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Abstract

This thesis compares a fully coupled twophase flow formulation and two different kinds of
fractional flow formulations. The fully coupled formulation is directly described by two mass
balance equations - one equation for each phase. The governing equations of the fractional
flow formulations are one saturation equation and one pressure equation. The pressure
equation is formulated in terms of a global pressure where the saturation equation shows
an advection diffusion form, as well as in terms of a phase pressure where the saturation
equation is purely advective. Different numerical schemes are applied for the discretisation
of the fully coupled formulation and the discretisation of the fractional flow formulations.
The solution behaviour of the numerical models according to the mathematical formulations
is investigated concerning accuracy and efficiency. Depending on the physical process, a
superior scheme is tried to be determined which can be used for more complex applications.
Therefore, different benchmark problems representing different flow characteristics are solved
and the results are analysed. It can be shown that in case of a one dimensional problem
the best results concerning the accuracy of the approximation can be achieved using the
fractional flow approach and the global pressure fractional flow approach, respectively. This
applies for advection dominated and diffusion dominated problems as well as for problems
combining both processes. Differences concerning the efficiency can be found depending on the
nonlinearity introduced by the constitutive relationships used for the relative permeabilities
and the capillary pressure. Here, the fully coupled approach shows advantages with increasing
nonlinearity. For the considered two dimensional problem the best results can be achieved
using the fully coupled approach. The phase pressure fractional flow formulation is expected
to combine the possibility to account well for different kinds of transport processes with the
advantage of using a phase pressure as physically meaningful quantity. With the numerical
schemes applied so far, this can not be approved.
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1 Introduction
Flow and transport processes in porous media are of elementary importance in many fields of
research as well as in technical applications. One example of a multiphase porous medium
system is the subsurface. Especially in case of a contamination of the ground water, multiphase
multicomponent systems have to be considered. To establish optimal remediation strategies
the occurring processes have to be well understood. Examples of technical applications dealing
with multiphase flow in porous media can be found for example in the automobile industry.
One of the latest areas of research in this field is the development of efficient fuel cells.

A good possibility to investigate multiphase flow processes in porous media is the numerical
simulation. However, this is still quite difficult. Especially for more complex applications, it
is important to find a mathematical as well as a suitable numerical model which describe the
appearing processes with sufficient accuracy and efficiency.
There have been two main approaches to model twophase flow in porous media. The first one
sets up one balance equation for every phase. The second one combines the two equations of
the fluids to yield modified equations which are no longer expressed separately for the phases.
Here, the different fluids are accounted for by functions describing the fluid fractions, so-called
fractional flow functions.
Investigation and comparison of these formulations has been done for example by Binning
and Celia [2].

The overall aim of this thesis is to compare mathematical and numerical models for two phase
flow in porous media. Three alternatives are considered which are

• a standard fractional flow formulation with the global pressure and one phase saturation
as primary unknowns,

• a modification of the standard fractional flow formulation replacing the global pressure
by a phase pressure, and

• a fully coupled twophase flow formulation where the unknowns are the two phase
pressures and the two fluid saturations, respectively. Closure relations, which are also
included within the fractional flow formulations, have to be used to reduce the number
of unknowns of the fully coupled formulation.

For the time discretisation, a standard IMPES (IMplicit Pressure - Explicit Saturation) scheme
is used for both fractional flow formulations while a fully implicit scheme is employed for the
fully coupled model.
In space, the saturation equation of the fractional flow formulation is discretized by higher
order finite volumes with slope limiter and the pressure equation by a usual finite volume
method. A finite element-finite volume box scheme is applied for the space discretisation of
the fully coupled twophase flow formulation.
The emphasis of the study is to test the resulting numerical schemes by means of different
benchmark problems. These are:

1



1 Introduction

• the Buckley-Leverett problem (1D, advection dominated),

• the McWhorter problem (1D, diffusion dominated),

• the five-spot waterflood problem (2D, advection dominated), and

• an advection-diffusion problem (1D, combining advection and diffusion).

The different mathematical models and numerical schemes are at first described and compared
theoretically. Afterwards the numerical experiments are discussed and analysed. Qualitative
as well as quantitative differences in the results using the different models are evaluated where
the formulations are directly compared with each other and the solution behaviour of the
different formulations and models is analysed concerning the influence of different constitutive
relationships.
Finally, depending on the dominating processes, a superior scheme is tried to be determined
which can be used for more complex applications.

DuMux

The numerical experiments are carried out using the software framework DuMux (Dune for
Multi-{physics, phase, component, scale} Flow in Porous Media). It is based on DUNE
(Distributed and Unified Numerics Environment) which is a modular toolbox for solving
partial differential equations with grid based methods (see [8]). The underlying idea of DUNE
is to create slim interfaces allowing an efficient use of legacy and/or new libraries. Modern
C++ programming techniques enable very different implementations of the same concept (i.e.
grids, solvers, etc.) using a common interface at a very low overhead [8].
DuMux expands DUNE by the additional module dune-mux. For the numerical calculations
done in this study, the basic components of DuMux which have already been available are
used and expanded. As DuMux is in the stage of development the performed numerical
experiments can also be interpreted as a benchmarking of this simulation tool.

2



2 Basic Concepts

In nature as well as in technical applications, a multitude of materials can be considered as
porous media which consist of a matrix of solid material like soil material in the subsurface
(e.g. sand, clay, rock) and void spaces in between which are also called pores. In most cases, it
is impossible to describe the detailed geometry of the pore structure. Therefore, a continuum
approach in which the microscale properties are averaged over a representative elementary
volume (REV) is used in most porous media flow models. Through this averaging process
a set of new macroscale parameters like the saturation and the porosity is generated. This
chapter consists of some definitions concerning multiphase flow, the porous media approach,
and the relationship between multiphase fluid behaviour on the microscale and the macroscale
parameters (for more details on the following definitions and concepts it is referred to [6]).

2.1 Definitions
2.1.1 Phases - Wetting and Non-Wetting Fluids
If two or more fluids fill a volume (e.g. the pore volume) and are immiscible and separated by
a sharp interface, each fluid is called a phase of the multiphase system. For flow in porous
media, formally, the solid matrix can also be considered as a phase. If the solubility between
the phases is not negligible a fluid system has to be considered as multiphase - multicomponent
system.
Different fluid phases can be divided into wetting and non-wetting phases. Here the important
property is the contact angle θ between fluid-fluid interface and solid surface (Fig. 2.1). If the
contact angle lies between 0◦ and 90◦, a fluid is called wetting phase. If the contact angle
lies between 90◦ and 180◦, a fluid is called non-wetting fluid (Fig. 2.1). In this study water
and oil are used as fluids in the calculations, where water is the wetting fluid and oil is the
non-wetting fluid.

2.1.2 Porosity
A porous medium consists of a solid matrix and the pores. The ratio of the pore space within
the REV and the total volume of the REV is defined as porosity φ:

φ = volume of pore space within the REV
total volume of the REV

. (2.1)

To account for the effect that usually not all pores are connected, which can lead to dead-end
pores, an effective porosity φeff can be defined:

φeff = volume of the pore space available for the flow within the REV
total volume of the REV

. (2.2)

In this case only the part of the pore volume is considered which is usable for the flow. Thus,
the effective porosity is always equal to or smaller as the porosity defined in Equation (2.1).

3
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Figure 2.1: Contact angle between a wetting and a non-wetting fluid.

If the solid matrix is assumed to be steady the porosity is constant and independent of
temperature, pressure or other variables.

2.1.3 Permeability
When considering flow through porous media, the interaction between a fluid and the solid
matrix is essential. In a macroscopic approach these interactions are covered by one parameter,
the hydraulic conductivity Kf , which accounts for the influence of fluid viscosity and adhesion
at the surface of the solid matrix. The hydraulic conductivity can be defined as

Kf = Kρfg

µ

[
m

s

]
, (2.3)

where ρf is the fluid density, µ the fluid viscosity, g the gravity andK the intrinsic permeability.
K is a tensor characterising the porous medium and is only a function of the solid matrix.
In an anisotropic system in which the coordinate system is transfered to coincide the main
flow directions, K is a diagonal n x n matrix with n as the dimension of the considered flow
system:

K =
(
Kxx 0
0 Kyy

)
(2-D). (2.4)

If the porous medium is isotropic the permeability is equal in all directions (Kxx = Kyy).
For a two- or more fluid system the hydraulic conductivity is expanded by the relative
permeability krα of phase α (sec. 2.2.2), which is a dimensionless number assumed to depend
on the multiphase fluid and porous medium system:

Kf = krαK
ρfαg

µα

[
m

s

]
, (2.5)

where
0 ≤

nα∑
α=1

krα(Xα) ≤ 1. (2.6)
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2 Basic Concepts

Here, the vector Xα represents the parameters krα is depending on. The product of the
relative and the intrinsic permeability krαK in Equation (2.5) is often called total permeability
Ktot or effective permeability Keff .

2.1.4 Saturation
In multiphase flow of immiscible fluids in porous media the pore space is divided and filled by
the different phases. In the macroscopic approach this is expressed by the saturation of each
phase α. It is defined as the ratio of the volume of phase α within the REV and the volume
of the pore space within the REV:

Sα = volume of phase α within the REV
volume of the pore space within the REV

. (2.7)

Here the pore space of the REV is assumed to be completely filled by the fluid phases α.
Thus, the sum of the phase saturations must be equal to one:∑

α

Sα = 1. (2.8)

If no phase transition occurs, the saturations change due to displacement of one phase through
another phase. Two processes can be distinguished: imbibition and drainage. Usually, the
character of the drainage of a porous medium is different to the character of the imbibition.
This effect is called hysteresis. Hysteresis occurs due to three main effects. These are are
boundary angle hysteresis, ink bottle effect, and residual saturation (details, see [6]). For a
wetting phase, a residual saturation occurs if parts of the displaced wetting phase are held
back in the finer pore channels during the drainage process which can only be further removed
by phase transition. Additionally, fingering may lead to entrapment of certain amounts of
displaced fluid. On the other side, a residual saturation for the non-wetting phase may occur if
bubbles of the displaced non-wetting phase are trapped by surrounding wetting phase during
the imbibition process. Therefore, a residual saturation may depend on the pore geometry,
the heterogeneity and the displacement process, but also on the number of drainage and
imbibition cycles. If the saturation of a phase Sα is smaller than its residual saturation, the
relative permeability (sec. 2.2.2) of phase α is equal to zero which means that no darcy flux
can take place. This implies that a darcy flux can only occur, if the saturation of a phase
α lies between the residual saturation and one (Sαr ≤ Sα ≤ 1). The relative permeability is
then a function of the saturation. With the residual saturation an effective saturation for a
two phase system can be defined in the following way:

Se = Sw − Swr
1− Swr

Swr ≤ Sw ≤ 1. (2.9)

Alternatively, in many models the following definition is used:

Se = Sw − Swr
1− Swr − Snr

Swr ≤ Sw ≤ 1− Snr. (2.10)

Which definition is used, depends on the capillary pressure and the relative permeability
curve, respectively (see Section 2.2.1 and 2.2.2).
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2 Basic Concepts

2.2 Constitutive Relationships
2.2.1 Capillarity
Due to interfacial tension, forces occur at the interface of two phases. This effect is caused by
interactions of the fluids on molecular scale. Therefore, the interface between a wetting and a
non-wetting phase is curved and the equilibrium at the interface leads to a pressure difference
between the phases called capillary pressure pc:

pc = pn − pw, (2.11)

where pn is the non-wetting phase and pw the wetting phase pressure. On the microscale, the
capillary pressure can be formulated as Laplace equation, depending on the radius of the pore
space and the interfacial tension of the different fluid combinations as

pc = σ12

(
1
rx

+ 1
ry

)
= 4σ12cos α

d
, (2.12)

with σ representing the interfacial tension, rx and ry the main curvature radii, α the boundary
angle and d the pore diameter. Equation 2.12 shows that the capillary pressure is higher
for smaller diameters corresponding to smaller pores. For porous media saturated with the
wetting phase, this implies that the wetting phase retreats to smaller pores during a drainage
process. In the case of imbibition the wetting phase penetrates into larger pores, as the
capillary pressure decreases with increasing pore diameter (details, see [6]).
In a macroscopic consideration of multiphase systems in porous, media an increase of the non-
wetting phase saturation leads to a decrease of the wetting phase saturation, and, according
to the microscopic consideration, to the retreat of the wetting fluid to smaller pores. Thus,
the macroscopic capillary pressure can be related to the saturation as

pc = pc(Sw), (2.13)

the so-called capillary pressure-saturation relation. The simplest way to define a capillary
pressure-saturation function is a linear approach (Fig. 2.2):

pc(Se(Sw)) = pcmax(1− Se(Sw)). (2.14)

The most common pc-Sw-relations for a twophase system are those of Brooks and Corey and
van Genuchten (details, see [6]).
In the Brooks-Corey model,

pc(Se(Sw)) = pdSe(Sw)−
1
λ pc ≤ pd, (2.15)

the capillary pressure is a function of the effective Saturation Se (sec. 2.1.4). The entry
pressure pd represents the minimum pressure needed for a non-wetting fluid to enter a medium
initially saturated by a wetting fluid. The parameter λ is called pore-size distribution index
and usually lies between 0.2 and 3.0. A very small λ-parameter describes a single size material,
while a very large parameter indicates a highly non-uniform material.
The parameters of the Brooks-Corey relation are determined by calibration to experimental
data. The effective saturation definition (sec. 2.1.4) which is used in this parameter fitting
is also the one to choose for later application of the respective capillary pressure or relative
permeability (sec. 2.2.2) function.
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Figure 2.2: Linear pc-Sw-relations and relation after Brooks-Corey.

2.2.2 Relative Permeability
Flow in porous media is strongly influenced by the interaction between the fluid phase and the
solid phase. This is taken into account by the concept of a hydraulic conductivity including
the intrinsic permeability (sec. 2.1.3). If more than one fluid phase fill the pore space, the
presence of one phase also disturbs the flow behaviour of another phase. Therefore, the relative
permeability krα which can be considered as a scaling factor is included into the definition of
the hydraulic conductivity (Eq. 2.5).
Considering a two fluid phase system, the space available for one of the fluids depends on
the amount of the second fluid within the system. The wetting phase for example has to
flow around those parts of the porous media that are filled with non-wetting fluid or has to
displace the non-wetting fluid to find new flow paths. In a macroscopic view, this means that
the cross-sectional area available for the flow of a phase is depending on its saturation. If the
disturbance of the flow of one phase is only due to the restriction of available pore volume
caused by the presence of the other fluid, a linear correlation for the relative permeability can
be applied (Fig. 2.3):

krw(Se(Sw)) = Se(Sw) (2.16)

krn(Se(Sw)) = 1− Se(Sw). (2.17)

This formulation also implies that the relative permeability becomes zero if the residual
saturation, representing the amount of immobile fluid, is reached.
In reality one phase usually not only influences the flow of another phase just by the restriction
in available volume, but also by additional interactions between the fluids. If capillary effects
occur, the wetting phase, for example, fills the smaller pores if the saturation is small. This
means that in case of an increasing saturation of the wetting phase, the relative permeability
krw has to increase slowly if the saturations are still small and it has to increase fast if the
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Figure 2.3: Linear kr-Sw-relation.

saturations become larger. Then the wetting phase begins to fill the larger pores. For the
non-wetting phase the opposite situation is the case. Increasing the saturation, the larger pores
are filled at first causing a faster rise of krn. At higher saturations the smaller pores become
filled which slows down the increase of the relative permeability. Therefore, correlations
for the relative permeabilities can be defined using the known capillary pressure-saturation
relationships (details, see [6]). Besides capillary pressure effects also other effects might occure.
For two phase flow the Brooks-Corey model can be defined as

krw(Se(Sw)) = Se(Sw)
2+3λ
λ (2.18)

krn(Se(Sw)) = (1− Se(Sw))2
[
1− Se(Sw)

2+λ
λ

]
, (2.19)

where λ is the empirical constant from the Brooks-Corey pc(S)-relationship (Eq. 2.15).
As can be seen in Figure 2.4 the relative permeabilities after Brooks-Corey do not add up to
one as for the linear relationship (Fig. 2.3). This is caused by the effects described before and
means that one phase is slowed down stronger by the other phase as it would be only due to
the restricted volume available for the flow.
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3 Mathematical Modelling and Discretisation

3.1 Fully Coupled Formulation
Considering flow through porous media, Darcy’s law which was originally obtained experimen-
tally for single phase flow can be used as momentum equation in an macroscopic approach.
For multiphase systems a generalised Darcy law

vα = −krα
µα

K(∇pα − ραg) (3.1)

can be formulated for each phase (details, see [6], [10]), where krα is the relative permeability,
µα the dynamic fluid viscosity, pα the pressure and ρα the density of phase α, and g is the
gravity vector, acting in vertical direction. It further appears that the conductivity of a phase
Kα is the fluid independent intrinsic permeability K scaled with the relative permeability
of the phase krα which depends on the saturation of the present phases (Ch. 2.2.2). The
mobility of a phase can then be defined as λα = krα

µα
.

Inserting the generalised Darcy law (Eq. 3.1) into the mass balance equation for phase α of a
multiphase system, namely,

∂(φραSα)
∂t

+∇ · (ραvα)− ραqα = 0 (3.2)

leads to the general form of the multiphase flow equation

∂(φραSα)
∂t

−∇ · (ραλαK(∇pα − ραg))− ραqα = 0, (3.3)

with the porosity φ, the saturation of phase alpha Sα and the source/sink term qα. The
supplementary constraints to close the system of equations are

nphase∑
α=1

Sα = 1 (3.4)

and
pcψα = pψ − pα, α 6= ψ, (3.5)

where pcψα is the capillary pressure between phase ψ and phase α depending on the saturations
(Ch. 2.2.1).
Combination of Equations (3.3), (3.4) and (3.5) for a two phase system then yields the fully
coupled twophase flow formulation. For a pressure-saturation formulation using the wetting
phase pressure pw and the non-wetting saturation Sn as primary variables, the following
system of equations is obtained:

Lw(pw, Sn) := −∂(φρwSn)
∂t

−∇ · (ρwλwK(∇pw − ρwg))− ρwqw = 0, (3.6)

10



3 Mathematical Modelling and Discretisation

Ln(pw, Sn) := ∂(φρnSn)
∂t

−∇ · (ρnλnK(∇pw +∇pc − ρng))− ρnqn = 0. (3.7)

Similarly, a pn-Sw formulation can be derived:

Lw(pn, Sw) := ∂(φρwSw)
∂t

−∇ · (ρwλwK(∇pn −∇pc − ρwg))− ρwqw = 0, (3.8)

Ln(pn, Sw) := −∂(φρnSw)
∂t

−∇ · (ρnλnK(∇pn − ρng))− ρnqn = 0. (3.9)

The single equations of these systems of equations (Eq. (3.6), (3.7) and (3.8), (3.9)) are
strongly coupled and parabolic. Furthermore, the behaviour of the equations is highly
nonlinear because of the nonlinear relationship between capillary pressure and saturation on
the one hand and relative permeability and saturation on the other hand (Ch. 2.2.1 and 2.2.2).
Capillary effects are explicitly included in the system of equations. Therefore, it can also be
applied if sub-domains of small pressure gradients occur. Because of the strong coupling of
the equations, a fully coupled formulation should be solved simultaneously. Corresponding
numerical schemes are discussed later in Sections 3.3 and 3.4.

3.2 Fractional Flow Formulation
The fractional flow formulation of a multiphase system decouples the system of equations of
a fully coupled system (Eq. (3.6), (3.7) or (3.8), (3.9)) into one pressure equation and one
saturation equation. This weakly coupled equations can then be solved separately, in such a
way that the results of the pressure equation are used to solve the transport equation for the
saturation.

3.2.1 Pressure Equation
The pressure equation can be derived by addition of the phase mass balance equations of a
multiphase system. Division of equation (3.2) through ρα and addition for all phases α leads
to the equation:

∑
α

Sα
∂φ

∂t
+
∑
α

[ 1
ρα

(
φSα

∂ρα
∂t

+ ραφ
∂Sα
∂t

+∇ · (vαρα)− ραqα
)]

= 0. (3.10)

Inserting Equation (3.4) into Equation (3.10) and rewriting the term ∇(vαρα) yields the
general pressure equation:

∂φ

∂t
+
∑
α

∇ · vα +
∑
α

[ 1
ρα

(
φSα

∂ρα
∂t

+ vα∇ρα
)]
−
∑
α

qα = 0. (3.11)

A detailed derivation of the pressure equation can be found in Appendix A. Furthermore, a
total velocity vt is introduced, where

vt =
∑
α

vα (3.12)

and
∇ · vt = ∇ ·

∑
α

vα =
∑
α

∇ · vα. (3.13)
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Now, the generalised Darcy law (Eq. 3.1) can be inserted into Equation (3.12) resulting in

vt = −K
∑
α

(λα∇pα − λαραg). (3.14)

If a total mobility λt =
∑
α λα and the fractional flow function fα = λα

λt
is introduced, a

relation for the total velocity vt with a form similar to the form of the Darcy law can be
formulated as

vt = −λtK
(∑

α

fα∇pα −
∑
α

fαραg
)
. (3.15)

Global Pressure Fractional Flow Formulation

Defining a global pressure p̄, such that ∇p̄ =
∑
α fα∇pα, Equation (3.15) can be rewritten as

a function of p̄:

vt = −λtK
(
∇p̄−

∑
α

fαραg
)
. (3.16)

The pressure equation of the global pressure fractional flow formulation can then be formulated
by inserting Equations (3.13) and (3.16) into Equation (3.11). For a twophase system of
one wetting phase and one non-wetting phase, in which both phases are assumed to be
incompressible and the porosity φ to be constant, this leads to:

∇ · vt −
∑
α

qα = −∇ ·
[
λtK

(
∇p̄−

∑
α

fαραg
)]
−
∑
α

qα = 0, α = n,w. (3.17)

To point out one consequence of applying this approach compared to the alternative approach
described later the corresponding boundary conditions are looked at. Accordingly, for a
domain Ω with boundary Γ = ΓD ∪ ΓN , where ΓD denotes a Dirichlet and ΓN a Neumann
boundary, the boundary conditions are

p̄ = pD on ΓD and
vt · n = vN on ΓN .

(3.18)

Considering the global pressure, the definition of the capillary pressure between two phases
(Ch. 2.2.1) yields p̄ = pw = pn, if the capillary pressure between the phases is neglected like
for the Buckley-Leverett problem (Ch. 4.1) or for the five-spot waterflood problem (Ch. 4.2).

Phase Pressure Fractional Flow Formulation

Compared to the global pressure formulation described above in which a global pressure
p̄ is used, the pressure equation can also be derived using a phase pressure pα which is a
physically more meaningful parameter in a multiphase system. Investigation of a phase
pressure fractional flow formulation has been done for example by Hoteit and Firoozabadi [7].
Inserting Equation (3.5) into Equation (3.15) and considering a two phase system of one
wetting phase and one non-wetting phase, Equation (3.15) can be rewritten in terms of the
wetting phase pressure:

vt = −λtK (∇pw + fn∇pc − (fwρw + fnρn)g) . (3.19)
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Substituting vt in the general pressure equation (Eq. 3.11) by Equation (3.19) and assuming
both fluids to be incompressible and the porosity to be constant leads to:

∇ · vt −
∑
α

qα = −∇ ·
[
λtK

(
∇pw + fn∇pc −

∑
α

fαραg
)]
−
∑
α

qα = 0, (3.20)

α = n,w.

The boundary conditions can be formulated in analogy to the global pressure formulation but
using the phase pressure on the Dirichlet boundary:

pw = pD on ΓD and
vt · n = vN on ΓN .

(3.21)

Similarly, a pressure equation for the non-wetting phase pressure can be formulated:

∇ · vt −
∑
α

qα = −∇ ·
[
λtK

(
∇pn − fw∇pc −

∑
α

fαραg
)]
−
∑
α

qα = 0, (3.22)

α = n,w.

Once pw and pn are known, the corresponding phase velocities can be calculated using the
generalised Darcy law (Eq. 3.1). Alternatively, a modified phase velocity vαmod can be
introduced and calculated as

vαmod = −λtK(∇pα − ραg) = vα
fα
. (3.23)

This modified phase velocity including the total mobility λt shows a similar form as the total
velocity (Eq. 3.16) which can give an advantage in the numerical application (see Section 3.4).

3.2.2 Saturation Equation
As mentioned above, the solution of the pressure equation yielding the velocity is required
before solving the equation for the saturation. Obviously, for the phase pressure formulation of
the pressure equation the saturation can then be calculated directly from the general balance
equation (Eq. 3.2). For the wetting phase of a twophase system with one wetting phase
and one non-wetting phase in which both phases are assumed to be incompressible and the
porosity φ to be constant this equation simplifies to

φ
∂Sw
∂t

+∇ · (vw)− qw = 0 (3.24)

or alternatively to
φ
∂Sw
∂t

+∇ · (fwvwmod)− qw = 0. (3.25)

Formally, Equations (3.24) and (3.25) are equal, but because of numerical reasons it can be an
advantage to use Equation (3.25) with the modified phase velocity vwmod instead of Equation
(3.24) with the phase velocity vw (see Section 3.4). For the global pressure formulation of the
pressure equation yielding the total velocity vt but not the phase velocity a special transport
equation for saturation has to be derived. Certainly, this saturation equation can also be
applied to the alternative approach of the pressure equation.
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The saturation equation of the global pressure fractional flow formulation like the pressure
equation can be derived from the general multiphase mass balance equation (Eq. 3.2).
Considering a two-phase system, Darcy’s law for a wetting and a non-wetting phase can be
formulated by using Equation (3.1) combined with Equation (3.5) as

vw = −λwK(∇pw − ρwg) (3.26)

and
vn = −λnK(∇pw +∇pc − ρwg). (3.27)

If Equation (3.27) is solved for K∇pw and inserted into Equation (3.26), this yields the
fractional flow equation for vw:

vw = λw
λn

vn + λwK[∇pc + (ρw − ρn)g]. (3.28)

Equation (3.12) yields vn = vt − vw, and with Equation (3.28) this leads to the fractional
flow equation:

vw = λw
λw + λn

vt + λwλn
λw + λn

K[∇pc + (ρw − ρn)g], (3.29)

which can be further inserted into the wetting phase mass balance equation

∂(φρnSw)
∂t

+∇ · (ρwvw)− ρwqw = 0. (3.30)

With the fractional flow function

fw = λw
λw + λn

, and λ̄ = λwλn
λw + λn

the resulting equation is

∂(φρwSw)
∂t

+∇ · [ρw(fwvt + λ̄K(∇pc + (ρw − ρn)g))]− ρwqw = 0. (3.31)

Some terms of Equation (3.31) can be reformulated in dependence on the saturation (details,
see [6]). Applying these reformulations and assuming incompressible fluids for both phases and
a constant porosity, the saturation equation of a two-phase system can finally be formulated
as

L(Sw) :=∇ ·
[
λ̄K d pc

dSw
∇Sw

]
+
[
vt
d fw
dSw

+ (ρwg− ρng)K d λ̄

d Sw

]
∇Sw

+ φ
∂Sw
∂t
− qw + fwqt = 0,

(3.32)

where qt = qw + qn.

Considering the two equations of the global pressure fractional flow formulation (pressure
equation and saturation equation), it becomes clear now that they are only weakly coupled
through the presence of the total mobility and the fractional flow functions in the pressure
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equation which means through the relative permeabilities. This also holds for the phase
pressure fractional flow formulation. However, in this formulation the coupling is strengthened
again due to an additional capillary pressure term in the pressure equation. The strong
nonlinearity of the global pressure fractional flow formulation occurs due to the use of the
global pressure p̄ which includes both phase pressures and capillary pressure effects and is
therefore directly dependent on the saturation. Additionally, the total mobility and the
fractional flow functions are nonlinear dependent on the saturation. Applying the phase
pressure fractional flow formulation this nonlinearity is weakened as the phase pressure is only
indirectly depending on the saturation. Comparing Equations (3.24) and (3.25) to Equations
(3.31) and (3.32) shows that for the phase pressure formulation the saturation equation
consists only of an accumulation term and an advective term, whereas for the global pressure
formulation using a global pressure an additional diffusive term occurs. This shows that in
contrast to the global pressure fractional flow formulation, the phase pressure fractional flow
formulation strictly separates diffusive and advective processes where the pressure equation
represents the diffusive part and the saturation equation the advective part.

3.3 Numerical Methods and Discretisation of the Fully Coupled
Formulation

The fully coupled multiphase flow formulation explained in Section 3.1 yields a system of
equations with one equation for every phase in which the single equations are highly coupled
with each other. In consequence all equations (two for two phase flow) have to be solved
simultaneously. Therefore, the system of equations is rewritten in the following form and
solved implicitly (details, see [1] or [6]):

∂

∂t
M(pα(t),Sα(t)) +A(pα(t),Sα(t)) = R(t), (3.33)

where again α is the index of the phase. M is called mass matrix and includes the accumulation
terms, A is called coefficient matrix and includes the internal flux terms and R is the right
hand vector which comprises Neumann boundary flux terms and source terms.
Furthermore, the fully coupled formulation is non-linear depending on the capillary pressure
and relative permeability relationship. For this reason, Newton-Raphson iterative solver is
used (details, see [6]).
In the problems considered in Chapter 4 of this work, gravity effects are neglected. Therefore,
terms containing gravity forces are not taken into account in the following description of the
discretisation as they vanish in the application of the problems. Furthermore source and sink
terms are not considered.

3.3.1 Space Discretisation
A fully upwind finite-element-finite-volume-box-method (box method) is used to discretise
the fully coupled twophase flow equations in space. In this method the model domain is
discretized by a finite element mesh at first. Then for each node i of the finite element mesh
a control volume (box) Bi with corners at the edge midpoints and on the centres of gravity of
the elements surrounding i is chosen (Fig. 3.1), building a secondary finite volume mesh. To
establish the box approach, Equation (3.3) (gravity, sources/sinks neglected) is multiplied
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Figure 3.1: Finite Element mesh and Finite Volume mesh of a FE-box-method.

with a weight function W and integrated over the model domain by integration over each
finite volume box of the secondary mesh:∫

FV−Box

W
∂(φραSα)

∂t
dB −

∫
FV−Box

W ∇ · (ραλαK(∇pα)) dB = 0, (3.34)

with α = w, n. The unknowns can further be approximated within the model domain as

pα =
∑
i

Nip̂αi Sα =
∑
i

NiŜαi, (3.35)

where p̂αi and Ŝαi are the discrete values at the nodes of the finite element mesh, and Ni is
the shape function dedicated to node i. Ni is the usual C0 finite element polynomial with the
value of 1 at node i and 0 at all other nodes. Inserting the finite element approximation for
the unknowns and applying the Green-Gauss theorem leads to the following equation:

∂(φραiŜαi)
∂t

∫
Bi

WiNi dB +
∑
j

(p̂αj − p̂αi)
∫
Bi

(∇Wi)ραiλαK∇Nj dB

−
∑
j

(p̂αj − p̂αi)
∮

ΓBi

Wi ραijλαijK∇Njn dΓB = 0. (3.36)

Here, B denotes the box, ΓB the boundary of the box and j the neighbour nodes of node i.
λαij is the mobility and ραij the density at interface between box i and j. Each box represents
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a subdomain of the whole region of interest. Therefore, the weight functions Wi are now
chosen according to the subdomain collocation method as:

Wi(x) =

1 if x ∈ Bi
0 otherwise

(3.37)

This method forces the average of the residual over each subdomain to be equal to zero which
means in a physical kind of view that local mass conservation is enforced. This can also be
seen applying this choice of the weight functions to Equation (3.36) which gives

∂(φραiŜαi)
∂t

∫
Bi

Ni dB −
∑
j

(p̂αj − p̂αi)
∮

ΓBi

ραijλαijK∇Njn dΓB = 0. (3.38)

As the derivatives of the weight functions are always zero now, the volume integral on the
right hand side of Equation (3.36) vanishes. Comparable to an usual finite volume method,
the fluxes over the interfaces of the boxes are directly balanced. With∫

Bi

Ni dB = Vi = volume of box i

and the stiffness matrix
γαij =

∮
ΓBi 6∈ΓN,α

K∇Njn dΓB,

where ΓN,α denotes a Neumann boundary dedicated to phase α, together with the supple-
mentary Equations (3.4) and (3.5) a p-S formulation is finally discretized in space as:

(−1)δαw ∂(φραiŜαi)
∂t

Vi −

∑
j

(p̂αj − p̂αi)− δαn
∑
j

(p̂cj − p̂ci)

 ραijλαijγαij −mαi = 0. (3.39)

Here, mαi is the term including the Neumann boundary conditions and δαk is the Kronecker
delta. Since a fully upwind scheme is used, the mobility at the box interface λαij is determined
in the following way:

λαij =

λαi if (p̂αj − p̂αi)− δαn(p̂cj − p̂ci) ≥ 0

λαj if (p̂αj − p̂αi)− δαn(p̂cj − p̂ci) ≤ 0.
(3.40)

3.3.2 Time Discretisation
The time discretisation of the fully coupled multiphase flow formulation is done applying the
implicit Euler method. For an unknown u a general form of this method can be formulated
as:

uk+1 = uk + ∆t f(uk+1), (3.41)

where k is the index of the time step. Using Equation (3.41) together with Equation (3.33)
leads to:

Sk+1
α = Skα + (M(pk+1

α ))−1 (A(pk+1
α ,Sk+1

α )−Rk+1). (3.42)
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Following this general form of a time discretisation of a twophase flow system in porous media,
Equation (3.39) can finally be written in a completely discretized form as:

Ŝk+1
αi = Ŝkαi − (−1)δαw ∆t

φVi

∑
j

(p̂k+1
αj − p̂

k+1
αi )− δαn

∑
j

(p̂k+1
cj − p̂

k+1
ci )

λk+1
αij γαij , (3.43)

where Vi and γαij are time independent as long as the finite element mesh and the form of
the shape functions do not change with time. This is the case if no adaptive methods are
used. The porosity φ is assumed to be independent of pressure and time. Furthermore, the
fluids are assumed to be incompressible which implies that the density ρ is only a function
of the temperature. If the temperature is assumed to be constant over time and space as it
is done here, ρ is also not depending on time and the position within the domain (for more
details on the described discretisation techniques it is referred to [1] and [6]).

3.4 Numerical Methods and Discretisation of the Fractional Flow
Formulation

As derived before in Section 3.2, the fractional flow formulation decouples the system of
equations of a multiphase flow formulation into a pressure equation and a saturation equation.
Numerically, this is usually done by using the IMPES scheme (IMplicit Pressure - Explicit
Saturation). Therefore, the implicitly formulated pressure equation is solved first. From the
resulting pressure field the velocity field can be calculated and can be further used to get an
explicit solution of the saturation equation. As the equations are still weakly coupled due to
the presence of the mobility which is a function of the saturation (Ch. 2.2.2) in the pressure
equation, it can be necessary to repeat this solution sequence until a sufficient quality of the
results is achieved. The mobility in the pressure equation is then always calculated using
the latest result of the saturation equation. How many iterations are needed depends on the
problem to be solved and on the aspired accuracy.
Like before in Section 3.3, terms containing gravity forces as well as source and sink terms are
not further considered during the following discretisation sections, since they do not appear
in the problem formulations considered in Chapter 4 of this work.

3.4.1 Space Discretisation
Pressure Equation

For the space discretisation of the pressure equation, a cell centred finite volume method is
applied. To account for the elliptic character of the equation, central differences are used
as differencing scheme. The finite volume formulation for the global pressure fractional flow
formulation is then obtained by integration of Equation (3.17) over each element of the
discretized domain (Fig. 3.2): ∫

FV−element

∇ · (λtK∇p̄) dV = 0. (3.44)

Application of Gauss’ divergence theorem leads to:∮
Γe

(λtK∇p̄)n dΓ = 0, (3.45)
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Figure 3.2: Finite Volume mesh.

where Γe is the boundary of one finite volume element. This integral can also be read as the
sum of the fluxes over the faces of one element and Equation (3.45) can therefore be rewritten
as: ∑

faces of i

(
λtijK

p̄j − p̄i
∆xij

Aij

)
= 0, (3.46)

where i is the index of element i, j is the index of a neighbour element j, ∆xij is the distance
between the centre of element i and the centre of element j, and Aij is the area of the interface
between element i and j (Fig. 3.2). The total mobility λtij at the interface between element i
and j is determined in the following way:

λtij = 0.5 (λti + λtj). (3.47)

This arithmetic averaging is correct as long as an equidistant mesh is used. Otherwise λti and
λtj can be weighted differently by a weighting factor ε:

λtij = ε λti + (1− ε)λtj , (3.48)

where ε = 0.5∆xi
∆xij with the element width ∆xi (Fig. 3.2). As the saturation is assumed to be

known when the pressure equation is solved, the mobility at the elements which depends on
the saturation is known, too.

The finite volume formulation for the phase pressure fractional flow formulation is obtained in
the same way as described before for the global pressure fractional flow formulation. Therefore,
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Equation (3.20) and (3.22), respectively, is integrated over each element of the discretized
domain (Fig. 3.2): ∫

FV−element

∇ ·
[
λtK

(
∇pα + (−1)δαnfβ 6=α∇pc

)]
dV = 0. (3.49)

Here δαn is the Kronecker delta and α, β = w, n. In Equation (3.49) as well as in Equation
(3.44) a pressure term of the same form ∇ · [λtK (∇p)] can be found . In Equation (3.49) an
additional term

∇ · [λtK (fβ 6=α∇pc)] = ∇ · (λβ 6=αK∇pc) (3.50)

including capillary pressure appears which has to be further considered. As demonstrated
in Equation (3.50) the capillary pressure term can be rewritten, resulting also in the form
of Equation (3.44). Thus, the discretized pressure equation of the phase pressure fractional
flow formulation can be directly written down following the formulation derived for the global
pressure fractional flow formulation (Eq. 3.46):

∑
faces of i

(
λtijK

pwj − pwi
∆xij

Aij

)
+ (−1)δαn

∑
faces of i

(
λ(β 6=α)ijK

pcj − pci
∆xij

Aij

)
= 0. (3.51)

In the macroscopic context the capillary pressure is only a function of the saturation which
is assumed to be known when the pressure equation is solved. Thus, for the phase pressure
formulation the capillary pressure is also assumed to be known. The phase mobility λ(β 6=α)ij
at the interface between element i and j is calculated similarly to the total mobility λtij (Eq.
3.47 and 3.48).

Saturation Equation

The saturation equation is discretized in space by application of a higher order cell centred
finite volume method. In this method, the unknown is not assumed to be constant within
one finite volume element but to show a functional behaviour. In the method applied here, a
linear distribution of the saturation within one finite volume element is assumed. Therefore
on each discretisation cell a corresponding slope is introduced (see [4])

p̃i = ui+1 − ui−1
∆xi + 0.5∆xi−1 + 0.5∆xi+1

, (3.52)

where ui is the unknown at node i which in case of the saturation equation is the saturation
Si (Fig. 3.3). In case of a two dimensional domain, two slopes corresponding to node i have to
be determined. The indices i+1 and i− 1 then denote the neighbour nodes in the direction of
the respective slope and ∆x the corresponding element width. However, the two dimensional
grid should be rectangular and structured.
Further the slopes are limited in order for the scheme to remain stable and to avoid over- and
undershooting:

pi = αip̃i. (3.53)

The formula used for the limitation factor αi can vary, depending on what is needed to achieve
stability (details, see [4]). In case of a two dimensional domain two slopes corresponding to
node i have to be calculated. Equation 3.52
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Figure 3.3: Schematic illustration of the slopes inside each finite volume cell.

To obtain the finite volume formulation of the saturation equation of the global pressure
fractional flow formulation, Equation (3.31) is integrated over each element of the discretized
domain ∫

FV−element

∂(φρwSw)
∂t

dV +
∫

FV−element

∇ · [ρw(fwvt + λ̄K∇pc)] dV = 0. (3.54)

With Gauss’ divergence theorem Equation (3.54) can be rewritten as

∂(φρwSw)
∂t

Ve +
∮
Γe

ρw(fwvt + λ̄K∇pc) dΓ = 0, (3.55)

where Ve is the element volume and Γe the element boundary. In a usual finite volume
discretisation, the unknown is assumed to be constant within one element. Therefore, the
first term in Equation (3.54) can be rewritten into the first term in Equation (3.55). In a
higher order scheme as described before, the saturation is not constant but assumed to show
a linear distribution over the element. Anyhow, the change of mass over time of a volume
element remains the same than for a constant distribution because the saturation value at the
centre of an element is equal to an arithmetic average of the linear concentration distribution.
This is demonstrated in Figure 3.4 for an one dimensional element. For two different time
steps k and k + 1 area A and B which represent the change of mass from time step k to
time step k + 1 have the same size because ak = bk and ak+1 = bk+1. Therefore, the first
term in Equation (3.54) can be rewritten into the first term in Equation (3.55) although the
saturation varies within the element.
The capillary pressure term λ̄∇pc in Equation (3.55) can also be written as λ̄ d pc

dSw
∇Sw according

to Equation (3.32). Reformulating the boundary integral in the second term of Equation
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Figure 3.4: Change of mass of one phase over time for a cell centred finite volume approach
with constant distribution of the saturation and with linear distribution of the saturation.

(3.55) as the sum of the fluxes through the faces of an element the saturation equation can be
discretized in space as

∂(φρwiSwi)
∂t

Vi +
∑

faces of i

[
ρwij

(
fwijvtij + λ̄ijK( d pc

dSw
)ij (∇Sw)ij

)
Aij

]
= 0. (3.56)

As before, i denotes the value at the centre of element i and ij the value at the interface of
element i and a neighbour element j. Aij is the area of the interface between element i and j.
The saturations at the interface Sij are calculated using the slopes defined in Equation (3.52):

S(wij)i = Swi + 0.5 ∆xi pi, (3.57)

S(wij)j = Swj − 0.5 ∆xj pj . (3.58)

The fractional flow function at the interface fwij is then determined using an upwind scheme

fwij =

fw(S(wij)i) if ∇Sw = Swj−Swi
∆xij < 0

fw(S(wij)j ) if ∇Sw > 0,
(3.59)

to account for the advective character of the term fwijvtij .
The mobility λ̄ij and the capillary pressure derivative ( d pcdSw

)ij at the interface are obtained as
an arithmetic average corresponding to a central differencing scheme as:

λ̄ij = 0.5
[
λ̄(S(wij)i) + λ̄(S(wij)j )

]
, (3.60)(

d pc
dSw

)
ij

= 0.5
[(

d pc
dSw

)(
S(wij)i

)
+
(
d pc
dSw

)(
S(wij)j

)]
. (3.61)
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This assures that the diffusive character of the cappilary pressure term is expressed.

For one-dimensional application, this higher order method provides a possibility to reduce
the numerical diffusion introduced by a first order upwind scheme because more nodes are
included in the determination of the interface values (four nodes at one interface). Application
to two dimensions as it is also done here for the solution of the five-spot problem (Sec. 4.2)
can even increase the numerical diffusion caused by the upwind method.
As pointed out by Helmig [6] one explanation for cross diffusion is that upwind methods use a
value which is computed along the element edge. This implies that also information can only
be transported parallel to the element edges. The consequence is that if the streamlines are
not parallel to the grid there are not all nodes taken into account to determine the interface
values that would have to. Therefore, information is lost. An approach to solve that problem
is described by Helmig [6].
For the higher order finite volume method this effect is even stronger developed as more
nodes representing a wrong upwind direction are taken into account if the streamlines are
not parallel to the element edge. The problem of cross-diffusion is discussed in more detail in
Section 4.2.

For the phase pressure fractional flow formulation the finite volume discretisation is formulated
by integration of Equation (3.2) and application of Gauss’ divergence theorem∫

FV−element

∂(φραSα)
∂t

dVe +
∮
Γe

∇(ραfαvαmod) dΓe = 0. (3.62)

According to Equation (3.25) the modified phase velocity vαmod is used here. The advantage
of this formulations points out comparing Equations (3.62) and (3.55). Formally the only
difference is the capillary pressure term in Equation (3.55). Therefore, Equation (3.62) can be
written in discretized form analogically to Equation (3.56):

∂(φραiSαi)
∂t

Vi +
∑

faces of i

ραijfαijvαmodijAij = 0. (3.63)

This similarity also means that an implementation of the global pressure fractional flow
formulation can be switched easily into an implementation of a phase pressure fractional flow
formulation. Only one capillary pressure term has to be added in the implementation of the
pressure equation (Eq. 3.51) and one capillary pressure term has to be set to zero in the
saturation equation (Eq. 3.56).

3.4.2 Time Discretisation
Pressure Equation

The time dependence of the pressure equation exists due to the dependence on the mobility
and in case of the phase pressure fractional flow formulation also due to the dependence on
the capillary pressure on the saturation. Therefore, the following expressions are obtained for
the fully discretized pressure equation of the global pressure fractional flow formulation

∑
faces of i

(
λk+1
tij K

p̄k+1
j − p̄k+1

i

δxij
Aij

)
= 0 (3.64)
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and for the phase pressure fractional flow formulation

∑
faces of i

(
λk+1
tij K

pk+1
wj − p

k+1
wi

δxij
Aij

)

+ (−1)δαn
∑

faces of i

(
λk+1

(β 6=α)ijK
pk+1
cj − p

k+1
ci

δxij
Aij

)
= 0,

(3.65)

where k + 1 denotes the dependence on the saturation of the latest time step.

Saturation Equation

The time discretisation of the saturation equation is done applying an explicit Euler method.
For an unknown u a general form of this method can be formulated as:

uk+1 = uk + ∆t f(uk), (3.66)

where k is the index of the time step. Using Equation (3.66) together with Equation (3.56)
leads to

Sk+1
wi = Skwi +

∆t
φ

∑
faces of i

[
fkwijvktij + λ̄kijK( d pc

dSw
)kij (∇Sw)kij

]
Aij = 0 (3.67)

for the global pressure fractional flow formulation and

Sk+1
αi = Skαi +

∆t
φ

∑
faces of i

[
fkαijvkαij

]
= 0 (3.68)

for the phase pressure fractional flow formulation.
Again the porosity φ is assumed to be independent of pressure and time. Furthermore, the
density ρ is only a function of the temperature if the fluids are assumed to be incompressible.
If the temperature is assumed to be constant over time and space what it is done here, ρ is
also constant and cancels out in Equations (3.67) and (3.68).

3.5 Summary and comparison of the formulations
In this chapter, different formulations describing twophase flow in porous media are derived:
a formulation named fully coupled formulation and a fractional flow formulation.
The fully coupled formulation models the motion of each phase by formulating one equation
for each phase. These equations are strongly coupled through the constitutive and closure
relationships that are needed. Furthermore, the behaviour of the equations is highly nonlinear
because of the nonlinear relationship between capillary pressure and saturation on the one
hand and relative permeability and saturation on the other hand. Both equations are of
similar form and show a parabolic character.
The fractional flow formulation models the motion of one total fluid driven by a total pressure
with a total velocity. The individual phases are then described as fractions of the total fluid
and accounted for by the fractional flow functions. Two alternatives of the fractional flow
formulation are introduced. A global pressure fractional flow formulation defining a global
pressure and a phase pressure fractional flow formulation.
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The two equations of the global pressure fractional flow formulation (pressure equation and
saturation equation) are only weakly coupled through the presence of the total mobility
and the fractional flow functions in the pressure equation, which means through the relative
permeabilities. The global pressure p̄ includes both phase pressures and capillary pressure
effects and is therefore directly depending on the saturation. Additionally, the mobility terms
and therefore, the fractional flow functions in both equations are nonlinear dependent on the
saturation. Together this leads to a strong nonlinearity of this formulation. Formally, the
pressure equation is elliptic whereas the saturation equation is parabolic, including advective
as well as diffusive terms.
In the phase pressure fractional flow formulation, the pressure equation is formulated in terms
of a phase pressure which leads to an additional capillary pressure term. Therefore, the
coupling between pressure equation and saturation equation is strengthened again compared to
the global pressure fractional flow formulation. In return, the nonlinearity is weakened as the
phase pressure is only indirectly dependent on the saturation. In contrast to the global pressure
fractional flow formulation, the phase pressure fractional flow formulation strictly separates
diffusive and advective processes where the formally elliptic pressure equation represents the
diffusive part and the hyperbolic saturation equation the advective part.

Numerically, the equations of the fully coupled formulation have to be solved simultaneously
due to the strong coupling. The phase pressure fractional flow formulation can be solved
decoupled, most common using an IMPES scheme (IMplicit Pressure - Explicit Saturation).
The decoupled explicit solution is less expensive than an implicit scheme. However, an explicit
scheme is more restricted in time step size. It may depend on the problem which feature is
more advantageous.
An advantage of the fully coupled formulation is that the equations have a relative simple
form and that they have an equal form. An disadvantage is that it can not be accounted
for different flow characters by an corresponding discretisation scheme as it can not be
distinguished between diffusive and advective terms.
The advantage of the fractional flow formulation is that the equations show a well known form,
where the pressure equation is an elliptic equation and the saturation equation is similar to a
classical transport equation. It can be easily distinguished between diffusive and advective
terms and corresponding differencing schemes can be used. However in presence of capillary
effects, the saturation equation is still parabolic which means that still one discretisation
method has to be used to account for both kinds of processes.
Problems occur for the global pressure fractional flow formulation due to the derivative of
the capillary pressure dpc

dSw
in the saturation equation. Depending on the capillary pressure-

saturation relation this derivative can become very large or also tend to zero which causes
numerical problems.
Finally, the phase pressure fractional flow formulation shows the strictest separation of the
different processes. All diffusive processes are included in the pressure equation, the advective
processes in the saturation equation. Thus, these processes can be accounted for in a most
effective way. Compared to the global pressure fractional flow formulation another important
advantage is the use of a phase pressure which is a real physical property. This makes it easier
to define Dirichlet boundary conditions for pressure, and provides a better comparability to
the fully coupled formulation. Furthermore, it might give an advantage for the consideration
of heterogeneous porous media if the pressure equation is formulated in terms of a phase
pressure (see [7]).
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4 Comparative Study of Mathematical
Models and Numerical Schemes on
Selected Examples

To compare the different kinds of formulations described in the previous chapter, some simple
problems are set up and solved. The term formulation includes the mathematical model as
well as the numerical method. Thus, referring to Chapter 3 the term fully coupled formulation
implies the box method as corresponding numerical scheme and the term fractional flow
formulation the finite volume and higher order finite volume method, respectively.
To account for advection dominated flow the Buckley-Leverett problem is chosen as a one
dimensional example (Sec. 4.1). In analogy, the Five-spot Waterflood problem is chosen for
two dimensional consideration (Sec. 4.2). Diffusion dominated flow is investigated by solving
the McWhorter problem (Sec. 4.3). In addition to their simple form one further advantage
of Buckley-Leverett and McWhorter problem is the existence of analytical solutions. Finally,
a problem combining advection and diffusion is considered (Sec. 4.4). The comparison of
the formulations is done with regard to accuracy and efficiency. Therefore, also different
constitutive relationships are used.

4.1 Buckley-Leverett Problem
The Buckley-Leverett problem describes the instationary displacement of oil by water in an
one-dimensional, horizontal system (Fig. 4.1). An analytical solution of the problem was
developed by Buckley and Leverett [3]. The assumptions of the Buckley-Leverett problem are
as follows:

• Capillary pressure effects are neglected.

• Gravity effects are neglected.

• There exist no sources or sinks.

• The fluids are incompressible and immiscible.

• The fluid viscosities are equal.

• The porous medium is homogeneous.

The fully coupled formulation is used as pw-Sn formulation. With the above assumptions
Equations (3.6) and (3.7) are simplified to

Lw(pw, Sn) := −φ∂Sn
∂t
−∇ · (λwK∇pw) = 0, (4.1)

Ln(pw, Sn) := φ
∂Sn
∂t
−∇ · (λnK∇pw) = 0. (4.2)
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Figure 4.1: Buckley-Leverett problem with initial and boundary conditions.

Without capillary pressure, p̄ = pw = pn and the differences between the two fractional flow
formulations described in Section 3.2 vanish. Thus, under the above assumptions the fractional
flow Buckley-Leverett equations are

−∇ · (λtK∇p̄) = 0, (4.3)

φ
∂Sw
∂t

+∇ · (fwvt) = 0. (4.4)

4.1.1 Analytical solution
The Buckley-Leverett equation (Eq. 4.4) shows the property of a quasilinear hyperbolic
differential equation. One important feature of the hyperbolic character is that discontinuous
solutions called "shocks" are allowed. To ensure an unique solution, additional conditions have
to be fulfilled. These are the Rankine-Hugoniot jump condition and the Entropy condition
(details, see [6]). To obtain an analytical solution, Equation (4.4) can be rewritten according
to Equation (3.32) as

φ
∂Sw
∂t

+ vt
dfw
dSw
∇Sw = 0. (4.5)

The saturation at the wetting front is constant. Thus, one can write

dSw(x, t) = ∂Sw
∂x

dx+ ∂Sw
∂t

dt = 0. (4.6)

Substituting Equation (4.6) into Equation (4.5) gives

dx

dt
= vt

φ

dfw
dSw

(4.7)

which can be integrated in time to obtain an expression for the front position xf :

xf = vt t
φ

dfw
dSw

, (4.8)

where t is the point in time at which the front is considered. If the relative permeability
saturation relationships kr are nonlinear, the resulting profile of the saturation front may look
similar to Figure 4.2. Based on the conditions mentioned before, the analytical solution can
be found applying the equal area rule. The position of the saturation discontinuity is then
determined by balancing the areas A and B (Fig. 4.3)(details, see [6]).
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Figure 4.2: Saturation profile without sat-
uration jump.

Figure 4.3: Analytical solution with the
equal area rule.

geometry length [m]
300

discreti-
sation

number
of cells

∆x
[m]

∆t [s]
fully coupled f. fractional flow f.

linear Brooks-Corey linear Brooks-Corey
15 20 8× 106 2.67 × 106 8× 106 2.67 × 106 (∅)

30 10

4× 106 1.33× 106

4× 106 1.33× 106 (∅)4.32× 105 4.32× 105 = 5 d

2.16× 105 2.16× 105 = 2.5 d

1.08× 105 1.08× 105 = 1.25 d

60 5 2× 106 6.67 × 105 2× 106 6.67 × 105 (∅)
120 2.5 1× 106 3.33× 105 1× 106 3.33× 105 (∅)

Table 4.1: Geometry and discretisation.

4.1.2 Calculations
The numerical simulations were carried out using one dimensional elements. The considered
domain has a length of 300 m. Different grids are used, the coarsest one consisting of 15
elements. Finer grids are constructed by halvening all elements (Tab. 4.1). The time step
size which is given in Table 4.1 is determined in the following way: First, a simulation is
done applying the fractional flow formulation. Here, an automatic time step adaption is
implemented using a Courant-Friedrichs-Lewy criterion (details, see [6]) for the explicit Euler
time steps. The average time step of this simulation is then used as constant time step in the
simulation using the fully coupled formulation.
The initial and boundary conditions are given in Table 4.2, where Dirichlet boundary conditions
are set on the left side of the domain (x = 0 m) and Neumann boundary conditions on the
right side of the domain (x = 300 m)(Fig. 4.1). Initially, the domain is oil saturated. A linear,
as well as a Brooks-Corey relationship are selected to analyse the influence of the relative
permeability-saturation relation on the solution. The corresponding parameters as well as
other porous medium and fluid properties are shown in Table 4.3.
In order to compare the results of the numerical experiments using the different formulations
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parameter value

boundary conditions

x = 0 m
water pressure pw = p̄ 2× 105 [Pa]
oil saturation Sn 0.2 [−]
x = 300 m
flow rate of water qw 0

[
kg/(m2s)

]
flow rate of oil qn −3× 10−4 [kg/(m2s)

]
initial conditions water pressure pw = p̄ 2× 105 [Pa]

oil saturation Sn 0.8 [−]

Table 4.2: Initial and boundary conditions.

parameter value

fluid properties

water density ρw 1000
[
kg/m3]

oil density ρn 1000
[
kg/m3]

dyn. viscosity water µw 0.001 [kg/(ms)]
dyn. viscosity oil µn 0.001 [kg/(ms)]
intrinsic permeability K 10−7 [m2]
porosity Φ 0.2 [−]

solid matrix properties and pore size distr. index λ 2.00 [−]
constitutive relationships res. saturation water Swr 0.2 [−]

res. saturation oil Snr 0.2 [−]
rel. permeability kr(Sw) linear/Brooks-Corey

Table 4.3: Fluid and porous medium properties.

29



4 Comparative Study of Mathematical Models and Numerical Schemes on Selected Examples

and to estimate the accuracy of the approximation, an error with respect to the analytical
solution is calculated. The analytical solution itself is calculated simultaneously during the
numerical simulation and on the corresponding simulation grid. A weighted averaged error is
then calculated for each time step as

Ek =

√√√√∑
i

∆xi
L

(
Skwan,i − Skwnum,i

)2
, (4.9)

where i indicates the cells and the vertexes respectively depending on the discretisation and k
the time step. L is the domain length, ∆xi the element length and the box length respectively,
Skwan,i the saturation of the analytical solution and Skwnum,i the saturation of the numerical
solution. For equidistant meshes ∆xi = ∆xi+1 = ∆x holds. Thus, Equation (4.9) can be
reformulated into the form

Ek =

√√√√∆x
L

∑
i

(
Skwan,i − Skwnum,i

)2
, (4.10)

which is equivalent to a quadratic average of the difference between analytical and numerical
solution.

Following, the results of the different calculations are discussed. Therefore, the saturation
distributions of the infiltrating water phase are shown after a period of 500 days.
Figures 4.4a and 4.4b compare the numerical results calculated on different grids using a linear
relative permeability-saturation relation to the analytical solution. It can be seen that for
both formulations the numerical solution converges to the analytical solution when increasing
the number of elements. It can also be observed that the fully coupled formulation causes
much stronger numerical diffusion due to the fully upwinding. Compared to the fractional flow
formulation, this leads to a stronger smearing of the saturation front. Using the fractional
flow formulation the results are almost equal to the exact solution for the finest grid and are
also much more accurate for the coarser grids than using the fully coupled formulation.
This can also be observed comparing the results using a Brooks-Corey relative permeability-
saturation relation. Using the fully coupled formulation on the finest grid, the smearing of
the saturation front is still relatively strong (Fig. 4.5a). In contrast, with the fractional
flow formulation the saturation front of the numerical calculation using the finest grid shows
a shape almost equal to the analytical solution (Fig. 4.5b). It has to be noted that the
saturation at the left boundary of the domain is equal for both formulations. The differences
which can be observed arise from the visualisation of the data, where the cell centred data
resulting from the calculations with the fractional flow formulation are converted into point
data.
Comparing the different approaches for the relative permeability-saturation relation, it can
be observed that applying the fully coupled formulation significantly smaller elements would
be needed with the linear approach to get an approximation of a quality equal to the
approximation using the Brooks-Corey approach. The fractional flow formulation shows a
comparable, good convergence against the analytical solution with increasing element numbers
for both the linear as well as the non-linear approach.
Figures 4.6a and 4.6b show the averaged weighted error described by Equation (4.10) for the
linear relative permeability-saturation relationship. The error using a Brooks-Corey approach
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(b) fractional flow formulation

Figure 4.4: Saturation profiles of the Buckley-Leverett problem at t = 500 d for different
number of cells (linear).
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Figure 4.5: Saturation profiles of the Buckley-Leverett problem at t = 500 d for different
number of cells (Brooks-Corey).
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is shown in Figures 4.7a and 4.7b. Consideration of the error confirms what was observed
above for the saturation distributions. The level of the error is decreasing with increasing
number of elements for both relative permeability-saturation functions and for both twophase
flow formulations. Furthermore, using the fully coupled formulation the error calculated
for the linear approach is greater than the error calculated for the nonlinear Brooks-Corey
approach. The error oscillations which occur are dependent on the grid and become smaller
with increasing element number. They show that the front is not moving continuously. It
jumps from one element into another from one time step to the next one. The error oscillations
are generated because the front of the analytical and the numerical solution do not move at
the same time step.
To achieve better comparability, the averaged weighted error is additionally averaged over
time. The results are shown in Figure 4.8. Both error curves using the fractional flow
formulation lie below the corresponding curve of the fully coupled formulation. Thus, it can be
noted that the fractional flow formulation approximates the Buckley-Leverett problem more
accurately than the fully coupled formulation. Furthermore, considering the curves of the
fully coupled formulation it can be observed, that the curve of the linear relative permeability-
saturation function lies above the curve of the Brooks-Corey relation which implies that with
Brooks-Corey a better approximation relative to the corresponding analytical solution can be
achieved. The smallest error is achieved using the fractional flow formulation with a linear
relative permeability-saturation relationship. This coincides with the analysis of the saturation
distributions.
As described above, the time steps applying the fractional flow formulation are determined
using a Courant-Friedrichs-Lewy criterion to guarantee a stable solution. The time steps do
not have to be constant but are adapted during the calculation if this is necessary. For the
fully coupled formulation constant time steps are chosen. Therefore, the impact of the time
step size has to be looked at. As can be seen in Table 4.1, calculations have been done using
a grid consisting of 30 elements for four different time step sizes. The resulting saturation
profiles are shown in Figures 4.9 and 4.11. As can be observed, the solution for both relative
permeability-saturation functions converge to a solution with decreasing time steps. However,
only between the largest and the next smaller time step a noticeable difference can be detected.
Further bisecting of the time step does no longer change the solution. Thus, the solutions can
be assumed to be converged for the finer time steps. The same can be observed analysing
the error distribution (Fig. 4.10 and 4.12) which also shows convergence after the second
largest time step. This also implies that the error oscillations can not be further reduced by
decreasing the time step below this level. Thus, from that moment they are only related to
the grid as pointed out above.

Besides the accuracy, the efficiency is a second aspect to be discussed. Therefore, the execution
time is measured and shown in Table 4.4. The table shows that linearity and nonlinearity,
respectively, have a strong influence concerning the computing speed. While for the linear
case the fractional flow formulation is faster for all grids, for the nonlinear case using a
Brooks-Corey relative permeability-saturation function the fully coupled formulation becomes
faster if the element number increases.
To achieve additional comparability, Table 4.5 shows some execution time ratios. The first two
ratios (FC-BC/FC-linear, FF-BC/FF-linear) relate the execution time of the nonlinear case to
that of the linear case for the two twophase flow formulations. For both formulations the ratio
is greater than one. That means that the calculation of the linear case is faster although the
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Figure 4.6: Weighted averaged error over time for different number of cells (linear).

34



4 Comparative Study of Mathematical Models and Numerical Schemes on Selected Examples

w
ei

gh
te

d 
av

er
ag

ed
 e

rr
or

 [-
]

time [s]
0.0 1.0e+07 2.0e+07 3.0e+07 4.0e+070.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) fully coupled formulation

w
ei

gh
te

d 
av

er
ag

ed
 e

rr
or

 [-
]

time [s]
0.0 1.0e+07 2.0e+07 3.0e+07 4.0e+070.00

0.02

0.04

0.06

0.08

0.10

(b) fractional flow formulation

Figure 4.7: Weighted averaged error over time for different number of cells (Brooks-Corey).
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Figure 4.8: Time averaged error of the different formulations over number of cells (fully
coupled (FC), fractional flow (FF)).
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Figure 4.9: Saturation profiles of the Buckley-Leverett problem at t = 500 d for different time
steps (fully coupled formulation, linear).
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Figure 4.10: Weighted averaged error over time for different time steps (fully coupled formula-
tion, linear).
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Figure 4.11: Saturation profiles of the Buckley-Leverett problem at t = 500 d for different
time steps (fully coupled formulation, Brooks-Corey).
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Figure 4.12: Weighted averaged error over time for different time steps (fully coupled formula-
tion, Brooks-Corey).

differences in speed become smaller for increasing element numbers. However, the decrease of
the ratios and thus the equalisation of the execution times also slows down with increasing
element numbers. The third and fourth ratio (FF-linear/FC-linear, FF-BC/FC-BC) relate
the execution times of the different twophase flow formulations to each other. For the linear
case, the ratio is always smaller than one which shows that the fractional flow formulation is
always faster than the fully coupled formulation. The ratio of the nonlinear case is increasing
with increasing element numbers. For the first grid, it is smaller than one and the fractional
flow formulation is faster than the fully coupled formulation. For the second and the following
grids, the ratio is greater than one and therefore, the fully coupled formulation is faster. The
increase of the ratio slows down with increasing element number and seems to converge for
further refinement of the grid.
The difference between the formulations is that the fully coupled formulation is solved implicitly
using Newton-Raphson iterations to linearise the nonlinear problem during the calculation of
a time step whereas the fractional flow formulation accounts for the nonlinearity by iterating
between the two equations to be solved (pressure and saturation, Eq. 4.3 and 4.4) until the
solution for the time step is converged. Here, the faster convergence behaviour of the Newton-
Raphson iteration method causes the advantage in speed of the fully coupled formulation.

Combining accuracy and efficiency, the fractional flow formulation is the better choice to
solve the one dimensional quasilinear hyperbolic Buckley-Leverett problem. It is slightly
disadvantaged concerning the execution time for the nonlinear case with larger number of
elements. However, it shows a considerably better approximation of the analytical solution.
Concerning the fully coupled formulation, it has to be mentioned that even larger time steps
might be applicable due to the implicit scheme which would be an advantage. However, a
lower accuracy can be expected for this case. In the analysis of the McWhorter problem in
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cells 15 30 60 120

fully coupled f. linear 0.016 0.052 0.188 0.644
Brooks-Corey 0.084 0.172 0.388 1.124

fractional flow f. linear 0.004 0.036 0.104 0.316
Brooks-Corey 0.080 0.184 0.476 1.412

Table 4.4: Execution time [s].

cells 15 30 60 120

execution time ratio

FC-BC/FC-linear 5.25 3.31 2.06 1.75
FF-BC/FF-linear 20.00 5.11 4.58 4.47

FF-linear/FC-linear 0.250 0.692 0.553 0.491
FF-BC/FC-BC 0.732 1.070 1.227 1.256

Table 4.5: Some execution time ratios (fully coupled (FC), fractional flow (FF), Brooks-Corey
(BC)).

Section 4.3 this advantage and disadvantage, respectively, is discussed.

4.2 Five-Spot Waterflood Problem
In analogy to the Buckley-Leverett problem, the five-spot waterflood problem is selected,
describing the displacement of a non-wetting fluid by a wetting fluid in a two dimensional
horizontal system. The assumptions of the Buckley-Leverett problem also hold for the five-spot
problem:

• Capillary pressure effects are neglected.

• Gravity effects are neglected.

• There exist no sources or sinks.

• The fluids are incompressible and immiscible.

• The fluid viscosities are equal.

• The porous medium is homogeneous.

The resulting equations are the same as those derived for the Buckley-Leverett problem (Eq.
4.1 and 4.2, 4.3 and 4.4). Two different cases are formulated:

• Case 1: gradient diagonal to the grid (Fig. 4.13a).

• Case 2: gradient parallel to the grid (Fig. 4.13b).

These different cases can be used in order to quantify the numerically caused diffusion error,
especially concerning numerical cross diffusion.
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(a) case 1

(b) case 2

Figure 4.13: Five-spot problem with initial and boundary conditions.

4.2.1 Calculations
The numerical simulations are carried out using a two dimensional equidistant grid of rectan-
gular elements. The considered quadratic domain has a length and a width of 300 m. Different
grids are used, the coarsest one consisting of 15 × 15 elements. Finer grids are constructed
by bisecting all elements in each direction (Tab. 4.6). As described for the Buckley-Leverett
problem the time step size which is given in Table 4.6 is determined as follows: First, a
simulation is done applying the fractional flow formulation. Here, an automatic time step
adaption is implemented using a Courant-Friedrichs-Lewy criterion (details, see [6]) for the
explicit Euler time steps. The average time step of this simulation is then used as constant
time step in the simulation using the fully coupled formulation.
The initial and boundary conditions for the two cases are given in Tables 4.7 and 4.8. For case
1, Dirichlet boundary conditions are set on the lower left corner of the domain and Neumann
boundary conditions on the upper right corner of the domain (Fig. 4.13a). For case 2, Dirichlet
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geometry length × width [m]
300 × 300

discretisation

number
of cells

∆x = ∆y
[m]

∆t [s]
fully coupled f. fractional flow f.

15 × 15 20 6× 105 6× 105 (∅)
30 × 30 10 1.5× 105 1.5× 105 (∅)
60× 60 5 3.75× 104 3.75× 104 (∅)

Table 4.6: Geometry and discretisation.

boundary conditions are set on the lower left and on the upper right corner of the domain
and Neumann boundary conditions on the lower right and on the upper left corner of the
domain (Fig. 4.13b). No flow boundary conditions are used on the remaining boundaries (Fig.
4.13a and 4.13b). Initially, the domain is oil saturated. A linear as well as a Brooks-Corey
relationship are selected to analyse the influence of the relative permeability-saturation relation
on the solution. The corresponding parameters as well as other porous medium and fluid
properties are shown in Table 4.9.

parameter value

boundary conditions
case 1:

15× 15 elements

0 m ≤ x ≤ 20 m und 0 m ≤ y ≤ 20 m
water pressure pw = p̄ 2× 105 [Pa]
oil saturation Sn 0.2 [−]
280 m ≤ x ≤ 300 m und 280 m ≤ y ≤ 300 m
flow rate of water qw 0

[
kg/(m2s)

]
flow rate of oil qn −1× 10−3 [kg/(m2s)

]

boundary conditions
case 1:

30× 30 elements

0 m ≤ x ≤ 10 m und 0 m ≤ y ≤ 10 m
water pressure pw = p̄ 2× 105 [Pa]
oil saturation Sn 0.2 [−]
290 m ≤ x ≤ 300 m und 290 m ≤ y ≤ 300 m
flow rate of water qw 0

[
kg/(m2s)

]
flow rate of oil qn −2× 10−3 [kg/(m2s)

]

boundary conditions
case 1:

60× 60 elements

0 m ≤ x ≤ 5 m und 0 m ≤ y ≤ 5 m
water pressure pw = p̄ 2× 105 [Pa]
oil saturation Sn 0.2 [−]
295 m ≤ x ≤ 300 m und 295 m ≤ y ≤ 300 m
flow rate of water qw 0

[
kg/(m2s)

]
flow rate of oil qn −4× 10−3 [kg/(m2s)

]
initial conditions water pressure pw = p̄ 2× 105 [Pa]

oil saturation Sn 0.8 [−]

Table 4.7: Initial and boundary conditions (case 1).
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Parameter Value

boundary conditions
case 2:

15× 15 elements

0 m ≤ x ≤ 20 m und 0 m ≤ y ≤ 20 m,
280 m ≤ x ≤ 300 m und 280 m ≤ y ≤ 300 m
water pressure pw = p̄ 2× 105 [Pa]
oil saturation Sn 0.2 [−]
280 m ≤ x ≤ 300 m und 0 m ≤ y ≤ 20 m,
0 m ≤ x ≤ 20 m und 280 m ≤ y ≤ 300 m
flow rate of water qw 0

[
kg/(m2s)

]
flow rate of oil qn −1× 10−3 [kg/(m2s)

]

boundary conditions
case 2:

30× 30 elements

0 m ≤ x ≤ 10 m und 0 m ≤ y ≤ 10 m,
290 m ≤ x ≤ 300 m und 290 m ≤ y ≤ 300 m
water pressure pw = p̄ 2× 105 [Pa]
oil saturation Sn 0.2 [−]
290 m ≤ x ≤ 300 m und 0 m ≤ y ≤ 10 m,
0 m ≤ x ≤ 10 m und 290 m ≤ y ≤ 300 m
flow rate of water qw 0

[
kg/(m2s)

]
flow rate of oil qn −2× 10−3 [kg/(m2s)

]

boundary conditions
case 2:

60× 60 elements

0 m ≤ x ≤ 5 m und 0 m ≤ y ≤ 5 m,
295 m ≤ x ≤ 300 m und 295 m ≤ y ≤ 300 m
water pressure pw = p̄ 2× 105 [Pa]
oil saturation Sn 0.2 [−]
295 m ≤ x ≤ 300 m und 0 m ≤ y ≤ 5 m,
0 m ≤ x ≤ 5 m und 295 m ≤ y ≤ 300 m
flow rate of water qw 0

[
kg/(m2s)

]
flow rate of oil qn −4× 10−3 [kg/(m2s)

]
initial conditions water pressure pw = p̄ 2× 105 [Pa]

oil saturation Sn 0.8 [−]

Table 4.8: Initial and boundary conditions (case 2).
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parameter value

fluid properties

water density ρw 1000
[
kg/m3]

oil density ρn 1000
[
kg/m3]

dyn. viscosity water µw 0.001 [kg/(ms)]
dyn. viscosity oil µn 0.001 [kg/(ms)]
intrinsic permeability K 10−7 [m2]
porosity Φ 0.2 [−]

solid matrix properties and pore size distr. index λ 2.00 [−]
constitutive relationships res. saturation water Swr 0.2 [−]

res. saturation oil Snr 0.2 [−]
rel. permeability kr(Sw) linear/Brooks-Corey

Table 4.9: Fluid and porous medium properties.

Figures 4.14a to 4.15d show the contour lines of the saturation distribution of the diagonal
case (case 1) and the parallel case (case 2) for a linear relative permeability-saturation relation
after a period of 500 days. For the coarse as well as for the fine grid, it can be observed
that the front approximation of the fully coupled formulation does not significantly differ
from the approximation of the fractional flow formulation. The coarse grid shows no radial-
symmetric front propagation. In fact, the saturation front becomes straightened because it
is moving faster parallel to the boundaries. This can be seen more clearly in Figures 4.16a
to 4.17b in which the saturation profiles along the diagonal of the domain and parallel to
the lower boundary are plotted. As expected, numerical diffusion is decreasing resulting in
the sharpening of the front if the grid is refined, corresponding to the results of Section 4.1.
The differences according to the amount between the front velocity along the boundaries and
along the diagonal of the domain also decrease if the elements are refined. Comparing the
two cases, good agreement can be observed in Figures 4.14a to 4.15d. However, Figures 4.16a
to 4.17b show that the differences between the diagonal and the parallel saturation profiles
described before are a little more distinct for the parallel case (case 2).

The nonlinear case using a Buckley-Leverett-relative permeability-saturation function is shown
in Figures 4.18a to 4.19d. Here, the fractional flow formulation results in a smoother saturation
front than the fully coupled formulation. However, the contour lines only show an interpolation
of the data calculated for the vertexes (fully coupled) and the cell centres (fractional flow),
respectively. So the comparison between the vertex and cell based data strongly depends on
how the interpolation is done in the visualisation tool. The interpolation of the cell centred
data (fractional flow), done to achieve comparability to the vertex centred data, might smooth
out unregularities. In accordance to the linear case, the radial symmetry of the distribution
is improved for both formulations if the grid is refined. This means that according to their
absolute value, the diagonal front velocity and the velocity parallel to the grid converge to
each other.
Again, Figures 4.20a to 4.21b compare the saturation profiles along the diagonal of the domain
to the profiles parallel to the boundaries. As mentioned before in Section 4.1 the saturation
at the boundary of the domain is equal for both formulations. The differences which can be
observed arise from the visualisation of the data, where the cell centred data resulting from
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(a) case 1: fully coupled formulation (b) case 1: fractional flow formulation

(c) case 2: fully coupled formulation (d) case 2: fractional flow formulation

Figure 4.14: 15 × 15 elements, t = 500 d, linear.

(a) case 1: fully coupled formulation (b) case 1: fractional flow formulation

(c) case 2: fully coupled formulation (d) case 2: fractional flow formulation

Figure 4.15: 60 × 60 elements, t = 500 d , linear.
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(a) case 1
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(b) case 2

Figure 4.16: Saturation profiles along the diagonal of the domain and parallel to the lower
boundary (fully coupled formulation, linear).
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(b) case 2

Figure 4.17: Saturation profiles along the diagonal of the domain and parallel to the lower
boundary (fractional flow formulation, linear).
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(a) case 1: fully coupled formulation (b) case 1: fractional flow formulation

(c) case 2: fully coupled formulation (d) case 2: fractional flow formulation

Figure 4.18: 15 × 15 elements, t = 500 d, Brooks-Corey.

(a) case 1: fully coupled formulation (b) case 1: fractional flow formulation

(c) case 2: fully coupled formulation (d) case 2: fractional flow formulation

Figure 4.19: 60 × 60 elements, t = 500 d, Brooks-Corey.
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the calculations with the fractional flow formulation are converted into point data. Similar to
the linear case, the front is sharpening and thus, numerical diffusion is decreasing if the grid
is refined. Contrary to the results of the one dimensional Buckley-Leverett problem (Ch. 4.1),
it can be observed that the fully coupled formulation shows less smearing of the saturation
front than the fractional flow formulation. According to their absolute values, differences of
the diagonal front velocity and the velocity parallel to the boundaries are decreasing with
increasing refinement level. For the nonlinear case, these differences are smaller than for the
linear case (Fig. 4.16a to 4.17b). The diagonal saturation profile of case 1 using the finest grid
is almost the same than the parallel one for both fractional flow and fully coupled formulation.

Figures 4.22a and 4.22b show a comparison of the saturation profiles along the diagonal of
the domain for the different formulations and the different cases, and for two different grids.
For the coarse grid, a small difference between the two formulations can be observed where
the front of the fully coupled formulation is little faster than the front of the fractional flow
formulation. The profiles of the two cases are almost equal for both formulations. The fine
grid (Fig. 4.22b) shows pretty much the same profiles for both formulations and both cases.
The corresponding profiles using a nonlinear relative permeability-saturation relation are
shown in Figures 4.23a and 4.23b. As described before, it can be observed that the fully
coupled formulation shows less smearing of the saturation front and therefore less numerical
diffusion. The profiles of the different cases show good agreement for both formulations on
both grids.

The application of the five-spot problem to a diagonal grid (case 1) and a parallel grid (case 2)
is done in order to quantify the effect of numerical diffusion and thus, the mesh dependency
of different numerical methods. Especially, an influence of numerical cross diffusion can be
analysed. As pointed out by Helmig [6], usual first order upwind methods do in general not
account for diagonal effects in a sufficient way and cause cross diffusion. As mentioned in
Section 3.4.1, if diagonal effects occur, higher order finite volumes schemes can even increase
the numerical diffusion due to the upwinding depending on how the slope is calculated.

One measure for numerical cross diffusion is the kind of front propagation of the diagonal
case (case 1) which should be radial symmetric without the cross diffusion. As pointed out
before, this is not the case for the coarse grid independent on the used formulation or the
used relative permeability-saturation relation. For the fine grid, the propagation is almost
radial symmetric. This means that the numerical cross diffusion is dependent on the number
and thus, on the size of the elements.
Unlike expected referring to the results of Section 4.1, the fully coupled formulation shows
less smearing of the saturation front compared to the fractional flow formulation, especially
for the nonlinear case. Additionally, the differences between the diagonal front velocity and
the velocity parallel to the boundaries are a bit larger for the fractional flow formulation.
From this, it follows that the fully upwind box method (Sec. 3.3) accounts in a better way
for the diagonal gradient than the finite volume method (Sec. 3.4). One reason could be
the cross diffusion introduced by the upwind scheme together with the higher order finite
volume method as explained before. Another reason might be that the finite volume method
corresponds to a five-spot scheme concerning the unknown (the saturation) (Fig. 3.2) whereas
the box method corresponds to a nine-spot scheme (Fig. 3.1).

A second way to analyse the effect of cross diffusion is the kind of front propagation of the
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(b) case 2

Figure 4.20: Saturation profiles along the diagonal of the domain and parallel to the lower
boundary (fully coupled formulation, Brooks-Corey).
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(a) case 1: fractional flow formulation
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(b) case 2: fractional flow formulation

Figure 4.21: Saturation profiles along the diagonal of the domain and parallel to the lower
boundary (fractional flow formulation, Brooks-Corey).
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(b) 60 × 60 elements

Figure 4.22: Saturation profiles along the diagonal of the domain(fully coupled formulation
(FC), fractional flow formulation (FF), linear).
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(b) 60 × 60 elements

Figure 4.23: Saturation profiles along the diagonal of the domain (fully coupled formulation
(FC), fractional flow formulation (FF), Brooks-Corey).
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cells 15 × 15 30 × 30 60 × 60

fully coupled f. linear 5.304 98.190 2069.133
Brooks-Corey 5.476 101.422 2174.948

fractional flow f. linear 2.180 33.038 545.498
Brooks-Corey 15.357 219.294 4064.898

Table 4.10: Execution time [s] (case 1).

parallel case (case 2) which should also be radial symmetric without the cross diffusion at
least if the two fronts have not yet moved to far into the domain. The results are comparable
to case 1. For the fine grid the propagation is almost radial symmetric whereas this is
not the case for the coarse grid, independent on the used formulation or the used relative
permeability-saturation relation. This means that also for case 2 the numerical cross diffusion
is dependent on the number and thus on the size of the elements.
The comparison of the saturation profiles in the different directions shows that the front is
moving faster along the boundary for both cases. For case 2, the differences between these
front velocities according to their absolute values are even more distinct than for case 1. This
can especially be observed for the linear relative permeability-saturation relation. Comparing
the different formulations concerning the smearing of the front, the same effect as discussed
for case 1 can be observed.
Finally, a comparison of the diagonal case (case 1) and the parallel case (case 2) can be done.
If a method is totally independent on the direction of the gradient, the same results should
be provided for both cases. As observed before, in general, good agreement can be achieved
for the two cases, independent of the formulation. However, as pointed out for case 2, the
differences between the front velocities in diagonal and parallel direction according to their
absolute value are more distinct than for case 1.

Both used methods (fully coupled formulation - box method, fractional flow formulation -
finite volumes/higher order finite volumes) are mesh dependent concerning the direction of
the occurring gradients. The effect of this mesh dependency can be reduced by a refinement
of the grid. The fully coupled formulation shows less numerical diffusion especially in diagonal
direction. Most likely, as mentioned before, the reason for this is that more nodes in diagonal
direction are taken into account for the box method. The higher order finite volume method
adds additional information but only in grid direction and not diagonal to the grid.

To appraise the efficiency of the different formulations and the corresponding numerical
methods, the execution time is measured. The results are shown in Tables 4.10 and 4.11.
As can be seen, wide differences appear for the two dimensional case. For a linear relative
permeability-saturation function and a grid of 15 × 15 elements, the calculation needs between
2 and 3 seconds whereas for a calculation using a nonlinear relative permeability-saturation
relation and a grid of 60 × 60 elements, around 4100 seconds (∼= 1.14 h) are needed.
To achieve a better comparability, some execution time ratios are calculated and shown in
Tables 4.12 and 4.13. As the two cases of the five-spot problem behave similarly concerning
the execution time, it is not further differentiated between these cases.
The first two ratios (FC-BC/FC-linear, FF-BC/FF-linear) relate the execution time of the
nonlinear case to the execution time of the linear case. For both twophase flow formulations,
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cells 15 × 15 30 × 30 60 × 60

fully coupled f. linear 5.344 102.702 2116.432
Brooks-Corey 5.612 105.595 2218.699

fractional flow f. linear 2.436 32.245 552.334
Brooks-Corey 14.645 223.718 4125.658

Table 4.11: Execution time [s] (case 2).

the ratios are greater than one. Thus, the calculations are faster using a linear relative
permeability-saturation relation. However, a wide difference can be observed between the two
twophase formulations. The ratio of the fully coupled formulation (FC-BC/FC-linear) ranges
around one which means that there are no notable differences concerning the execution time
between the linear and the nonlinear case. For the fractional flow formulation the calculations
using a linear relative permeability-saturation function are 6 to 7.5 times faster than the
calculations using a nonlinear relation.
The third and fourth ratio (FF-linear/FC-linear, FF-BC/FC-BC) relate the execution times
of the different twophase flow formulations to each other. For the linear case, the ratio is
always smaller than one. This shows that the fractional flow formulation is always faster
than the fully coupled formulation in this case. Further, the ratio (FF-linear/FC-linear) is
decreasing with increasing element number which means that the execution time using the
fully coupled formulation is increasing stronger with increasing element number than the time
using the fractional flow formulation. The ratio of the nonlinear case (FF-BC/FC-BC) is also
decreasing with increasing element numbers. As can be seen, however, it is also greater than
one. Therefore, the fully coupled formulation is faster than the fractional flow formulation for
the nonlinear relative permeability-saturation relation. This is consistent with the results of
the Buckley-Leverett problem. The implicit solution method implemented for the fully coupled
formulation using Newton-Raphson iterations to linearise the nonlinear problem shows a faster
convergence behaviour than the IMPES scheme applied for the fractional flow formulation
if nonlinear constitutive relationships are used. However, with increasing element number
the time needed for each iteration does stronger affect the execution time. Therefore, the
advantage arising of a smaller number of iteration steps is damped.

Combining the results of the discussions carried out concerning the accuracy and the efficiency,
it has to be differentiated depending on the relative permeability-saturation function which is
used.
For calculations applying a linear relative permeability-saturation relation, the fractional flow
formulation is the one to choose. The two formulations show comparable results concerning
the accuracy, but the fractional flow formulation is considerably less expansive concerning
computational time.
In case of a nonlinear relative permeability-saturation function, the fully coupled formulation
shows advantages concerning both accuracy and efficiency. It introduces less numerical diffusion
than the fractional flow formulation. Additionally, it is more efficient in the linearisation of
the nonlinear problem and thus less expansive concerning computational time.
As introduced, the terms fully coupled formulation and fractional flow formulation imply the
mathematical model as well as the according numerical method.
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cells 15 × 15 30 × 30 60 × 60

execution time ratio

FC-BC/FC-linear 1.032 1.033 1.051
FF-BC/FF-linear 7.044 6.462 7.452

FF-linear/FC-linear 0.411 0.346 0.264
FF-BC/FC-BC 2.804 2.162 1.869

Table 4.12: Some execution time ratios for case 1 (fully coupled (FC), fractional flow (FF),
Brooks-Corey (BC)).

cells 15 × 15 30 × 30 60 × 60

execution time ratio

FC-BC/FC-linear 1.050 1.028 1.048
FF-BC/FF-linear 6.012 6.938 7.469

FF-linear/FC-linear 0.456 0.314 0.261
FF-BC/FC-BC 2.609 2.119 1.859

Table 4.13: Some execution time ratios for case 2 (fully coupled (FC), fractional flow (FF),
Brooks-Corey (BC)).

4.3 McWhorter Problem
Like the Buckley-Leverett problem, the McWhorter problem describes the instationary, one-
dimensional displacement of oil by water in a horizontal system(Fig. 4.24). Contrary to the
Buckley-Leverett problem, capillary pressure effects are taken into account. The configuration
of the McWhorter problem illustrated in Figure 4.24 leads to a countercurrent displacement
where the flow is purely driven by capillary forces. This allows for the examination of a
diffusion dominated flow system described by parabolic differential equations. The assumptions
made for the McWhorter problem are:

• Gravity effects are neglected.

• There exist no sources or sinks.

• The fluids are incompressible and immiscible.

• The fluid viscosities are equal.

• The porous medium is homogeneous.

With these assumptions, the fully coupled pn-Sw formulation (Eq. 3.8) yields:

Lw(pn, Sw) := φ
∂Sw
∂t
−∇ · (λwK(∇pn −∇pc)) = 0, (4.11)

Ln(pn, Sw) := −φ∂Sw
∂t
−∇ · (λnK∇pn) = 0. (4.12)

Further, the equations of the global pressure fractional flow formulation can be simplified as

−∇ · (λtK∇p̄) = 0, (4.13)
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Figure 4.24: Buckley-Leverett problem with initial and boundary conditions.

and
φ
∂Sw
∂t

+∇ · (fwvt + λ̄∇pc) = 0. (4.14)

According to Equation (3.32), Equation (4.14) can also be formulated as

φ
∂Sw
∂t

+ vt
d fw
dSw

∇Sw +∇ ·
(
λ̄
d pc
dSw

∇Sw
)

= 0. (4.15)

Finally, applying the above assumptions to the phase pressure fractional flow formulation, the
pressure equation in terms of the non-wetting phase pressure pn (Eq. 3.22) can be rewritten
as

∇ · [λtK (∇pn − fw∇pc)] = 0, (4.16)

with the corresponding saturation equation

−φ∂Sw
∂t

+∇ · (fnvnmod) = 0. (4.17)

4.3.1 Analytical solution
A quasi-analytical solution for the computation of the McWhorter problem using the concept
of a fractional flow formulation has been derived by McWhorter and Sunada [9]. They define
a fractional flow function which for countercurrent displacement of a non-wetting phase is
finally formulated as

F (Sw) = 1−

 S0∫
Sw

(β − Sw)D
F

dβ

 ·
 S0∫
Si

(Sw − Si)D
F

dSw


(−1)

(4.18)

where F = F (x, t) = qw
q0
, qw is the volume flux of the wetting phase, q0 = qw(x = 0, t), t is the

the actual time, S0 is the wetting phase saturation at x = 0 and Si is the initial wetting phase
saturation. D represents the dispersion tensor D(Sw) = λ̄K dpc

dSw
(compare Eq. 4.15). Further,

the derivative

F ′(Sw) = ∂F (Sw)
∂Sw

=

 S0∫
Sw

D
F
dβ

 ·
 S0∫
Si

(Sw − Si)D
F

dSw


(−1)

(4.19)
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geometry length [m]
2.6

discretisation

number
of cells ∆x [m]

∆t [s]

fully coupled f. classical/global pressure
fractional flow f.

26 0.1 22 22 (∅)
100 -

52 0.05 4 4 (∅)
100 -

104 0.025 1 1 (∅)
10 -

208 0.0125 1 -

Table 4.14: Geometry and discretisation.

is formulated. The analytical solution is then expressed by

x(Sw, t) = 2A
Φ
F ′(Sw)t(−

1
2), (4.20)

with the porosity Φ and

A2 = Φ
2

S0∫
Si

(Sw − Si)D
F

dSw. (4.21)

The unknown function F (Sw) can be computed iteratively from the integral equation (Eq.
4.18) where the integrals have to be solved numerically. Thus, the analytical solution is also
termed quasi-analytical solution. Iteration schemes are provided by McWhorter and Sunada
[9] and by Fučík et al. [5] who also propose a modified method to avoid instabilities of the
iterative process. The modified iterative scheme of Fučík et al. [5] is used to obtain the
analytical solutions shown in the following section.

4.3.2 Calculations
A one dimensional domain with a length of 2.6 m is considered in the numerical simulations.
Different grids are used, the coarsest one consisting of 26 elements and the finest one consisting
of 104 elements (Tab. 4.14). The time step size is determined as described for the Buckley-
Leverett problem (Sec. 4.1.2). For the fully coupled formulation, an additional, constant time
step ∆t = 100 s is chosen to test the dependency on the time step (Tab. 4.14).
The initial and boundary conditions are given in Table 4.15. The domain is initially oil
saturated. For reasons of numerical stability, a linear saturation distribution is initially
assumed close to the left boundary. On the left side of the domain (x = 0 m) Dirichlet
boundary conditions are set. Neumann boundary conditions are defined for the non-wetting
phase and Dirichlet boundary conditions for the wetting phase on the right side of the domain
(x = 2.6 m)(Fig. 4.24). As capillary effects occur, the global pressure p̄ and the non-wetting
phase pressure pn are no longer equal. But it can be shown that for Sw = 1−Snr, which is the
case at the left boundary, p̄ = pn − pc(Sw) (see [1]). A Brooks-Corey relationship is selected
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parameter value

boundary conditions

x = 0 m
oil pressure pn 2× 105 [Pa]
global pressure p̄ 1.95× 105 [Pa]
water saturation Sw 1 [−]
x = 2.6 m
water saturation Sw 0 [−]
flow rate of oil qn 0

[
kg/(m2s)

]
initial conditions

water pressure pn 2× 105 [Pa]
global pressure p̄ 1.95× 105 [Pa]
water saturation Sw 0 [−]

Table 4.15: Initial and boundary conditions.

parameter value

fluid properties

water density ρw 1000
[
kg/m3]

oil density ρn 1000
[
kg/m3]

dyn. viscosity water µw 0.001 [kg/(ms)]
dyn. viscosity oil µn 0.001 [kg/(ms)]

solid matrix properties and
constitutive relationships

intrinsic permeability K 10−10 [m2]
porosity Φ 0.3 [−]
pore size distr. index λ 2.00 [−]
entry pressure pd 5000 [Pa]
res. saturation water Swr 0 [−]
res. saturation oil Snr 0 [−]
rel. permeability kr(Sw) Brooks-Corey

Table 4.16: Fluid and porous medium properties.

as relative permeability-saturation relation. Table 4.16 shows the corresponding parameters
as well as other porous medium and fluid properties.
As for the Buckley-Leverett problem, an error with respect to the analytical solution is
calculated in order to compare the results of the numerical experiments and to estimate the
accuracy of the approximation. The analytical solution itself is calculated simultaneously
during the numerical simulation and on the corresponding simulation grid. A weighted
averaged error is calculated for each time step as defined by Equation (4.10) (Sec. 4.1.2).
The calculations are only carried out for the fully coupled and the global pressure fractional
flow formulation. Applying the present discretisation scheme (Sec. 3.4), the phase pressure
fractional flow formulation expressed by Equations (4.16) and (4.17) is not able to solve
the McWhorter problem since the time steps become to small and the number of internal
iterations between the two equations too large.

Figures 4.25a and 4.25b compare the results of the simulations using the different formulations
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and different grids to the analytical solution. On average, equal time step sizes are used for
both kinds of twophase flow formulations. It can be observed that the fully coupled formulation
shows a stronger dependence on the element size than the global pressure fractional flow
formulation. The numerical diffusion introduced by the upwinding considerably adds to
the modelled physical diffusion which leads to a faster propagation of the wetting phase. If
the grid is refined, the approximation using the fully coupled formulation converges to the
analytical solution (Fig. 4.25a). To show this the grid is refined once more compared to the
finest grid used for the global pressure fractional flow formulation. However, the fully coupled
formulation tends to systematically overestimate the speed of the propagation front due to
the upwinding.
The global pressure fractional flow formulation generates less numerical diffusion. The reason
is the central differencing scheme which is implemented here for the diffusive terms (Sec.
3.4.1). This scheme better accounts for the purely diffusive character of the problem than an
upwind scheme. As can be seen in Figure 4.25b, the global pressure fractional flow formulation
shows an approximation almost equal to the exact solution, especially, for the fine grids where
the grid is only refined twice for this formulation. Further refinement would lead to very small
time steps to fulfil the Courant criterion and to ensure numerical stability. As mentioned
during the discussion of the Buckle-Leverett problem (Sec. 4.1), differences of the saturations
at the left boundary of the domain, which can be observed, arise from the visualisation of
the data, where the cell centred data resulting from the calculations with the fractional flow
formulation are converted into point data.

The weighted averaged error of the numerical approximations of the saturation distribution
discussed above is shown in Figures 4.26a and 4.26b. The oscillations have already been
discussed in Section 4.1. It can be observed that for both formulations the error converges
to a quasi constant level. Furthermore, the error decreases if the element size is decreased.
This is demonstrated more clearly in Figure 4.3.2 which shows the weighted averaged error
averaged over time. It can be observed that the error of both, fully coupled formulation as well
as global pressure fractional flow formulation can be reduced and therefore, the accuracy can
be raised if the grid is refined. The global pressure fractional flow formulation, however, shows
a much smaller error for all compared grids. Even on the finest grid used for the fully coupled
formulation which is refined once more compared to the finest grid of the global pressure
fractional flow formulation, the error can hardly be reduced below the error level achieved by
using the coarsest grid with the global pressure fractional flow formulation. This is consistent
with what has been pointed out before concerning the saturation profiles.

Finally, the solution of the fully coupled formulation is considered concerning the dependence
on the time step size. Figure 4.28 shows the solution of the McWhorter problem using one
constant time step for all grid types except for the finest grid which is five to ten times larger
than the time steps chosen before, depending on the grid refinement level. But as can be
observed, the results shown in Figure 4.28 are exactly equal to those shown before in Figure
4.25a. This is especially important for the evaluation of the efficiency.

To analyse the efficiency of the different formulations and the corresponding numerical methods,
the execution time is measured and shown in Table 4.17. The global pressure fractional flow
formulation is faster than the fully coupled formulation for all grids if the same averaged
time step size is used where the differences are relatively small compared to the execution
time. This is shown more clearly in Table 4.18. The ratio GPFF/FC(∆t(GPFF )) is almost
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(b) global pressure fractional flow formulation

Figure 4.25: Saturation profiles of the McWhorter problem at t = 10000 s for different number
of cells.
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Figure 4.26: Weighted averaged error over time for different number of cells.
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Figure 4.27: Time averaged error of the different formulations over number of cells.
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Figure 4.28: Saturation profiles for different number of cells with a constant time step
∆t = 100 s at t = 10000 s (fully coupled formulation).
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cells 26 52 104 208

FC ∆t = ∆t(GPFF ) 14.949 90.478 416.110 654.373
∆t = 100 s 4.176 6.444 52.747 (∆t = 10 s) 654.373 (∆t = 1 s)

GPFF ∆t = ∆t(GPFF ) 12.945 81.469 362.507 -

Table 4.17: Execution time [s] (fully coupled formulation (FC), classical/global pressure
fractional flow formulation (GPFF)).

cells 26 52 104

execution time ratio GPFF/FC(∆t(GPFF )) 0.866 0.900 0.871
GPFF/FC(∆t = 100 s) 3.100 12.642 6.873 (∆t = 10 s)

Table 4.18: Execution time ratios (fully coupled formulation (FC), classical/global pressure
fractional flow formulation (GPFF)).

constant and shows that the global pressure fractional flow formulation is around 10 % faster.
However, larger time steps are allowed for the fully coupled formulation and the execution
times needed using a time step ∆t = 100 s are considerably shorter than the times needed for
the calculations with the global pressure fractional flow formulation discussed before (Tab.
4.17). Accordingly, the ratio GPFF/FC(∆t = 100 s) is always greater than one. Furthermore,
it is increasing fast if the element number is increased. The reason is the time step size which
remains constant independent on the grid refinement. However, for the finest grids a time
step of ∆t = 100 s could not be applied due to numerical stability. The time step size of the
finest grid could not be raised at all.

In both criteria, accuracy as well as efficiency, the global pressure fractional flow formulation
shows advantages compared to the fully coupled formulation. The largest disadvantage of this
formulation is the overestimation of the propagation speed of the wetting phase front. Only
for very fine grids the approximation using the fully coupled formulation becomes sufficient.
Using equal time step sizes the global pressure fractional flow formulation is the faster one.
However, much larger time steps are allowed for the fully coupled formulation. This decreases
the execution time far below the time needed by the global pressure fractional flow. In the
end this advantage is small as much finer grids are needed for the fully coupled formulation to
achieve comparable approximations.
The phase pressure fractional flow formulation could not be discussed at all in this section as
it was not able to solve the McWhorter problem due to numerical instabilities. The reason
might be that compared to the global pressure fractional flow formulation the equations of
this formulation are stronger coupled for the diffusive problem due to the capillary term in the
pressure equation (see Ch. 3). However, still an IMPES scheme is applied. A fully implicit
discretisation scheme solving both equations (pressure and saturation equation) simultaneously
could improve the numerical stability. The phase pressure fractional flow formulation might
then combine the advantages of both formulations discussed in this section. This has to be
further investigated.
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Figure 4.29: Advection-diffusion problem with initial and boundary conditions.

4.4 1-D Advection-Diffusion Problem
Combining the processes discussed separately in Chapters 4.1 and 4.3, a advection-diffusion
problem is set up. It again describes the instationary displacement of a non-wetting fluid by a
wetting fluid in an one-dimensional, horizontal system (Fig. 4.29). The following assumptions
are made:

• Gravity effects are neglected.

• There exist no sources or sinks.

• The fluids are incompressible and immiscible.

• The fluid viscosities are equal.

• The porous medium is homogeneous.

The system of equations of a fully coupled formulation in terms of a pw-Sn formulation (Eq.
(3.6) and (3.7)) can then be simplified as follows:

Lw(pw, Sn) := −φ∂Sn
∂t
−∇ · (λwK∇pw) = 0, (4.22)

Ln(pw, Sn) := φ
∂Sn
∂t
−∇ · (λnK(∇pw +∇pc)) = 0. (4.23)

Further, the fractional flow formulations can be rewritten applying the above assumptions.
The equations of the global pressure fractional flow formulations are equal to those already
derived in Section 4.3 for the McWhorter problem (Eq. 4.13 to 4.15).
The pressure equation of the phase pressure fractional flow formulation simplifies to:

−∇ · [λtK (∇pw + fn∇pc)] = 0. (4.24)

Finally, applying the assumptions to the saturation equation of the phase pressure fractional
flow formulation leads to

φ
∂Sw
∂t

+∇ · (fwvwmod) = 0. (4.25)
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4.4.1 Calculations
The numerical simulations were carried out on one dimensional elements. The considered
domain has a length of 800 m. The coarsest grid consists of 25 elements, finer grids are
constructed by bisecting the elements (Tab. 4.19). As before, the time step size used for
the fractional flow formulations is determined during the calculation. An automatic time
step adaption is implemented using a Courant-Friedrichs-Lewy criterion (details, see [6])
for the explicit Euler time steps. The average time step of this simulation is then used as
constant time step in the simulation applying the fully coupled formulation. As different time
step sizes result from the different fractional flow formulations, the calculations using the
fully coupled formulation are done twice, where the average time step of both fractional flow
formulations is used. However, with increasing influence of the capillary effects, the time
steps had to be partly decreased compared to the time steps of the corresponding fractional
flow formulation to achieve numerical stability. The simulation times vary depending on the
capillary pressure-saturation function and are chosen in such a manner that the front is not
able to reach the outflow boundary (Tab. 4.20).
The initial and boundary conditions are given in Table 4.21. Dirichlet boundary conditions
are set on the left side of the domain (x = 0 m) and Neumann boundary conditions on the
right side of the domain (x = 800 m)(Fig. 4.29). It has to be mentioned that the global
pressure is no longer equal to the phase pressure if capillary effects occur. It can be related to
the wetting phase pressure as

p̄ = pw −
1−Snr∫
Sw

fn
dpc
dSw

dSw, (4.26)

(details, see for example [1]). As shown in Table 4.21, the differences between global pressure
and wetting phase pressure at the Dirichlet boundary range between 0 and 50 Pa for
the considered cases. Initially, the domain is oil saturated. A linear as well as a Brooks-
Corey relationship are selected. Thus, influences of different capillary pressure relations and
relative permeability-saturation relations on the solution can be analysed. The corresponding
parameters as well as other porous medium and fluid properties are shown in Table 4.3.
To analyse the character of the propagation processes, a Peclet number is calculated which
relates advection to diffusion. A local Peclet number for twophase flow in porous media can
be derived from the saturation equation of the fractional flow formulation which has the form
of a general transport equation. Thus, as shown in Appendix B the following definition can
be formulated:

Pe =
vt dfwdSw

∆x
λ̄ dpc
dSw

, (4.27)

where ∆x is the discretisation length.

As shown in Table 4.19, the calculations of the linear case using the fully coupled formulation
are done for two different time step sizes. Some results are shown in Figures 4.30 to 4.32.
Three different capillary pressure-saturation functions are considered here. It should be noted
that the simulation time for pcmax = 100 is reduced by factor of 10 compared to the simulation
times for the smaller pcmax . It can be observed that for all grids the solutions are time step
dependent. The widest difference and thus, most numerical diffusion due to the size of the
time step can be observed for pcmax = 1. The main reason for this is that the time steps
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geometry length [m]
800

discretisation

linear constitutive relationships
number
of cells

∆x
[m]

pcmax

[Pa]
∆t [s]

FC PPFF (∅) GPFF (∅)

25 32
1 see

PPFF/
GPFF

6.17 × 106 4.15× 105

10 2.40× 106 8.54× 104

100 2.54× 105 7.70× 103

50 16
1 see

PPFF/
GPFF

3.09× 106 1.69× 105

10 1.17 × 106 4.01× 104

100 1.27 × 105 3.63× 103

100 8

1 see PPFF/ 1.54× 106 7.63× 104
GPFF

10 1.46× 105
5.84× 105 9.74× 103

see GPFF

100 1.59× 104
6.35× 104 8.82× 102

see GPFF

1000 1.61× 103
6.45× 103 8.71× 101

see GPFF

10000 1.61× 102
6.45× 102 8.69

see GPFF
Brooks-Corey constitutive relationships

number
of cells

∆x
[m]

pd
[Pa]

∆t [s]
FC PPFF (∅) GPFF (∅)

25 32
1

see
GPFF

1.67 × 104 4.60× 105

10 5.97 × 103 1.12× 105

100 1.75× 102 3.07 × 104

50 16
1

see
GPFF

4.24× 103 1.64× 105

10 1.52× 103 4.95× 104

100 1.57 × 102 1.51× 104

100 8

1
see

GPFF

1.07 × 103 6.33× 104

10 3.87 × 102 2.37 × 104

100 4.00× 101 3.76× 103

1000 3.91 1.56× 102

Table 4.19: Geometry and discretisation (fully coupled formulation (FC), phase pressure
fractional flow formulation (PPFF), classical/global pressure fractional flow formulation
(GPFF)).
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linear Brooks-Corey
pcmax simulation time pd simulation time

1 4.32× 107 1 4.32× 107

10 4.32× 107 10 4.32× 107

100 4.32× 106 100 4.32× 107

1000 4.32× 105 1000 8.64× 105

10000 4.32× 104 - -

Table 4.20: Simulation time [s].

parameter value

boundary conditions

x = 0 m
water pressure pw 6= p̄ 2× 105 [Pa]

global pressure

linear
200000.01 [Pa] (pcmax = 1)
200000.05 [Pa] (pcmax = 10)
200000.50 [Pa] (pcmax = 100)
200005.00 [Pa] (pcmax = 1000)
200050.00 [Pa] (pcmax = 10000)
Brooks-Corey
200000.00 [Pa] (pd = 1)
200000.00 [Pa] (pd = 10)
200000.00 [Pa] (pd = 100)
200000.04 [Pa] (pd = 1000)

oil saturation Sn 0.1 [−]
x = 800 m
flow rate of water qw 0

[
kg/(m2s)

]
flow rate of oil qn = qt −3× 10−4 [kg/(m2s)

]
initial conditions water pressure pw 6= p̄ s. inflow boundary

oil saturation Sn 1.0 [−]

Table 4.21: Initial and boundary conditions.

67



4 Comparative Study of Mathematical Models and Numerical Schemes on Selected Examples

parameter value

fluid properties

water density ρw 1000
[
kg/m3]

oil density ρn 1000
[
kg/m3]

dyn. viscosity water µw 0.001 [kg/(ms)]
dyn. viscosity oil µn 0.001 [kg/(ms)]
intrinsic permeability K 10−7 [m2]
porosity Φ 0.2 [−]

solid matrix properties and pore size distr. index λ 2.00 [−]
constitutive relationships res. saturation water Swr 0.0 [−]

res. saturation oil Snr 0.0 [−]
rel. permeability kr(Sw) linear/Brooks-Corey

Table 4.22: Fluid and porous medium properties.

are chosen according to the two fractional flow formulations. The time dependence does not
decrease due to increasing pcmax and thus not due to increasing influence of capillary pressure
effects. It decreases because of the decreasing time steps of the fractional flow formulations
(see Tab. 4.19). To account for the time dependence the results using the smaller time step
are always selected for further comparison of the formulations.

Figures 4.33a to 4.35b compare the solution behaviour of the different formulations with
regard to different element sizes.
At first, the fully coupled formulation is considered (Fig. 4.33a and 4.33b). Both cases, the
linear as well as the nonlinear show stronger smearing of the front for the coarser grids,
independent of the capillary pressure effects. For the nonlinear case using Brooks-Corey
constitutive relations, a stronger numerical diffusion can be observed due to the high capillary
pressure gradients at small saturations compared to the linear case having a constant gradient.
Consistent with the analyses of the advective problem (Sec. 4.1) and the diffusive problem
(Sec. 4.3), the numerical diffusion can be reduced by refinement of the grid.
The results using the phase pressure fractional flow formulation on different grids are shown in
Figures 4.34a and 4.34b. For the nonlinear case, a behaviour comparable to the behaviour of
the fully coupled formulation can be observed concerning the grid dependence. In contrast, for
the linear case, the phase pressure fractional flow formulation hardly shows any dependency
of the solution on the level of grid refinement. The differences at the left boundary of the
domain are negligible because they only appear due to visualisation problems (Fig. 4.34a). It
can be concluded that for constant capillary pressure gradients, the numerical diffusion of
the phase pressure fractional flow formulation is negligible. This does not apply for varying
capillary pressure gradients resulting from nonlinear capillary pressure-saturation relations.
Considering the results of the linear case using the global pressure fractional flow formulation
(Fig. 4.35a), small grid dependence can be observed. However, it is negligible compared
to the behaviour of the fully coupled formulation. A difference to the other formulations
appears for the nonlinear case where the grid dependent numerical diffusion is significantly
reduced compared to the other two formulations applying the global pressure fractional flow
formulation (Fig. 4.35b). Altogether, the global pressure fractional flow formulation shows
the smallest grid dependence resulting in the least numerical diffusion. This corresponds to
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Figure 4.30: Saturation profiles of the linear case using different time step sizes on a grid of
25 elements (fully coupled formulation).
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Figure 4.31: Saturation profiles of the linear case using different time step sizes on a grid of
50 elements (fully coupled formulation).
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Figure 4.32: Saturation profiles of the linear case using different time step sizes on a grid of
100 elements (fully coupled formulation).

the investigation of the diffusive McWhorter problem.
To minimise effects of grid dependence, further comparison of the formulations is only done
for the calculations on the finest grid.

Figures 4.36a to 4.37b compare the saturation profiles achieved using the different formulations
with different linear capillary pressure-saturation functions. As can be observed, the saturation
front using the fully coupled formulation is slightly faster than the front resulting from the
fractional flow formulations. Anyhow, the differences of the results provided by the three
formulations are almost negligible. As already mentioned in the previous sections the saturation
at the left boundary of the domain is equal for both formulations. The differences which can
be observed arise from the visualisation of the data, where the cell centred data resulting
from the calculations with the fractional flow formulation are converted into point data.
Additionally, for pcmax = 1000 and pcmax = 10000 the pressure profiles are shown in Figures
4.37a and 4.37b. It can be seen that the global pressure used in the global pressure fractional
flow formulation does not express the saturation distribution. Furthermore, it is not compara-
ble to the phase pressure, which is solved for in both other formulations, at all. The profile
of the wetting phase pressure resulting form the fully coupled formulation is comparable to
the profile resulting from the phase pressure fractional flow formulation. The small difference
that can be observed corresponds to the difference observed for the saturation profiles.

A comparison of the three formulations using nonlinear Brooks-Corey relationships is shown
in Figures 4.38a to 4.39b. As discussed before, the global pressure fractional flow formulation
introduces less numerical diffusion than the fully coupled and the phase pressure fractional flow
formulation especially, for nonlinear capillary pressure-saturation relationships. Accordingly, it
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(b) Brooks-Corey

Figure 4.33: Saturation profiles using different grids at t = 500 d (t(pcmax = 100) = 50 d, fully
coupled formulation).
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Figure 4.34: Saturation profiles using different grids at t = 500 d (t(pcmax = 100) = 50 d, phase
pressure fractional flow formulation).
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Figure 4.35: Saturation profiles using different grids at t = 500 d (t(pcmax = 100) = 50 d, global
pressure fractional flow formulation).
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(a) pcmax = 1 Pa, t = 4.32× 107 s
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(b) pcmax = 10 Pa, t = 4.32× 107 s
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(c) pcmax = 100 Pa, t = 4.32× 106 s

Figure 4.36: Saturation profiles along the domain using the different formulations (linear, 100
cells).
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(a) pcmax = 1000 Pa, t = 4.32× 105 s
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(b) pcmax = 10000 Pa, t = 4.32× 104 s

Figure 4.37: Saturation profiles and pressure profiles along the domain using the different
formulations (linear, 100 cells).
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can be observed that the movement of the saturation front using the global pressure fractional
flow formulation is not as fast as the movement of a front resulting from one of the other
formulations. The fully coupled formulation and the phase pressure fractional flow formulation
show almost equal saturation profiles for pd = 1 to pd = 100 (Fig. 4.38a to 4.39a). If the
capillary pressure effects are further increased, the speed of the wetting phase front calculated
using the fully coupled formulation is also increased compared to the speed of the front
resulting from the phase pressure fractional flow formulation (Fig.4.39b). This means that
applying the fully coupled formulation, the numerical diffusion increases if the influences of
the capillary effects become stronger.
As for the linear case, the pressure profiles of the nonlinear case are shown for pd = 100
and pd = 1000 (Fig. 4.39a and 4.39b). Consistent with the observations done concerning
the saturation profiles, the wetting phase pressure profiles of the fully coupled formulation
and of the phase pressure fractional flow formulation are almost equal for pd = 100 whereas
a difference can be observed for pd = 1000. Thus, the increasing numerical diffusion due
to increasing influence of capillary effects is also expressed by the wetting phase pressure
distribution. The global pressure resulting from the global pressure fractional flow formulation
is again not suitable to directly draw conclusions concerning the propagation of the phases
and it cannot be directly compared to the wetting phase pressure resulting from the other
formulations.

Figures 4.40a and 4.40b show the Peclet number which relates advection and diffusion within
a transport process plotted over the wetting phase saturation. If the Peclet number is small
(Pe ∼= 0), a transport process is diffusion dominated. For large Peclet numbers (Pe� 1), the
transport process is advection dominated (details, see [6]).
As can be observed for both cases, linear as well as nonlinear, the Peclet number is not
constant but varies for different saturations where the linear and the nonlinear Peclet curves
have a different shape. The main reason is that the capillary pressure gradient is constant
in case of a linear capillary pressure-saturation relation whereas it is variable in case of a
Brooks-Corey capillary pressure-saturation function.
Considering the linear case, the largest Peclet numbers occur for small saturations. If the
saturation increases, the Peclet number decreases. Considering the nonlinear case, a maximum
Peclet number can be observed which is neither at a saturation of zero nor at a saturation
of one. The saturation corresponding to the maximum Peclet number is decreasing if the
influence of capillary effects is increasing.
With increasing pcmax the Peclet number of the linear case is decreasing which means that
capillary diffusion becomes more important. Especially for the largest value of pcmax implying
the largest capillary pressure gradient, the process seems to be extensively diffusion dominated.
Anyhow, independent on pcmax , very large Peclet numbers can be observed for small saturations.
Similarly, increasing pd, the Peclet number of the nonlinear case is decreasing where comparable
to the linear case diffusion seems to have large influence, especially for the largest value of
pd applied here. Contrary to the linear case, very small Peclet numbers occur for small
saturations which means that diffusion is dominant at the front end of the saturation profiles
(Fig. 4.38a to 4.39b).
Recapitulating, none of the considered cases is clearly diffusion dominated. However, the
discussion of the Peclet number shows that the influence of capillary diffusion can become
notable.

Finally, the efficiency of the formulations concerning the 1-d-advection-diffusion problem has
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(a) pd = 1 Pa, t = 4.32× 107 s
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(b) pd = 10 Pa, t = 4.32× 107 s

Figure 4.38: Saturation profiles along the domain using the different formulations (Brooks-
Corey, 100 cells).
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(a) pd = 100 Pa, t = 4.32× 107 s
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Figure 4.39: Saturation profiles along the domain using the different formulations (fully
coupled (FC), phase pressure fractional flow (PPFF), global pressure fractional flow (GPFF),
Brooks-Corey, 100 cells).
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Figure 4.40: Peclet number over wetting phase saturation at t = 500 d (100 cells).
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to be looked at. Therefore, the execution times are shown in Table 4.23.
Considering the linear case, both fractional flow formulations achieve approximately equal
execution times. From pcmax = 100 to pcmax = 10000 quasi constant times can be observed.
As can be seen in Table 4.20, for pcmax ≥ 10, the simulation times are reduced by a factor 10
every time pcmax is further increased. As pcmax is also increased by factor 10, this means that
the execution time is approximately linearly dependent on the capillary pressure gradient.
This has to be noted because the different fractional flow formulations differently account for
the increasing gradient. As can be seen in Table 4.24, using the phase pressure fractional flow
formulation, the number of iterations between saturation equation and pressure equation within
every time step is considerably increasing with increasing capillary pressure gradient where
the time step remains relatively large. Using the global pressure fractional flow formulation,
the iterations between the equations remain constant, whereas the time step is significantly
decreasing with increasing capillary pressure gradient. This behaviour can be expected due to
the different ways the capillary pressure terms are brought into the systems of equations of
the different fractional flow formulations (see Ch. 3).
The fully coupled formulation shows much higher execution times especially for higher values
of pcmax which imply higher capillary pressure gradients. The reason is that small time steps
comparable to the time steps of the global pressure fractional flow formulation are necessary
to reduce numerical diffusion, whereas much larger time steps could be used accounting for
the increasing gradient only concerning numerical stability.
In case of a nonlinear capillary pressure-saturation function, the global pressure fractional
flow formulation shows the smallest execution times. The largest times can be observed
for the phase pressure fractional flow formulation. The fully coupled formulation ranges in
between of the fractional flow formulations. The time steps using the global pressure fractional
flow formulation for the nonlinear case are larger than using the formulation for the linear
case. The reason might be that the capillary pressure gradient is not constantly high for the
Brooks-Corey relation but can also be small if the saturations are not too small where the
gradient of a linear capillary pressure-saturation relation can be constantly large depending on
pcmax . Furthermore, the time steps are larger than the time steps which result, when applying
the phase pressure fractional flow formulation. The iterations done within every time step
using this formulation are in a constant range, independent on the different nonlinear capillary
pressure-saturation relations applied (Tab. 4.24). The same reason as pointed out before
concerning the time step sizes of the global pressure fractional flow formulation applies here.
However, to account for the stronger nonlinear coupling of the equations of the phase pressure
fractional flow formulation, smaller time steps are necessary.

Concerning the accuracy, both fractional flow formulations show advantages compared to the
fully coupled formulation in case of a linear capillary pressure-saturation function. Especially,
the phase pressure fractional flow formulation shows almost no grid dependent numerical
diffusion. This means that coarser grids can be used with this formulation and thus, the
execution time can be further reduced. The fully coupled formulation can be faster than
the fractional flow formulations if large time steps are applied, but as shown this also leads
to notable numerical diffusion. Altogether, the phase pressure fractional flow formulation
provides the best combination of accuracy and efficiency for the linear case.
In case of a nonlinear capillary pressure-saturation relation, the global pressure fractional flow
formulation shows advantages in both criteria, accuracy as well as efficiency compared to the
other formulation. It introduces the least numerical diffusion while the execution times are
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pcmax (linear)/ 1 10 100 1000 10000
pd (Brooks-Corey)

FC
(∆t of GPFF)

linear 4.460 9.857 20.629 37.330 53.571
Brooks-Corey 6.284 26.614 335.749 82,229 -

PPFF linear 2.776 10.533 12.361 12.317 12.353
Brooks-Corey 193.628 429.899 3013,800 658.613 -

GPFF linear 2.524 11.449 12.533 12.661 12.741
Brooks-Corey 3.824 10.481 71.108 31.374 -

Table 4.23: Execution time [s] (100 cells, fully coupled formulation (FC), phase pressure
fractional flow formulation (PPFF), classical/global pressure fractional flow formulation
(GPFF)).

phase pressure fractional flow formulation

cells pcmax (linear)/ iterations
pd (Brooks-Corey) (linear) (Brooks-Corey)

100 1 36-74 2-17
100 10 50-157 2-18
100 100 65-200 1-17
100 1000 65-200 1-17
100 10000 65-200 -
classical/global pressure fractional flow formulation

cells pcmax (linear)/ iterations
pd (Brooks-Corey) (linear) (Brooks-Corey)

100 1-10000 1-2 1-2

Table 4.24: Iteration steps within every timestep of the fractional flow formulations using a
grid consisting of 100 elements.
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still smaller than for the phase pressure fractional flow formulation or for the fully coupled
formulation. Again, the computation speed applying the fully coupled formulation can be
increased by using larger time steps. However, to achieve execution times comparable to
those of the global pressure fractional flow formulation, a notable decrease of accuracy due to
generation of numerical diffusion has to be accepted.

4.5 Summary
To compare the different kinds of formulations described in Chapter 3, some simple problems
were discussed in this chapter where the term formulation includes the mathematical model
as well as the numerical method.

The Buckley-Leverett problem for which an analytical solution exists was analysed representing
a one dimensional advection dominated problem. The fractional flow formulation approximated
the analytical solution pretty well whereas the fully coupled formulation using the box scheme
introduced stronger numerical diffusion and thus, it showed a stronger smearing of the
front. The main reason is the fully upwinding scheme that was applied for the fully coupled
formulation. In contrast, in the application of the fractional flow formulation upwinding was
only used for the advective term of the saturation equation. The diffusive character of the
pressure equation was accounted for by central differences. Additionally, the higher order
approach of the finite volume method should reduce numerical diffusion.
Concerning the execution times, the fully coupled formulation showed advantages because of
the better convergence behaviour of the Newton-Raphson iteration method in the nonlinear
case, if the element number is increasing.

A two dimensional advection dominated problem was represented by the Five-spot Waterflood
problem. Like for the Buckley-Leverett problem a linear as well as a nonlinear Brooks-Corey
relative permeability-saturation function was used. Two different configurations of the problem
were considered to analyse the grid dependence of the formulations (Fig. 4.13a and 4.13b).
It was shown that both used formulations and corresponding methods (fully coupled formulation
- box method, fractional flow formulation - finite volumes/higher order finite volumes) are
mesh dependent concerning the direction of the occurring gradients. Effects of this mesh
dependency can be reduced by refinement of the grid.
In general, less numerical diffusion was introduced by the fully coupled formulations especially
in diagonal direction. One explanation is that the vertex centred box method corresponds to
a nine-spot scheme which includes more nodes in diagonal direction than a five-spot scheme
corresponding to the finite volume method. Further, it was pointed out that the higher order
approach of the finite volume method applied here most likely increases the numerical diffusion
if processes which are not parallel to the grid occur.
Considering the results, in the linear case the two formulations showed comparable results
concerning the accuracy, but the fractional flow formulation was considerably less expansive
concerning computational time.
In case of a nonlinear relative permeability-saturation function, the fully coupled formulation
showed advantages concerning both accuracy and efficiency. It was more efficient in the
linearisation of the nonlinear problem and thus, less expansive concerning computational time.
Further, it introduced less numerical diffusion than the fractional flow formulation.
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One dimensional, diffusion dominated flow was investigated by analysing the solution of the
McWhorter problem. Analogous to the Buckley-Leverett problem, an analytical solution exists
for the McWhorter problem.
Combining accuracy and efficiency, the global pressure fractional flow formulation showed
advantages compared to the fully coupled formulation for the diffusion dominated case. The
largest disadvantage of the fully coupled formulation was the notable overestimation of the
propagation speed of the wetting phase front which can be observed except for very fine
grids. This is caused by the fully upwinding scheme that was applied for the fully coupled
formulation without regard to the kind of process which is simulated. Here, the global pressure
fractional flow formulation allowed to better account for the character of the process where
central differences are used for the diffusion terms in the equations.
The advantage of the fully coupled formulation is the smaller dependence on the time step
size as an implicit scheme was used. However, this advantage is small. As pointed out
before, much finer grids are needed applying the fully coupled formulation to achieve sufficient
approximations.
The phase pressure fractional flow formulation could not be discussed at all concerning the
diffusion dominated problem due to numerical instabilities. The reason might be that the
IMPES scheme can not sufficiently account for the strong nonlinear coupling of the equations
of this formulation which appears for the diffusive problem due to the strong influence of the
capillary pressure term in the pressure equation.

Finally, a problem combining both kinds of processes, advection as well as diffusion was
considered. Therefore, different capillary pressure-saturation functions were applied where
the increasing influence of the capillary diffusion could be measured calculating the Peclet
number.
None of the considered cases was clearly diffusion dominated. However, for some cases the
Peclet numbers showed that the influence of capillary diffusion becomes notable.
Applying a linear capillary pressure-saturation function, both fractional flow formulations
showed advantages compared to the fully coupled formulation concerning the accuracy. Espe-
cially, the grid dependent numerical diffusion of the phase pressure fractional flow formulation
is negligible. This means that coarser grids can be used with this formulation and thus, the
execution time can be further reduced.
In case of a nonlinear capillary pressure-saturation relation, the global pressure fractional
flow formulation showed advantages in both criteria, accuracy as well as efficiency compared
to the other formulations which corresponds to the investigation of the diffusion dominated
McWhorter problem. It introduced least numerical diffusion while the execution times are
still smaller than those using the other formulations.
The speed of the computation applying the fully coupled formulation can be increased by using
larger time steps which is possible due to the implicit scheme. However, to achieve execution
times comparable to those of the global pressure fractional flow formulation a notable decrease
of accuracy due to generation of numerical diffusion has to be accepted.
Applying the phase pressure fractional flow formulation, problems concerning the numerical
convergence behaviour could be observed for the nonlinear case. Very small time steps
compared to the other formulations occur here if the influence of the capillary diffusion
increases. Reasons have already been pointed out during the investigation of the McWhorter
problem where even stronger convergence problems occurred using this formulation.
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5 Summary and Outlook

In this thesis, different mathematical models for two phase flow in porous media were compared
using different numerical methods. The following formulations and methods were investigated:

A fully coupled formulation modelling the motion of each phase (by formulating one equation
for each phase) was discretized using the box method and an implicit Euler scheme. A pw-Sn
as well as a pn-Sw formulation were applied depending on the problem to solve.
The global pressure fractional flow formulation represented by one equation for the global
pressure and one saturation equation was discretized in space using a finite volume method
for the pressure equation and a higher order finite volume method for the saturation equation.
For the time discretisation, a standard IMPES scheme (IMplicit Pressure - Explicit Saturation)
was used.
A phase pressure fractional flow formulation, where the pressure unknown is one of the phase
pressures instead of the unphysical global pressure and the saturation equation is purely
advective, was discretized applying the same methods used for the global pressure fractional
flow formulation.

The models and methods were first discussed and compared theoretically (Ch. 3). Afterwards
selected examples representing different flow characters were solved using the different models
and methods.
A rough summary of the results is shown in Table 5.1. Evaluation was done with regard to
accuracy and efficiency of the methods concerning the different transport processes. However,
many different cases including linear as well as nonlinear constitutive relationships are combined
here which partly show wide differences. A detailed evaluation and discussion was done in
Chapter 4.

The results show that the fully coupled formulation was able to solve all the problems. For the
one dimensional problems it consistently provided sufficient results concerning the accuracy

problem type advective diffusive advective + diffusive
formulation FC FF FC PPFF GPFF FC PPFF GPFF

1-D accuracy ◦ ++ ◦ n/a ++ ◦ + ++
efficiency + + + n/a + + ◦ +

2-D accuracy + ◦ n/a n/a n/a n/a n/a n/a
efficiency ◦ ◦ n/a n/a n/a n/a n/a n/a

Table 5.1: Rough overview of the results of the investigated problems (++ (very good), +
(good), ◦ (sufficient), n/a (not investigated)).
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5 Summary and Outlook

of the approximation as well as the efficiency. Contrary, for the two dimensional problem the
best results could be achieved with the fully coupled formulation.
The global pressure fractional flow formulation achieved the best results with regard to
both criteria accuracy and efficiency for all one dimensional problems. However, a major
disadvantage of this formulation is the use of the global pressure, which is no physical quantity.
As shown by Binning and Celia [2] additional iterations can be necessary to apply pressure
boundary conditions given in terms of the phase pressures which are real physical quantities.
This can then strongly affect the efficiency of the formulation.
Partly good results could be achieved applying the phase pressure fractional flow formulation.
So far, however, it provides no alternative to the other formulations and their corresponding
numerical methods.

Outlook
As pointed out in Chapter 3, one big advantage of both fractional flow formulations is the
separation of the terms representing different transport processes, namely, advection and
diffusion. Thus, the global pressure fractional flow formulation was able to provide better
approximations, introducing less numerical diffusion, compared to the fully coupled formulation.
Considering the phase pressure fractional flow formulation, an even more strict separation of
the processes is achieved. All diffusive terms are located in the pressure equation, whereas
the saturation equation is purely advective. Except for the linear case of the one dimensional
advection-diffusion problem this advantage does not show in the results. The reason is that
the equations of the phase pressure fractional flow formulation are stronger coupled as the
equations of the global pressure fractional flow formulation. Thus, the IMPES scheme can
not provide a sufficient convergence behaviour for the nonlinear case if the influence of the
capillary pressure term becomes notable.
To further investigate the applicability of the phase pressure fractional flow formulation, the
stronger coupling has to be accounted for. Thus, comparable to the fully coupled formulation,
an implicit scheme linearising the system of equations using a Newton-Raphson iteration
scheme should be applied and tested.
Second, it should be taken a closer look at the capillary pressure term. Although upwinding
is only applied for the advective saturation equation, the solution of the advection-diffusion
problem showed an influence of numerical diffusion comparable to the fully coupled formulation
in the nonlinear case. Combining this observation with the results from the advection
dominated problem, the conclusion can be made that the reason is the capillary pressure term.
One first step to be done is to apply the methods used in the global pressure fractional flow
formulation for the capillary pressure term. This means that this term should be reformulated
accordingly for the phase pressure fractional flow formulation. Further, the saturation slope
used to estimate the values at the interfaces of an element implemented for the saturation
equation should also be used to estimate the saturation dependent values like the capillary
pressure derivative in the pressure equation.
In a further step different discretisation methods like for example mimetic finite differences
could be tested which directly model the according velocity needed for the saturation equation.
To improve the fully coupled formulation and decrease the numerical diffusion appearing there,
especially in case of an advection-diffusion problem, a differencing scheme which accounts for
the character of the transport process could be investigated. A Peclet criterion could be used

85



5 Summary and Outlook

to estimate the influence of capillary diffusion in order to switch the differencing method to
account for a diffusion dominated process if the influence is notable.

Concerning the mesh dependency in the two dimensional case, it was pointed out that the
upwind method should be improved to account for diagonal flow. A method for vertex centred
formulations is described by Helmig [6]. Considering the higher order finite volume method,
especially the way of determining the slopes should account for the direction of the flow. This
has to be further investigated to minimise numerical cross diffusion and to achieve better
results with regard to mesh dependency on the direction of occurring gradients.
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A Derivation of the Pressure Equation

The pressure equations of a multiphase flow system in porous media can be derived from the
mass balance equation

∂(φραSα)
∂t

+∇ · (ραvα)− ραqα = 0, (A.1)

where φ is the porosity of the porous medium and ρα the density, Sα the saturation, vα the
velocity, and qα the source/sink term corresponding to fluid phase α. Division by ρα yields

1
ρα

[
∂(φραSα)

∂t
+∇(ραvα)

]
− qα = 0. (A.2)

Summing up the equations of the phases α of Equation (A.2), one obtains the following
equation: ∑

α

{ 1
ρα

[
∂(φραSα)

∂t
+∇(ραvα)

]
− qα

}
= 0. (A.3)

Applying the product rule, Equation (A.3) can be rewritten as

∑
α

{ 1
ρα

[
ραSα

∂φ

∂t
+ φSα

∂ρα
∂t

+ φρα
∂Sα
∂t

+ ρα∇ · vα + vα · ∇ρα
]
− qα

}
= 0. (A.4)

From the closure relation
∑
α Sα = 1 it yields that

∑
α

φ
∂Sα
∂t

= 0. (A.5)

Thus, Equation (A.4) can be reformulated as

∑
α

Sα
∂φ

∂t
+
∑
α

∇ · vα +
∑
α

1
ρα

[
φSα

∂ρα
∂t

+ vα · ∇ρα
]
−
∑
α

qα = 0. (A.6)

Furthermore, a total velocity vt can be defined as

vt =
∑
α

vα. (A.7)

From Equation (A.7), we have

∇ · vt = ∇ ·
∑
α

vα =
∑
α

∇ · vα. (A.8)

Inserting Equation (A.8) into Equation (A.6) yields a general multiphase pressure equation

∑
α

Sα
∂φ

∂t
+∇ · vt +

∑
α

1
ρα

[
φSα

∂ρα
∂t

+ vα · ∇ρα
]
−
∑
α

qα = 0. (A.9)
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A Derivation of the Pressure Equation

With the definition of the Darcy velocity for multiphase systems

vα = −krα
µα

K(∇pα − ραg), (A.10)

where krα is the relative permeability, K the fluid independent intrinsic permeability, µα the
dynamic fluid viscosity, pα the pressure of phase α, and g the gravity vector, acting in vertical
direction, the total velocity can be calculated as

vt =
∑
α

vα =
∑
α

−krα
µα

K(∇pα − ραg). (A.11)

Furthermore, the mobility of a phase α

λα = krα
µα

(A.12)

and the fractional flow function corresponding to phase α

fα = λα
λt
, (A.13)

where λt =
∑
α λα is the total mobility, can be introduced. From (A.13) we have

λα = fαλt. (A.14)

Inserting Equations (A.12), (A.13) and (A.14) into Equation (A.11) yields

vt = −λtK
[∑
α

fα∇pα −
∑
α

fαραg
]
. (A.15)

With the formulation of the total velocity given in Equation (A.15) the pressure equation (Eq.
(A.6))can be finally rewritten as

∑
α

Sα
∂φ

∂t
−∇ ·

{
λtK

[∑
α

fα∇pα −
∑
α

fαραg
]}

+
∑
α

1
ρα

[
φSα

∂ρα
∂t

+ vα · ∇ρα
]
−
∑
α

qα = 0.
(A.16)

Assuming isothermal conditions, incompressible fluids, and no mass transfer between the
phases (ρα(x, t) = const.), and a porosity which does not change with time (∂φ∂t = 0), the
derived pressure equation can be simplified to

∇ · vt −
∑
α

qα = −∇ ·
{
λtK

[∑
α

fα∇pα −
∑
α

fαραg
]}
−
∑
α

qα = 0. (A.17)
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B Derivation of the Peclet Number
To find a dimensionless saturation equation, the following formulation as derived in Chapter
3.2 is considered,

φ
∂Sw
∂t

+ vt
d fw
dSw

∇Sw +∇ ·
[
λ̄K d pc

dSw
∇Sw

]
= 0, (B.1)

where gravitational effects as well as source/sink terms are neglected. We have that φ is the
porosity of the porous medium, Sw the saturation of the wetting phase, vt the total velocity,
K the fluid independent intrinsic permeability and pc the capillary pressure. The fractional
flow function corresponding to the wetting phase fw is defined as fw = λw

λt
, where λw is the

mobility of the wetting phase and λt = λw + λn is the total mobility. Moreover, λn is the
mobility of the non-wetting phase, and λ̄ can be calculated as λ̄ = fwλn.
Using a characteristic length xch, a characteristic velocity vch, and a characteristic density
ρch, the following dimensionless quantities are defined:

Vt = vt
vch

⇒ vt = Vt vch

T = t vch
xch

⇒ t = T xch
vch

X = x

xch
⇒ x = X xch

Pc = pc
ρch v

2
ch

⇒ pc = Pc ρch v
2
ch

Λ̄ = λ̄ ρch vch xch ⇒ λ̄ = Λ̄
ρch vch xch

(B.2)

Inserting Equation (B.2) into Equation (B.1) yields the following dimensionless saturation
equation

vch
xch

φ
∂Sw
∂T

+ vch
xch

Vt
d fw
dSw

∇Sw + vch
x3
ch

∇ ·
[
Λ̄K dPc

dSw
∇Sw

]
= 0, (B.3)

which can be further rewritten as

φ
∂Sw
∂T︸ ︷︷ ︸

accumulation term

+Vt
d fw
dSw

∇Sw︸ ︷︷ ︸
advective term

+ 1
x2
ch

∇ ·
[
Λ̄K dPc

dSw
∇Sw

]
︸ ︷︷ ︸

diffusive term

= 0. (B.4)

A Peclet number relates the influence of advective processes to the influence of diffusive
processes. Thus, from Equation (B.4) a Peclet number can be defined as

Pe =
Vt

d fw
dSw

1
x2
ch

Λ̄K dPc
dSw

. (B.5)

Inserting Equation (B.2) again yields

Pe =
vt d fwdSw

xch

λ̄K d pc
dSw

. (B.6)
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B Derivation of the Peclet Number

Here, the discretisation length ∆x is chosen to be the characteristic length. Thus, a grid
dependent Peclet number can finally be calculated as

Pe =
vt d fwdSw

∆x
λ̄K d pc

dSw

. (B.7)
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