure 5). The FFT-based PCG solver

is slightly slower for unfavorable ratios n/m (compare Figure 3), but radically cancels the

dependence of storage requirements on the number of measurements. As a consequence,
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only the grid of estimation limits the admissible problem size. For small numbers of

measurements, it is more efficient to revert to conventional Gaussian elimination (dashed

lines in Figure 4).

The CPU time for evaluating the estimation variance is O (m) larger than that of one

Kriging estimate. Figure 5 also shows how approximations to the estimation variance

can drastically reduce the overall computational effort by approximately this factor of m.

For large numbers of measurements (small n/m), the observed advantage in CPU time

rises up to five orders of magnitude. When evaluating only the estimator and omitting

the estimation variance (not shown here), CPU times would show the same shape of

dependence on n and n/m as the dashed lines, reduced by a factor of approximately two.

The greatest advantage can be made if the measurements are on a regular grid. For

that case, the FFT-based PCG solver outruns Gaussian elimination for any problem size

and permits vast numbers of measurements at even lower computational expense. The

CPU times are smaller by about one order of magnitude over a large range of problem

sizes (Figure 6). Especially for large problems, the infinite-grid approximation of the

estimation variance is likely to be sufficiently accurate for many purposes. The associated

computational speedup is again about ten compared to the irregular-grid case, and again

about 5 orders of magnitude compared to the exact evaluation of the estimation variance.

Entirely omitting the estimation variance (not shown here), as in the previous case, results

in a reduction of CPU times down to roughly one half of the dashed lines.

SUMMARY AND CONCLUSIONS

In this study we compiled a toolbox of existing and newly extended FFT-based methods

to drastically speed up Kriging for large estimation problems. These methods include

FFT-based convolution, FFT-based superposition and an FFT-based PCG solver. All

methods apply to estimation on regular and equispaced grids. The measurements may

either lie on regular and equispaced grids or be irregularly scattered. For irregularly

scattered measurements, we introduced an extension of the existing FFT-based PCG

method which can be understood as an extension of Pegram’s (2004) method, where
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scattered measurements are assigned to nodes of a (finer) regular grid. The density of

the regular grid is dictated by the required accuracy in discretizing the irregular grid,

depending on the specific application. We showed how to apply these methods to the

generalized case of Kriging with uncertain mean and trends, including measurement error.

The efficiency of all methods was demonstrated in a series of performance tests on an

ordinary desktop computer with all algorithms implemented in MATLAB.

The first eye-catching advantage of all FFT-based methods is that only the covariance

function for one point, i.e. the first column of the respective auto-covariance matrices,

needs to be stored. This makes the storage requirements shrink from O (n2) and O (m2)

for whole covariance matrices to only O (n) and O (m) for one column each (where n

is the number of estimation points and m is the number of measurements). This also

reduces the time needed to set up the matrices themselves, which is not negligible since

evaluating effective separation distances and covariance functions (including exponentials)

has substantial computational costs.

FFT-based superposition has computational costs in the order of n log2 n instead of mn,

which turned out to be highly favorable even for very small data sets on our reference

computer. For regular and equispaced measurement grids, the FFT-based PCG solver

with its complexity of O (m log2 m) outruns standard solvers for dense systems by far. For

irregularly scattered measurements, the extended FFT-based PCG solver is less efficient

than the standard solver for low and medium numbers of measurements. The break-

even point is at roughly m = 1000 measurements, depending on the resolution of the

finer regular grid. The great advantage, however, is that the FFT-based solver does not

require to store the m × m coefficient matrix, so it is applicable for arbitrarily high m.

Any solver that requires to explicitly store the dense m × m Kriging broke down due to

memory restrictions at a maximum of m = 10, 000 on our reference computer. Combining

these methods, the Kriging estimator can be evaluated up to several millions of estimation

points in no more than seconds up to a few minutes on contemporary desktop computers.

Evaluation of the estimation variance is computationally much more demanding. For the

evaluation of the exact estimation variance, an equivalent of m estimation procedures
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has to be performed, which may turn out to be strictly inhibiting for larger data sets of

measurements, in spite of the speedup achieved by FFT-based methods. We alleviated

this situation by reviewing, extending and proposing several fast approximations which

are asymptotically exact in specific cases. These cases include negligible correlation among

the measurements and very large regular grids of measurements. The approximations offer

an additional speedup of up to five orders of magnitude for large m, so that the largest

admissible problem could be completed in less than one day.

In summary, the methods reviewed, discussed and introduced in this paper greatly re-

duce the computational effort and storage requirements of Kriging, allowing to handle

several millions of estimation points and thousands of measurements on ordinary desktop

computers.

OUTLOOK

For the near future, we expect further advances in the development of non-uniform FFT

algorithms (NUFFT), also called the generalized FFT (e.g., Liu and Ngyuen 1998, Dui-

jndam and Schonewille 1999, Fourmont 2003, Fessler and Sutton 2003, Greengard and

Lee 2004). The Kriging context requires NUFFT algorithms for frequency-space data

on a regular grid with real-space data on an irregular grid, that work efficiently in both

transform directions. We assume that highly efficient algorithms for these requirements

will be readily available within a few years. Such algorithms will help to further increase

the efficiency of preconditioning the PCG solver for irregularly scattered measurements.
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APPENDIX

FFT-based PCG for irregular and regular grids

The Conjugate Gradients Method is attributed to Hestenes and Stiefel (1952). The follow-

ing is the preconditioned version taken from Shewchuk (1994), combined with convolution

via FFT (e.g. van Loan 1992) and the embedded regularized preconditioner by Nowak

(2005). For an extensive review of circulant preconditioners used in PCG algorithms, see

Chan and Ng (1996).

The Fourier transform of the first column of a circulant matrix yields the eigenvalues,

thanks to the diagonalization theorem (e.g., Trapp 1973, Barnett 1990 pp. 350-354). If C

is a (level-d) real circulant matrix with first column c and c̃ = Fd (c) is the (d-dimensional)

Fourier transform of the first column, then the condition c of C is the ratio of the largest

value cmax and the smallest value cmin in c̃. The regularized preconditioner by Nowak

(2005) installs a maximum condition c∗(e.g. 105) of the preconditioner through a diagonal

regularization C∗ = C + ε∗I, where ε is chosen according to

ε∗ =
cmax − cminc∗

c ∗ −1
. (37)

Automatically, the Fourier transform c̃∗ = Fd (c∗) of the first column of C∗ is given by

c̃∗ = c̃ + ε∗.

In the following, ◦ denotes the element-wise (Hadamard) product and ÷ denotes element-

wise division.

Algorithm 1 (Preconditioned Conjugate Gradients with circulant preconditioning for

nearly-Toeplitz system): The linear system Ax = b is to be solved for a real sym-

metric positive-definite m × m matrix A = HTHT , where H is a sampling matrix

as defined in Eq. 2 and T is a (level-d) symmetric positive-definite Toeplitz matrix

sized n×n. T has a symmetric positive-definite embedding circulant matrix C with

T = MTCM, where M is a mapping matrix as defined in Eq. 9. c is the first

column of C with (d-dimensional) Fourier transform c̃ = Fd (c). An initial guess
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x0, an error tolerance ε < 1 and a maximum allowable condition c∗ are provided.

Initialize the algorithm with counter k = 1, error vector r = b − Ax0, the precon-

ditioned conjugate gradient d ≈ A−1r, the residual δ1 = rTd, the initial residual

δ0 = δ1 and evaluate ε∗ according to Eq. (37). Then,

1. update the trial solution x using:

q = HMTF−1
d

[
Fd

[
MHTd

]
◦ c̃

]
(= Ad)

α =
δk

dTq

x = x + αd

2. update the error vector and residual:

r = r − αq

s = HMTF−1
d

[
Fd

[
MHT r

]
÷ (c̃ + ε∗)

] (
≈ A−1r

)

δk+1 = rT s

3. Update the preconditioned conjugate gradient

d = s +
δk+1

δk

d

4. Increase k by one and repeat until k > kmax or δk+1 < ε2δ0.

The variables q, α and s are auxiliaries to reduce the computational costs. All products

with M and H are evaluated by simple embedding/extraction and injection/sampling or

using sparse representations of the matrix N = MHT . The PCG algorithm requires only

one matrix-vector product per iteration step evaluated via FFT, which has an asymptotic

cost estimate of O (n log2 n) and another operation of O (n log2 n) to apply the precondi-

tioner. The corresponding steps in the initialization are evaluated accordingly, resulting

in an overall complexity of O (n log2 n). Here, the finer regular grid with n nodes is not
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necessarily as large (as fine) as the grid of estimation, subject to the desired accuracy of

discretizing the locations of the measurements.

In case the measurements themselves lie on a regular grid, matrix A = T in the above

algorithm is a Toeplitz matrix itself, and H = HT = I may be omitted in the entire

algorithm. In that case, the computational complexity drops to O (m log2 m).
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Captions:

Figure 1: Convolution/Superposition: CPU time (left) and storage requirements (right)

for conventional discrete superposition versus superposition via FFT for different problem

sizes n and numbers of superimposed terms m. Lines: fitted complexity models. X-Circles:

memory overflow. Solid line: superposition/convolution via FFT (same for both tasks).

Dashed lines: superposition via brute-force matrix product at different ratios n/m. Dash-

dotted line: convolution via matrix product(n = m). Lines exceeding point of memory

overflow: superposition/convolution via successive addition of shifted kernel function.

Lower line ends: minimum of m = 1 superimposed term.

Figure 2: Solvers for regular measurement grids: CPU time (left) and storage requirements

(right) of different solution techniques for Toeplitz systems for different problem sizes m.

Lines: fitted complexity models. X-Circles: memory overflow. FFT-PCG: FFT-based

PCG solver. FFT-PSD: FFT-based Preconditioned Steepest Descent. FFT-ICD: Iterative

Constrained Deconvolution. FFT-SD: FFT-based Steepest Descent. STD-GE: Standard

Gaussian Elimination.

Figure 3: Extension to irregular measurement grids: CPU time (left) and storage re-

quirements (right) of different solution techniques for nearly Toeplitz systems for different

problem sizes m and different sizes n of the embedding Toeplitz matrix. Lines: fitted

complexity models. X-Circles: memory overflow. PCG#: FFT-based PCG solver with #

times larger regular grid. ICD#: FFT-based Iterative Constrained Deconvolution with

# times larger regular grid. GE: Standard Gaussian Elimination.

Figure 4: Performance of Kriging with conventional solver: CPU time (left) and storage

requirements (right) for different numbers n of estimation points and different numbers

m of measurements. Lines: fitted complexity models. X-Circles: memory overflow. Solid

lines: using conventional solver and conventional superposition. Dashed lines: using

conventional solver and superposition via FFT.

Figure 5: Performance of Kriging with FFT-based PCG solver for irregularly scattered
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measurements: CPU time (left) and storage requirements (right) for different numbers n

of estimation points and different numbers m of measurements. Lines: fitted complexity

models. X-Circles: memory overflow. Solid lines: exact estimation variance. Dashed

lines: one-point approximation.

Figure 6: Performance of Kriging with FFT-based PCG-solver with measurements on

regular grids: CPU time (left) and storage requirements (right) for different numbers n

of estimation points and different numbers m of measurements. Lines: fitted complexity

models. X-Circles: memory overflow. Solid lines: exact estimation variance. Dashed

lines: large-grid approximation.
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