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Abstract

The Quasi-Linear Geostatistical Approach is a method of inverse modeling to identify parameter fields, such as the hydraulic

conductivity in heterogeneous aquifers, given observations of related quantities like hydraulic heads or arrival times of tracers.

Derived in the Bayesian framework, it allows to rigorously quantify the uncertainty of the identified parameter field. Since inverse

modeling in subsurface flow is in general a non-linear problem, the Quasi-Linear Geostatistical Approach employs an algorithm for

non-linear optimization. Up to presence, this algorithm has been similar to the Gauss–Newton algorithm for least-squares fitting and

fails in cases of strong non-linearity. In this study, we present and discuss a new modified Levenberg–Marquardt algorithm for the

Quasi-Linear Geostatistical Approach. Compared to the original method, the new algorithm offers increased stability and is more

robust, allowing for stronger non-linearity and higher variability of the parameter field to be identified. We demonstrate its efficiency

and improved convergence compared to the original version in several test cases. The new algorithm is designed for the general case of

an uncertain mean of the parameter field, which includes the cases of completely known and entirely unknown mean as special cases.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Cokriging is a geostatistically based technique to

identify an unknown spatial parameter field given
observations of a correlated quantity. Originally devel-

oped for mining exploration, cokriging has successfully

been used as tool for inverse modeling in other fields

such as hydrogeology (e.g. [15]). In geostatistical inverse

modeling, we consider the unknown parameters, such as

the hydraulic conductivity field of a porous formation,

as a random space function which is conditioned on

observations of dependent quantities, such as the
hydraulic head or the travel time of a solute [33]. The

cross-covariance between the random space functions,

i.e., the unknown parameters and the dependent state

variables, is fully determined by the functional rela-

tionship of the parameters and observations and the

auto-covariance of the parameter field. In many cases,
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this functional relationship is a partial differential

equation. It may be non-linear with respect to the un-

known parameters, so that inverse modeling in hydro-

geology is in general a non-linear problem [11,18,29].
As has been shown by Kitanidis [9], both kriging and

cokriging are identical to a Bayesian analysis for the

estimation of the conditional mean. The rigorous

Bayesian context allows an accurate quantification of

the parameter uncertainty while imposing a minimum of

structural assumptions onto the unknowns. Parameter

uncertainty is expressed by the posterior auto-covari-

ance of the parameter field. A disadvantage of tradi-
tional cokriging techniques lies in the computational

costs involved in handling the auto-covariances and

cross-covariances. This has led to the development of

alternative geostatistical methods of inversing in which

the cross-covariance matrices are not fully determined

[7,22,33], or in which only a certain neighborhood

around each observation point is considered.

While these methods reduce the computational costs
dramatically, they sacrifice the rigor in determining the

parameter uncertainty. Exploiting specific properties of
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the auto-covariance matrix of the unknowns [32] and

using periodic embedding and spectral methods for

matrix–matrix multiplications involving this matrix [20],

however, the computational costs of cokriging can be

drastically reduced. These spectral methods make cok-
riging techniques competitive in terms of computational

efficiency while outrivaling the alternative methods in

quantifying the parameter uncertainty. They are appli-

cable if the unknown parameter field is statistically

second-order stationary or at least intrinsic, and defined

on a regular grid. The flow conditions and the parameter

fields are non-periodic prior to the embedding. In con-

trast to spectral methods that put linear perturbation
theory into the Fourier framework (e.g. [8]), they do not

require the perturbations of the dependent quantities to

be second-order stationary or intrinsic. This allows to

apply these spectral methods to inverse modeling under

non-stationary flow conditions in bounded domains [3].

We provide an assessment of the reduced computational

costs of cokriging in Section 2.

In case the forward problem is linear with respect to
the parameters, linear cokriging returns the parameter

estimate after a single computational step. For non-

linear relations, cokriging-like procedures are applied in

an iterative manner. Basically, three differing concepts

have been published. The first group of methods, such as

the Iterative Cokriging-Like Technique [28], defines an

approximate linearization of the forward problem once.

Then, cokriging is applied repeatedly while allowing
both the linearization and the auto-covariance of the

parameter field to remain constant. Other methods

conceptualize the iterative procedure as a sequence of

Bayesian updating steps and update both the lineariza-

tion and the auto-covariance of the parameter field

during their iteration algorithm, like the Successive

Linear Estimator (SLE) by Yeh and coworkers [29]. The

third group of methods successively linearizes the for-
ward problem about the current estimate while keeping

the covariances. Into this group fall the Quasi-Linear

Geostatistical Approach (Geostatistical Approach) by

Kitanidis [11] and the Maximum a Posteriori (MAP)

method by McLaughlin and Townley [18]. The advan-

tages of linearizing about the current estimate are dealt

with by Carrera and Glorioso [1].

Among other differences discussed elsewhere
[12,14,19], the Quasi-Linear Geostatistical Approach

and the MAP method differ as follows. The former de-

fines the solution in a parameterized form based on a

rigorous Bayesian analysis. The sole purpose of the

iteration procedure is to optimize the subspace in which

the parameterization is defined. In each iteration step,

the previous trial solution is projected onto the current

subspace. Only at the last iteration step, when the
optimal subspace has been found, the conditioning is

carried out and the conditional covariance is evaluated

based on this optimal subspace. The form of the solu-
tion used in this method is discussed in depth in Section

3. In contrast to this, the MAP method seeks a solution

that is a sum of different parameterizations encountered

during the course of iteration, and the conditional

covariance is computed in the last step, based on the
final parameterization.

Among the above methods, the Successive Linear

Estimator and the Quasi-Linear Geostatistical Ap-

proach strictly follow the Baysian concept. In this study,

we aim at large problems where the number of unknown

parameters may easily rise above n ¼ 105, e.g. n ¼ 106

for well-resolved 2-D or 3-D applications. Given this

problem size, super-fast FFT-based methods to compute
auto-covariances and cross-covariances are indispens-

able. The updated covariances occurring in the SLE, or

in sequential kriging and cokriging [27] for the linear

case, do not allow to apply these FFT-based methods

directly, since they are no more second-order stationary

or intrinsic. Cirpka and Nowak [3] discuss how to

handle conditional covariance matrices in the FFT

framework. The concept of sequential conditioning that
is employed in the SLE and in sequential kriging

and cokriging saves computational effort which is

associated with the number of observations. However,

for large numbers of conditioning steps, the computa-

tional costs to include conditional covariance matrices

in the FFT framework rise dramatically and make

sequential methods unfeasable for large numbers of

unknowns.
The iteration algorithm underlying the Geostatistical

Approach is in some respects formally similar to the

Gauss–Newton algorithm [21] for least-squares fitting.

Initially, the problem statement of inverse modeling

seems to be under-determined because the number of

unknown discrete values of the parameter field typically

exceeds the number of observations by several orders of

magnitude. In order to reduce the number of degrees of
freedom, the Geostatistical Approach employs the

Bayesian concept and thereby obtains a unique param-

eterized form of the solution. The resulting problem is

well-posed, given that the data structure of the obser-

vations obey certain requirements. A more detailed dis-

cussion on the well-posedness or ill-posedness of inverse

problems and lucid examples are provided elsewhere

[24,30]. Due to the parameterization of the solution, the
iteration algorithm used in the Geostatistical Approach

differs from the standard Gauss–Newton algorithm in

certain terms that will be analyzed in this study.

For least-squares fitting problems, the Gauss–New-

ton algorithm is well-known to be efficient for mildly

non-linear problems, but to fail for strongly non-linear

problems. The Levenberg–Marquardt algorithm [16,17]

is a modification of the Gauss–Newton method that, in
a self-adaptive manner, navigates between Gauss–

Newton and the method of steepest descent [21]. Com-

bining the robustness of the method of steepest descent
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with the computational efficiency of the Gauss–Newton

method, the Levenberg–Marquardt algorithm has be-

come a highly valued optimization tool for non-linear

tasks of least-squares fitting in many engineering fields.

In hydrogeological applications, increased variability
of the parameters leads to higher degrees of non-line-

arity for the inverse problem, thus decreasing the con-

vergence radius and increasing the number of necessary

iterations in the Geostatistical Approach. Above a cer-

tain extent of non-linearity, this method fails. Observa-

tions such as the arrival time of tracers are especially

non-linear with respect to hydraulic conductivity since

their sensitivity pattern is strongly influenced by the
streamline pattern which is distorted or may even

oscillate in the iterative procedure. This gives a clear

motivation to improve existing optimization algorithms

for geostatistical inversing in terms of stability and

robustness, reducing the number of iteration steps and

increasing the convergence radius for application to

strongly non-linear problems.

The basic idea of the Levenberg–Marquardt algo-
rithm has already been applied to geostatistical inverse

modeling by other authors. Dietrich and Newsam [4]

discussed how increasing the measurement error in the

cokriging procedure can help to improve ill-conditioned

matrices and suppress artefacts of numerical error in the

estimated parameter fields, but induces a loss of infor-

mation. The Successive Linear Estimator introduced by

Yeh et al. [29] uses an adaptively amplified measurement
error term for the auto-covariance of measurements and

a relaxation for the cross-covariances to stabilize the

algorithm.

If one desires to rigorously quantify the parameter

uncertainty through the Bayesian concept, the choice is

between the Geostatistical Approach and Successive

Linear Estimator (or similar methods). The latter has

successfully been applied to non-linear problems not
only for the saturated zone, but even to the vadose zone

[30,31]. However, as mentioned above, the FFT-based

methods to compute the covariance matrices involved

are not applicable to this method at an acceptable level

of computational costs.

In this study, motivated by the success of the

Levenberg–Marquardt algorithm in other areas of

engineering and in the Successive Linear Estimator, we
present a modified Levenberg–Marquardt algorithm for

the Quasi-Linear Geostatistical Approach. The original

form of the Levenberg–Marquardt algorithm has to be

modified to account for the parameterized form of the

solution used in the Geostatistical Approach. Further

modifications are necessary to avoid violations of the

strict Bayesian concept. The Geostatistical Approach

consists of two parts: (1) identifying the unknown
parameters for a given auto-covariance function of the

unknown parameters, and (2) optimizing the so-called

structural parameters used to define the auto-covari-
ance. The Levenberg–Marquardt modification pre-

sented here is aimed at improving the first part.

This paper is organized as follows: in Section 2, we

discuss the derivation of linear cokriging in the Bayesian

framework and discuss certain properties which are
helpful in dealing with optimization algorithms. In

Section 3, we discuss the conventional form of the

Geostatistical Approach as introduced by Kitanidis [11],

and point out the formal differences between the Gauss–

Newton algorithm and the iteration algorithm used in

the Geostatistical Approach. In Section 4, we present

the modified Levenberg–Marquardt algorithm for the

Geostatistical Approach. Section 5 is a performance test
in which we apply both the conventional and the new

algorithm to a typical non-linear inverse modeling

problem taken from Cirpka and Kitanidis [2].
2. Bayesian framework for linear cokriging

2.1. Prior distributions

Consider a random n� 1 multi-Gaussian vector of

unknowns s with expectation E½s� ¼ Xb and covariance

Qss : s � NðXb;QssÞ. In hydrogeological applications, s

may be the vector of unknown log-conductivity values

in all grid cells, and Qss the corresponding covariance
matrix sized n� n. X is an n� p matrix of known

deterministic base functions, and b is p � 1 vector of

uncertain drift coefficients. The probability density

function (pdf) of s for given b is

pðs jbÞ / exp

�
� 1

2
ðs� XbÞTQ�1

ss ðs� XbÞ
�
; ð1Þ

and the uncertainty of the drift coefficients b is quanti-

fied by a (multi-)Gaussian distribution with mean b� and
covariance Qbb: b � Nðb�;QbbÞ. From Bayesian analy-

sis, we obtain that the distribution of b for given s is

again (multi-)Gaussian with b j s � Nðbb;Qbb j sÞbb ¼ b� þ ðQ�1
bb þ XTQ�1

ss XÞ
�1
XTQ�1

ss ðs� Xb�Þ; ð2Þ

Qbb j s ¼ ðQ�1
bb þ XTQ�1

ss XÞ
�1
: ð3Þ

The distribution of s regardless of the drift coefficients b

can be obtained by marginalizing pðs jbÞ with respect to
b, yielding (compare Kitanidis, 1986, for the case of

unknown mean [9])

pðsÞ / exp

�
� 1

2
ðs� Xb�ÞTG�1

ss ðs� Xb�Þ
�
; ð4Þ

Gss ¼ ðQ�1
ss �Q�1

ss XðXTQ�1
ss XþQ�1

bb Þ
�1
XTQ�1

ss Þ
�1

¼ Qss þ XQbbX
T: ð5Þ

From Eq. (2) follows after application of some matrix

algebra
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G�1
ss ðs� Xb�Þ ¼ Q�1

ss ðs� XbbÞ; ð6Þ

which will be used below for simplifications.
2.2. Observations

Now consider the m� 1 vector of observations y re-

lated to s via a linear transfer function f

y ¼ fðsÞ þ r ¼ Hsþ r: ð7Þ

where r is the m� 1 vector of observation error with

zero mean and m� m covariance matrix R, and H is the

so-called sensitivity matrix which does not depend on s
in the linear case. The likelihood of the measurements is

pðy j sÞ / exp

�
� 1

2
ðy�HsÞTR�1ðy�HsÞ

�
: ð8Þ

In hydrogeological applications, y may be a vector of

head measurements, fðsÞ the modeled head values at the
locations of the measurements for a given conductivity

field, and r the errors when measuring hydraulic heads.

Error propagation yields the expected value of y for

given b, the auto-covariance matrix Qyy of the obser-

vations y, and the cross-covariance matrix Qsy between s

and y [23]

E½y j bb� ¼ HXbb;
Qyy ¼ HQssH

T þ R;

Qsy ¼ QssH
T:

ð9Þ

We multiply Eq. (8) by Eq. (4) and marginalize to find

that y � NðHXb�;GyyÞ, with Gyy defined by

Gyy ¼ ðQ�1
yy �Q�1

yy HXðXTHTQ�1
yy HXþQ�1

bb Þ
�1
XTHTQ�1

yy Þ
�1

¼ Qyy þHXQbbX
THT: ð10Þ

Again, a useful identity similar to Eq. (6) holds

G�1
yy ðy�HXb�Þ ¼ Q�1

yy ðy�HXb̂Þ: ð11Þ

Bayesian analysis for pðb jyÞ yields that b � Nðbb;Qbb j yÞ
with

bb ¼ b� þ ðQ�1
bb þ XTHTQ�1

yy HXÞ�1
XTHTQ�1

yy ðy�HXb�Þ;
ð12Þ
Qbb j y ¼ ðQ�1
bb þ XTHTQ�1

yy HXÞ�1
: ð13Þ
2.3. Posterior distribution

The cokriging estimate ŝ for the unknowns s given the

observations y is identical to the mean value of the

posterior distribution of s given y. The posterior distri-

bution is obtained from Bayesian analysis (compare [9])
pðs jyÞ / exp

�
� 1

2
ðs� Xb�ÞTG�1

ss ðs� Xb�Þ

� 1

2
ðy�HsÞTR�1ðy�HsÞ

�
: ð14Þ

The posterior mean value is identified as the value of s

that maximizes pðs jyÞ, which is identical to

ŝ ¼ min
1

2
ðs

�
� Xb�ÞTG�1

ss ðs� Xb�Þ

þ 1

2
ðy�HsÞTR�1ðy�HsÞ

�
: ð15Þ

The function to be minimized is referred to as the

objective function LðsÞ. Now, we set the first derivative

of LðsÞ to zero in order to obtain the normal equations.

After several rearrangements, we obtain:

ŝ ¼ Xbb þQsyQ
�1
yy ðy�HXbbÞ; ð16Þ

showing that ŝ is comprised of the prior mean Xbb plus

an innovation term, which depends on the deviations of

the observations from their expectation. This innovation

term represents those random fluctuations of s about its

mean value that are relevant for the values of the
observations. Defining the m� 1 vector n allows to ex-

press the posterior mean ŝ in a parameterized form [13]:

n ¼ Q�1
yy ðy�HXbbÞ; ð17Þ
ŝ ¼ Xbb þQsyn: ð18Þ

To obtain bb, we insert Eq. (18) into Eq. (2) and simplify

Q�1
bb
bb ¼ Q�1

bb b
� þ XTHTn: ð19Þ

Enforcing the constraint (19) while solving Eq. (17) is

accomplished by solving the ðmþ pÞ � ðmþ pÞ system

(compare with the results of Kitanidis [13] for the case of

known and unknown mean)

Qyy HX

XTHT �Q�1
bb

� �
nbb

� �
¼ y

�Q�1
bb b

�

� �
: ð20Þ

For the special case of Q�1
bb ¼ 0, Eq. (18) is also known

as the function estimate form of ordinary cokriging, Eq.

(20) is the system of cokriging equations with the matrix

therein being the cokriging matrix, and Eq. (19) is

known as the unbiasedness constraint. In standard

geostatistical literature, these equations are derived by

finding an unbiased linear estimator with minimum
estimation variance (Best Linear Unbiased Estimator,

BLUE). For the sake of easy reading, we adapt this

nomenclature.

The posterior covariance Qss j y of s given y quantifies

the amount of uncertainty remaining after the condi-

tioning procedure. It is defined by the inverse Hessian of

the objective function, which is after application of some
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matrix algebra (again, compare [13], for the case of

known and unknown mean)

Qss j y ¼ Gss �GssH
TG�1

yy HGss: ð21Þ
2.4. Partitioned form

In this section, we introduce a new form of the BLUE

that will prove convenient in later sections. According to

the rules for partitioned matrices (see, e.g. [23]), the in-

verse of the cokriging matrix is

Qyy HX

XTHT �Q�1
bb

� ��1

¼ Pyy Pyb

Pby Pbb

� �
ð22Þ

in which the submatrices are

Pyy ¼ Q�1
yy �Q�1

yy HXðXTHTQ�1
yy HXþQ�1

bb Þ
�1
XTHTQ�1

yy ;

ð23Þ

Pby ¼ ðQ�1
bb þ XTHTQ�1

yy HXÞ�1
XTHTQ�1

yy ¼ PT
yb; ð24Þ

Pbb ¼ �ðQ�1
bb þ XTHTQ�1

yy HXÞ�1
: ð25Þ

Obviously, Pyy ¼ G�1
yy and Pbb ¼ �Qbb j y. For the case of

unknown mean, this partitioning has been used previ-
ously to derive analytical solutions for the conditional

covariance of ŝ in matrix notation [13]. We will

employ this partitioning to separate n from bb in the

cokriging system (Eq. (20)) and the BLUE (Eq. (18))

n ¼ Pyyy� PybQ
�1
bb b

�; ð26Þ

bb ¼ Pbyy� PbbQ
�1
bb b

�; ð27Þ

ŝ ¼ ðXPby þQsyPyyÞy� ðXPbb þQsyPybÞQ�1
bb b

�: ð28Þ
2.5. Simplified objective function

We now present a new computationally most efficient

form of the objective function. Consider the a priori

term of Eq. (15)

Lp ¼
1

2
ðs� Xb�ÞTG�1

ss ðs� Xb�Þ: ð29Þ

Inserting Eqs. (6), (18) and (19) into Eq. (29), Lp be-

comes after simplification

Lp ¼
1

2
nTðHQssH

T þHXQbbX
THTÞn: ð30Þ

Likewise, the likelihood term Lm can be simplified to

Lm ¼ 1

2
nTðRÞn: ð31Þ

Thus, the objective function in total is:

L ¼ 1

2
nTGyyn: ð32Þ
2.6. Properties of cokriging

2.6.1. Uniqueness and well-posedness

The matrix of base functions X and the cross-

covariance matrix Qsy evidently are used as a geosta-
tistically based parameterization of ŝ in the BLUE (Eq.

(18)). X and Qsy span a ðmþ pÞ-dimensional subspace

for ŝ, reducing the degrees of freedom from n to (mþ p).
As a consequence, only (mþ p) parameters bb and n have

to be solved in the cokriging system of equations (Eq.

(20)). Although the task of parameter identification is

initially underdetermined in the sense that there are less

observations than unknown values (m < n), the geosta-
tistical approach converts the problem into a well-

determined problem with (mþ p) equations for (mþ p)
unknown parameters. Hence, provided that the cokri-

ging matrix is not rank deficient, parameter estimation

and inverse modeling based on cokriging-like proce-

dures is a well-posed problem and yields unique solu-

tions. More detailed discussions and lucid examples on

the well-posedness or ill-posedness of inverse modeling
problems for saturated and unsaturated flow are pro-

vided elsewhere [24,30].

It is important to understand that the subspace

spanned by X and Qsy is not an arbitrary choice, but

that it stems from strict Bayesian analysis. Both in the

parameterization of the solution and in the definition of

the posterior covariance (Eq. (21)), the sensitivity matrix

H plays a central role. In case the sensitivity matrix is
inaccurate for any reason, both the cokriging estimate

and the estimation variance are subject to error and may

significantly differ from the result of a rigorous Bayesian

analysis.

2.6.2. Computational costs

The discussion of computational efficiency becomes

relevant for large problems, since the computational
costs of cokriging typically increase with the square or

cube of the problem size. In cases where the transfer

function fðsÞ is a partial differential equation, the dis-

cretization of the unknowns is dictated by stability cri-

teria of the numerical schemes applied for evaluating

fðsÞ. Hence, a number of unknowns in the order of

n ¼ 106 is not unusual. The number of observations m is

in most cases much smaller than n, e.g. in the order of
10 or 100, and the number p of base functions for the

unknown mean Xbb is typically one for the case of a

constant unknown or uncertain mean. The cokriging

equations are rapidly solved as the cokriging matrix is

sized ðmþ pÞ � ðmþ pÞ. The potentially expensive tasks

are (1) computingH, (2) computingQsy andQyy, and (3)

evaluating the value of the objective function. However,

means to reduce these costs have been found:

(1) Applying standard numerical differentiation, com-

puting H takes ðnþ 1Þ evaluations of fðsÞ. A highly
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efficient way to compute H is the adjoint-state meth-

od, which requires only ðmþ 1Þ solutions of prob-

lems that are formally similar to fðsÞ [24,25].
(2) Computing Qsy and Qyy by standard methods is

strictly impossible for large n, since storage ofQss re-
quires memory Oðn2Þ, e.g. 8.000 GByte for n ¼ 106,

exceeding the capacity of all present-day HDD de-

vices. However, by exploiting certain properties of

Qss, storage costs can be reduced to OðnÞ [32], and

the CPU time for computing Qsy and Qyy can be re-

duced from Oðmn2Þ to Oðmn log2 nÞ via FFT-based

methods [6,20,26].

(3) The objective function in the form of Eq. (15) re-
quires storage of Qss and the solution of

G�1
ss ðs� b�Þ (Eq. (5)), associated with costs Oðn2Þ.

The simplified form presented in this study (Eq.

(32)) reduces these costs to Oðm2Þ. Using Gyy instead

of Qss, this removes the last reason to store Qss in an

explicit and full form.
2.6.3. Reproduction of measurements

To clarify the influence of the measurement error R
on ŝ, we analyze how ŝ reproduces the measurements.

We define the measurements values returned by the

BLUE

ŷ ¼ Hŝ: ð33Þ

The residuals of the BLUE are defined as

r̂ ¼ y�Hŝ ¼ y�HðXbb �QsynÞ ¼ Rn ð34Þ

in which Eqs. (17) and (9) were used. Eq. (34) shows that

ŝ never perfectly reproduces the observations for non-

zero R (unless in the unlikely case that n vanishes). It is
of great importance to understand that the residuals r̂

are not a lack of accuracy in the BLUE, but a conse-

quence of meeting the measurements under the

smoothness condition implied by the prior statistics of s.

After ortho-normalization, these residuals can be used

for model criticism [10]. For later derivations, it is

convenient to replace n in Eq. (34) by Eq. (26)

r̂ ¼ RPyyy� RPybQ
�1
bb b

�: ð35Þ

Using Eq. (34), it is easy to obtain the properties of r̂

and ŷ for zero measurement error

lim
R!0

ŷ ¼ y;

lim
R!0

r̂ ¼ 0:
ð36Þ

At the limit of infinite measurement error, inserting

R�1 ¼ 0 into the posterior pdf (Eq. (14)) yields the prior

pdf (Eq. (4)), so that
lim
R�1!0

ŝ ¼ Xb�;

lim
R�1!0

ŷ ¼ HXb�;

lim
R�1!0

r̂ ¼ y�HXb�:

ð37Þ

If the prior mean is absolutely unknown, i.e. Q�1
bb ¼ 0,

the analysis of Eq. (12) yields

lim
Q�1

bb
!0

bb ¼ ðXTHTQ�1
yy HXÞ�1

XTHTQ�1
yy y; ð38Þ

so that the value of bb in Eq. (18) is solely based on the

observations. For the limiting case of known prior

mean, with Qbb ¼ 0, the second term in Eq. (12) van-

ishes

lim
Qbb!0

bb ¼ b� ð39Þ

and the value of bb is fully determined by the prior values

b� of the trend parameters.
3. Quasi-linear Geostatistical Approach

In case the transfer function fðsÞ is non-linear, mini-
mizing the objective function (Eq. (15)) becomes a

matter of non-linear optimization. The Quasi-Linear

Geostatistical Approach successively linearizes the

transfer function about the current estimate sk:

fðsÞ � fðskÞ þ eHkðs� skÞ;eHk ¼
ofðsÞ
os

����
sk

;
ð40Þ

in which eHk is the m� n sensitivity matrix linearized

about sk. Eq. (40) is exact at the limit of s ! sk. In the
following, all quantities marked with a tilde are quan-

tities that depend on the current linearization. We

introduce a modified vector of observations

~yk ¼ y� fðskÞ þ eHksk ð41Þ

and obtain by linearized error propagation (see, e.g.
[23])

E½~yk j bb� ¼ eHkXbb;eQyy;k ¼ eHkQss
eHT

k þ R;eQsy;k ¼ Qss
eHT

k :

ð42Þ

Using the modified vector of observations produces a

linearized objective function that is formally identical to

Eq. (15)

skþ1 ¼ min
1

2
ðs

�
� Xb�ÞTG�1

ss ðs� Xb�Þ

þ 1

2
ð~yk � eHksÞTR�1ð~yk � eHksÞ

�
; ð43Þ
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so that all subsequent derivations are identical. How-

ever, when evaluating the objective function, only the

simplification of the prior term (Eq. (30)), but not Eq.

(31) can be applied, since Eq. (31) is only exact for

s ¼ sk.

3.1. Gauss–Newton optimization

The formalism used in the Quasi-Linear Geostatisti-
cal Approach is formally similar to the Gauss–Newton

method [21] with a non-linear constraint. For compari-

son, both algorithms are given below.

Algorithm 1 (Gauss–Newton method with constraint).
An unknown ng � 1 vector of parameters n is related

to the mg � 1 vector of measurements y, mg > ng, by the

relation y ¼ fðnÞ þ r. The objective function to be min-

imized is v2 ¼ ðy� fðnÞÞTWnnðy� fðnÞÞ, in which Wnn is

a mg � mg weighting matrix, while fulfilling a constraint

of the form GðnÞ ¼ G0. Deviations of GðnÞ from G0 are
punished by the weighting matrix Wmm. Define an initial

guess n0. Then

(1) Compute eHk ¼ ofðnÞ
on

jnk and ~gk ¼ oGðnÞ
on

jnk .
(2) Find nkþ1 by solving

nkþ1 ¼ nk þ Dn; ð44Þ

eHT
kWnn

eHk ~gTk
~gk �W�1

mm

" #
Dn
m

� �
¼ � eHT

kWnnðy� fðnkÞÞ
ðG0 �GðnkÞÞ

� �
:

ð45Þ

(3) Increase k by one and repeat until convergence.

The algorithm introduced by Kitanidis [11] covers the
case of unknown mean. The version discussed in the

following is an extension of the Geostatistical Approach

to the general case of uncertain mean.

Algorithm 2 (Quasi-Linear Geostatistical Approach).
Define an initial guess s0. Then

(1) Compute eHk.

(2) Find skþ1 by solving

skþ1 ¼ Xbbkþ1 þ eQsy;knkþ1; ð46Þ

eQyy;k
eHkX

XT eHT
k �Q�1

bb

" #
nkþ1bbkþ1

� �
¼ y� fðskÞ þ eHksk

�Q�1
bb b

�

" #
:

ð47Þ
(3) Increase k by one and repeat until convergence.

Algorithms 1 and 2 have in common, that botheHT
kW

eHk and eQyy;k, are derived from the Hessian

matrices of the corresponding linearized objective

functions (compare Eq. (32)). Further, the second line in

both cases follows from the constraints, with eHkX and
~gk being the corresponding derivatives. Finally, the

right-hand side vectors of both Eqs. (45) and (47) con-

tain the residuals from the previous step in one form

or another.

The main difference originates from the parameter-
ized form used in the Geostatistical Approach. The

estimator in Algorithm 2 (Eq. (46)) is based on an

ðmþ pÞ dimensional subspace spanned by X and eQsy;k.

In each iteration step, when eHk is updated, the subspace

spanned by eQsy;k is updated simultaneously. Then, the

old subspace spanned by eQsy;k�1, is outdated and no

more valid. Hence, unlike in Algorithm 1, Eq. (44), the

updated solution is not given by the previous solution
plus a modification. Instead, Algorithm 2 projects the

previous solution onto the new subspace by including

the term eHksk in the right-hand side vector of Eq. (47).
3.2. Form of the solution

The following is a graphical and instructive example

to discuss the form of the solution and the iteration

algorithm chosen in the Geostatistical Approach

(Algorithm 2). Consider that two subspaces are avail-
able: an outdated subspace spanned by eQsy;k�1 and the

current subspace spanned by eQsy;k, eQsy;k 6¼ eQsy;k�1. The

subspace spanned by eQsy;k�1 is not a linear combination

of the components of eQsy;k. The current sensitivity ma-

trix eHk is more accurate for the following estimation,

since it has been linearized about a value of s that is

closer to ŝ than the value which eHk�1 has been linearized

about. Let us clearly regard eHk�1 as a poor linearization.

Assume we defined a solution to the inverse problem

in the following form:

ŝ ¼ Xbbk þ Xbbk�1 þ eQsy;knk þ eQsy;k�1nk�1 ð48Þ

and then fitted the parameters bbk,
bbk�1, nk and nk�1 so

that ŝ minimizes the objective function (Eq. (43)). It is

clear that, if neglecting the smoothness condition im-

plied by the a priori term, we are free to choose any

combination of the parameters that lead to a perfect fit

with the measurements. Since we have (2mþ 2p)
parameters to fit while the observations and the condi-

tions for the trend parameters result in no more than

(mþ p) equations, the solution for s would not be un-

ique. Now, we take into account the contribution of the

prior term in the objective function. The current sub-

space is based on the more accurate linearization. This

fact makes it more ‘‘efficient’’ for meeting the measure-

ments in the sense that smaller perturbations lead to the
same satisfaction of the measurements while allowing

for a smaller value of the a priori term. Hence, the

previous subspace is completely discarded by finding

that only with nk�1 ¼ 0 the objective function is mini-

mized. The same analysis holds for any number of

available subspaces.
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At this point, let us discuss several consequences:

(1) As mentioned in previous sections, the subspaces

spanned by X and Qsy reduce the degrees of freedom

and hence allow to define a unique solution in
the case of linear cokriging. If several subspaces

were available, the property of uniqueness would

be lost.

(2) The iteration procedure in Algorithm 2 finds the

optimal subspace for the estimator, in which the

optimum subspace is defined such that the measure-

ments are satisfied by minimum perturbations. By

defining the unique optimal subspace for the non-
linear case, the Quasi-Linear Geostatistical Ap-

proach maintains the uniqueness of the solution.

(3) Algorithm 2 does not adhere to previous trial solu-

tions, but projects them onto the current subspace

in each iteration step. The final estimate is entirely

based on the final (optimal) subspace, and the con-

ditional covariance is defined in the very same sub-

space, using Eq. (21) with H ¼ eHk. The single
iteration steps are not a process of conditioning,

but merely of finding the optimal subspace. Hence,

it is not necessary to update the prior covariance

during the iteration procedure as it would be the

case in a sequential or successive Bayesian updating

procedure. In the Quasi-Linear Geostatistical Ap-

proach, seen from the Bayesian point of view, the

act of conditioning is entirely carried out in the final
step.

(4) Line search algorithms find solutions of the form

skþ1 ¼ sk þ Ds, which is in our case equivalent to

the form given in Eq. (48). If a line search modifica-

tion was applied to Algorithm 2, the outdated sub-

spaces would not be discarded, and the Bayesian

concept would be violated.

(5) Solutions of the form skþ1 ¼ sk þ Ds do not violate
the Bayesian concept if, and only if, they are used

in the context of Bayesian updating procedures such

as the Successive Linear Estimator [29] or sequential

kriging and cokriging [27]. In these methods, each

iteration step is defined as a process of conditioning.

The covariances are successively updated so that the

prior covariance of each iteration step is given by the

conditional covariance of the preceding step.
3.3. Drawbacks of the conventional algorithm

For strongly non-linear problems, the Gauss–Newton
method (Algorithm 1) in general and the Quasi-Linear

Geostatistical Approach (Algorithm 2) in particular are

known to diverge due to overshooting and oscillations.

In comparison to Algorithm 1, Algorithm 2 has an

additional disadvantage based on the changing subspace

of the solution, as we will show in the following analysis.
3.3.1. Deterioration of the solution

We split the entries of the right-hand side vector in

Eq. (20) into an innovative and a projecting part:

~y

�Q�1
bb b

�

" #
¼

y� fðskÞ
�Q�1

bb ðb� � bbkÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

innovative

þ
eHksk

�Q�1
bb
bbk

" #
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

projecting

: ð49Þ

When inserting these parts into the linearized cokriging

equations (Eq. (47)) separately, one obtains a projecting

part and an innovative part of the parameter vector:

nkþ1bbkþ1

" #
¼

nprbbpr

" #
þ

ninbbin;

� �
ð50Þ

which in turn can be inserted into the estimator (Eq.

(46))

skþ1 ¼ Xbbpr þ eQsy;knpr|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
spr

þXbbin þ eQsy;knin|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
sin

: ð51Þ

The innovative part generates new innovations based on
the residuals (y� fðskÞ) and (b� � bbk) of the previous

trial solution, while the projecting part projects sk onto

the new subspace spanned by eQsy;k. Finally, the splitting

affects the measurements ~y returned by the BLUE

ŷkþ1 ¼ eHkspr|fflffl{zfflffl}
ŷpr

þ eHksin|fflffl{zfflffl}
ŷin

: ð52Þ

Now, we substitute the projecting part ŷpr ¼ eHkspr for y

in Eq. (35) to analyze how the projection reproduces the
observations

r̂pr ¼ RePyy;k
eHksk � RePyb;kQ

�1
bb b̂k: ð53Þ

Then it becomes evident that ŷpr 6¼ ŷk unless R ¼ 0

lim
R!0

ŷpr ¼ ŷk: ð54Þ

This means that, for non-zero R, the projecting part spr
never satisfies the observations to the same extent as the
previous trial solution sk. The extreme case of infinite R

may serve as an illustrative example: Inserting the pro-

jecting part into Eq. (37) yields

lim
R�1!0

spr ¼ Xb�: ð55Þ

For eHk ¼ eHk�1, it can be shown that spr is equal to sk if,

and only if, R ¼ 0. This is easy to see since the subspace

for ŝ does not change, i.e., eQsy;k ¼ eQsy;k�1, and the

projection from the previous subspace onto the current
one is an identity operation. For non-linear fðsÞ, i.e.eHk 6¼ eHk�1, the projection is not an identity operation,

and R ¼ 0 is no more sufficient to ensure that spr ¼ sk,

and we will find in general that spr 6¼ sk. Then, because

fðsÞ is non-linear and Eq. (40) is only approximate, it is

not necessarily true that fðsprÞ ¼ fðskÞ even for R ¼ 0

and eHkspr ¼ eHksk. Thus, the projecting part of the solu-
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tion deteriorates in any case. The larger the extent of

non-linearity or the larger the step sizes occurring during

iteration, the less accurate is the linearization. This, in

turn, leads to a higher degree of deterioration in the

projection, with the potential to prevent the entire
algorithm from converging.
3.3.2. Local minima

For strongly non-linear problems, the objective

function may have multiple minima. In such cases, the
Geostatistical Approach (Algorithm 2) may find a local

minimum that satisfies the measurements to an extent

specified by the measurement error statistics, but its

identity to the global minimum cannot be proved. Then,

it is common practice to accept the solution if (1) it is

acceptably smooth to the subjective satisfaction of the

modeler, and (2a) the objective function does not exceed

a prescribed value, typically derived from the v2-distri-
bution for (mþ p) degrees of freedom or (2b) the ortho-

normalized residuals obey certain statistics [10].

According to our experience, most failures to find an

acceptable solution originate from overshooting of

iteration steps, which leads to solutions that are

not sufficiently smooth in the sense of the prior distri-

bution.
4. Modified Levenberg–Marquardt algorithm

In this section, we present and discuss a modified

Levenberg–Marquardt Algorithm for the Quasi-Linear

Geostatistical Approach. The choice of the Levenberg–

Marquardt algorithm and the nature of the modifica-

tions is based on the following simple and perspicuous

train of thought.

(1) The Geostatistical Approach (Algorithm 2) suffers

from oscillations and over-shooting, leading to solu-

tions that fail to comply with the smoothness con-

straint. Further, in addition to typical problems of

successive linearization methods with strongly non-

linear problems, the solution deteriorates whenever

the step size is too large and the algorithm may fail.

Applying a line search on top of Algorithm 2 would
violate the required form of the solution.

(2) The Levenberg–Marquardt algorithm [16,17] sup-

presses oscillations and overshooting by controlling

the step size and direction. It does so by amplifying

the diagonal entries of Eq. (45) in the Gauss–New-

ton algorithm (Algorithm 1).

(3) This is similar to amplifying the measurement error

R in Algorithm 2, Eq. (47). Using R to amplify the
diagonal entries of the linearized cokriging system

will put the step size control into a statistically based

and well controllable framework.
(4) When exerting intelligent control over R during the

course of iteration, the solution space can systemat-

ically be screened starting at the prior mean, which

increases the chance that the solution complies with

the smoothness condition.
(5) The role of the projecting and the innovative parts

can be taken into account such that R is controlled

separately for these two parts: to suppress the dete-

rioration through the projection and to prevent

overshooting in the innovative part. The measure-

ment error R has to be decreased in the projection

part and increased in the innovation part to reduce

the step size.
(6) Error analysis of the linearization can be used to

prescribe a certain maximum step size. Further, if

an iteration step is very small and the linearization

is still sufficiently accurate, it can be re-used for

the next iteration step.

Again, we discuss a few properties of the standard

Levenberg–Marquardt algorithm for least-squares fit-
ting before introducing the counterpart for the Geosta-

tistical Approach.

Algorithm 3 (Levenberg–Marquardt algorithm with con-
straint). The problem description is identical to Algo-

rithm 1. Define an initial guess n0 and initialize the

Levenberg–Marquardt parameter k with k > 0. Then

(1) Compute eHk and egk.

(2) Find nkþ1 by solving

nkþ1 ¼ nk þ Dn; ð56Þ

eHT
kWnn

eHk þ kD1 egT
kegk �W�1

mm þ kD2

" #
Dn

m

� �

¼ � eHT
kWnnðy� fðnkÞÞ
G0 �GðnkÞ

" #
: ð57Þ

If the objective function does not improve, increase k
and repeat step 2. Otherwise, decrease k.

(3) Increase k by one and repeat until convergence.

The terms kD1 and kD2 amplify the diagonal entries

of the Hessian matrix in Eq. (57). Initially, k is assigned

a low value, k > 0. Whenever convergence is poor, k is

increased by a user-defined factor, and is again de-

creased whenever convergence is good. For k ! 1, the

step size jDnj approaches zero, the search direction ap-

proaches the direction of steepest descent, and there is
always an improvement of the objective function for

sufficiently large k unless nk is a minimum. As nk con-

verges towards the solution, k can be decreased to zero.

Ideally, during the last iteration steps, the unmodified

system of equations is used and the algorithm is iden-

tical to Algorithm 1.
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Algorithm 4 (Modified Levenberg–Marquardt Algo-
rithm for the Quasi-Linear Geostatistical Approach).
The problem statement is as specified for Algorithm 2.

Error analysis yields that the error of linearization is

acceptable only for js� skj < Ds1, and negligible for
js� skj < Ds2. Define an initial guess s0 ¼ Xb� and ini-

tialize k with k > 0.

(1) Compute eHk unless jsk�1 � skj < Ds2.
(2) Find skþ1 by solving the following equations:

skþ1 ¼ Xðb̂pr þ b̂inÞ þ eQsy;kðnpr þ ninÞ; ð58Þ

eQyy;k þ kR eHkX

XT eHT
k �ð1þ kÞQ�1

bb

" #
nin

b̂in

� �

¼
y� fðskÞ

�Q�1
bb ðb

� � b̂kÞ

" #
; ð59Þ

eQyy;k � sR eHkX

XT eHT
k �ð1þ kÞQ�1

bb

" #
npr

b̂pr

" #

¼
eHksk

�ð1þ kÞQ�1
bb b̂k

" #
; ð60Þ

s ¼ 1� ð1þ kÞ�c
: ð61Þ

If jskþ1 � skjPDs1 or if the objective function does

not improve, increase k and repeat step 2. Otherwise

decrease k and continue.

(3) Increase k by one and repeat until convergence.
4.1. Properties of the modified algorithm

Algorithm 4 has the following properties:

(1) The Levenberg–Marquardt parameter k controls the

step size. If the previous step is sufficiently small, the

limit for k ! 1 is a step size of zero. This property

is discussed below in more detail.

(2) By appropriate choice of c > 0, the algorithm can be

fine-tuned to the problem at hand. For large c, the
algorithm becomes more aggressive by suppressing
the deterioration of the projecting part. We recom-

mend c > 1 to ensure that nrep ! nk is faster than

nin ! 0.

(3) As the algorithm converges, k can be decreased to-

wards zero. For k ! 0, the algorithm is identical

to the conventional form (Algorithm 2).

(4) The solution found by Algorithm 4 has the same

properties as the solution found by Algorithm 2, fol-
lowing the strict Bayesian framework. Eq. (58) is not

to be confused with the form of the solution that

would violate the Bayesian concept as discussed

above (Eq. (48)), since no outdated subspaces ap-

pear here.
(5) The solution space is screened in a controlled man-

ner, starting at the prior mean. In case the unique-

ness of the solution is questionable because the

objective function is strongly non-linear and has

multiple local minima, the solution found by Algo-
rithm 4 has better chances to comply with the

smoothness condition and to fulfill common statisti-

cal criteria for testing the solution.

(6) The costs of searching for an adequate value of k
and the for computing new linearizations are mini-

mized through error analysis.
4.2. Step size control

In Eq. (59), eQyy;k is negligible for very large k. Then,
approximate Qyy � kR and substitute the modified

cokriging matrix from Eq. (59) in Eqs. (23)–(25) to ob-

tain the limit of the P submatrices for k ! 1. Insert the

resulting expressions and the right-hand side vector

from Eq. (59) into Eqs. (26) and (27) to give

lim
k!1

ðninÞ ¼ 0;

lim
k!1

ðb̂inÞ ¼ 0:
ð62Þ

This shows that increasing k can be used to restrict the

step size for the innovative part.

Similarly, we can show that spr ¼ sk for k ! 1.

Considering that, according to Eq. (42), eQyy;k � sR ¼eHkQss
eHT

k for infinite k, R vanishes from Eq. (53), and
we obtain

lim
k!1

r̂pr ¼ 0;

lim
k!1

eHkspr ¼ eHksk:
ð63Þ

Combining Eqs. (58)–(63) yields for the linear case witheHk ¼ eHk�1

lim
k!1

skþ1 ¼ sk: ð64Þ

Still, the algorithm is subject to the deterioration of

the solution, since Eq. (64) holds for the linear case

with eHk ¼ eHk�1. For eHk 6¼ eHk�1, these identities are

only approximate. In most situations, the approximate

character of Eq. (64) does not cause problems. In case
problems should occur, the step size restriction defined

by Ds1 can be chosen more drastically to ensure thateHk � eHk�1.
4.3. Application to known and unknown mean

Algorithm 4 is designed for the case of uncertain

mean. The cases of known and unknown mean are

merely special cases of this general case. To obtain an

algorithm for the case of unknown mean, set Q�1
bb ¼ 0 in

all places. A more stable version for the unknown mean
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case can be obtained by substituting ðb� � b̂kÞ ¼ 0 in Eq.

(59).

In this case, no bias is exerted onto b̂ so that effec-

tively the algorithm behaves like in the unknown mean

case, but the step size control over b is still active.
For the case of known mean, the entire derivations

simplify, and the additional terms, rows and columns for

b̂ disappear in all equations. Instead, the known mean

value Xb is added to skþ1 in Eq. (58) and subtracted from

sk in Eq. (60).
5. Performance test

To compare the performance of the new algorithm

compared to the conventional algorithm, we apply both

of them to a problem described by Cirpka and Kitanidis
[2] with several simplifications: We seek for the

hydraulic conductivity distribution K with unknown

mean in a 2-D locally isotropic aquifer, considering

measurements of hydraulic head / and arrival time t50 of
a conservative tracer. Since a full mathematical

description of the underlying problem is given in the

original publication, we only provide a brief summary.

The unknown quantity is the log-conductivity
Y ¼ logK, discretized as an elementwise constant func-

tion on a regular grid with n elements. The unknowns

are second-order stationary with uncertain constant

mean, making X an n� 1 vector with unit entries. The

covariance matrix Qss is given by the exponential model

with structural parameters that are assumed to be

known for simplicity. Since the grid is regular, Qss is

block Toeplitz with Toeplitz blocks, allowing to apply
FFT-based methods for multiplication of Qss [20].

The transformation Y ¼ lnK is linearized about eYk by

expðeYk þ Y 0Þ � eKk þ eKkY 0 ð65Þ

with eKk ¼ expðeYkÞ. The observed hydraulic head / is

related to Y through the steady-state groundwater flow

equation without sources and sinks

r � ðexpðY Þr/Þ ¼ 0 in X: ð66Þ

The flow domain X with the boundary C is rectangular:

C1 is the west section of C, C2 is east, and C3 and C4 are

north and south. Boundary conditions are

/ ¼ /̂1 on C1;

/ ¼ /̂2 on C2;

ðexpðeYkÞr/Þ � n ¼ 0 on C3;4:

ð67Þ

The boundary conditions for the tracer are an instan-

taneous release of the tracer at C1 and t ¼ 0, with zero-

flux conditions at C3;4 and no diffusion at C1;2.
The sensitivities of the head and arrival time mea-

surements with respect to Y are computed by the ad-

joint-state method [24]. A major contribution to the

non-linearity of this problem originates from the line-

arization of K ¼ expðY Þ. Error analysis yields

eðY 0Þ ¼ expðY 0Þ � ð1þ Y 0Þ: ð68Þ

We decide the error to be acceptable for Y 0 < 0:4,
e � 0:1, and negligible for Y 0 < 0:01, e � 5e� 5, which
will be taken into account in Algorithm 4. Further

sources of non-linearity stem from the changing

streamline pattern during the course of the iteration

process and other effects of evolving heterogeneity dur-

ing the iteration algorithm.

To set up test cases, we generate unconditional real-

izations of Y using the spectral approach of Dietrich and

Newsam [5], solve Eqs. (66) and the transport problem,
pick values of / and t50 at the measurement locations,

and add white noise to obtain artificial measurement

data. An example of an unconditional realization of log

K together with the corresponding head and arrival time

distribution and measurement locations is displayed in

Fig. 1(a)–(c).

Subsequently, we ‘forget’ the generated distributions

of log K and proceed with the Quasi-Linear Geostatis-
tical Approach to determine the ‘unknown’ spatial dis-

tribution of Y , using both algorithms for comparison.

For illustration, the result of a specific test case is dis-

played in Fig. 1(d)–(f). The conductivity distribution

recovered through the Geostatistical Approach is

smoother than the original field. However, the depen-

dent quantities used for conditioning meet the mea-

surements at the measurement locations.
We will discuss five test cases. In case one, the vari-

ance of Y is chosen sufficiently small so that the problem

is effectively linear. In all other test cases, we have in-

creased the variance of Y by simply scaling the realiza-

tion used in case one, making the problem non-linear.

The chosen parameter values are listed in Table 1. The

conventional form of the Geostatistical Approach has

been reported to be applicable up to higher values for
the variance of log-conductivity r2

Y if only head mea-

surements are available. The relation between mea-

surements of arrival time, however, is non-linear to a

higher degree even for smaller values of r2
Y .

The results of the test cases are shown in Table 2. In

the almost linear setup, case one, both algorithms find

the solution within few steps. The solutions are identical

but for differences below chosen breakoff criteria of the
iteration procedure, and have the same geostatistical

properties. In case two, the conventional algorithm

(Algorithm 2) begins to oscillate, but finally finds the

solution after 15 steps, while the modified Levenberg–

Marquardt version (Algorithm 4) still performs well. A

comparison of the solution yields that both solutions



Table 1

Parameters used for the test cases

Parameter Units Value

Domain length Lx m 1000

Correl. length kx m 4

Grid spacing dx m 4

Observations / – 25

Observations t50 – 15

Error rh for h m 0.01

Error rt for t50 % 10

Domain length Ly m 500

Correl. length ky m 2

Grid spacing dy m 4

Porosity – 0.3

Dispersivity al m 10

Dispersivity at m 1

Diffusion Dm
m2

s
10�9

For the variance of each test case, please refer to Table 2.

Table 2

Performance of the conventional algorithm for the Quasi-Linear Geostatist

algorithm (Algorithm 4), comparison for the test cases 1–5

Case no. Variance r2
Y Algorithm 2

No. of steps S

1 0.1 4 C

2 0.4 15 O

3 1.6 – F

4 3.2 – F

5 6.4 – F

Fig. 1. Problem setup: (a) realization of lnK (here: variance 6.4 for test case 5); (b) modeled distribution of hydraulic heads; (c) modeled arrival time

distribution; (d) distribution of lnK obtained from Quasi-Linear Geostatistical Approach using the modified Levenberg–Marquardt algorithm; (e)

hydraulic heads for inverse problem and (f) arrival time for inverse problem. Dots represent locations of measurements. Greyscale normalized for

direct comparison of true distribution (a–c) with cokriging results (d–f). Brighter colors correspond to higher values.
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have similar values of r̂ that cannot be rejected based on

v2 statistics using a 95% confidence level. However, the

value of the prior term is smaller for the solution ob-

tained from Algorithm 4, i.e., the latter solution is

smoother than the one obtained from the conventional
algorithm. In case three, the new algorithm proves stable

and monotonically converges towards the solution,

whereas the non-linearity of the problem causes the

conventional algorithm to fail immediately. Case four

represents the degree of non-linearity that the new

algorithm can deal with, and case five demonstrates its

limits. The solution obtained from the new algorithm for

case five is shown in Fig. 1(d)–(f).
The contour-lines of the hydraulic head indicate that

the streamlines are inclined up to almost 90� due to the

heterogeneity of the flow field, resembling the extreme

degree of non-linearity for all streamline-related pro-
ical Approach (Algorithm 2) and the modified Levenberg–Marquardt

Algorithm 4

tatus No. of steps Status

onverged 3 Converged

scillations 5 Converged

ailed 15 Converged

ailed 19 Converged

ailed 20 Stagnated
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cesses and quantities like, e.g. the transport of a tracer

and hence its arrival time distribution.
6. Summary and conclusions

We have analyzed the Gauss–Newton algorithm used

in the Quasi-Linear Geostatistical Approach for inverse

modeling. A discussion in the Bayesian framework re-

vealed that, and why, the solution has to obey a certain
form. The solution is defined in a subspace that is ob-

tained from the geostatistical approach and changes

during the iteration procedure. To comply with the

Bayesian concept and maintain the uniqueness of the

solution, only the final and optimal subspace must be

used, and the previous trial solution must be projected

onto the current subspace in each iteration step.

Like the Gauss–Newton algorithm for least-squares
fitting, the Gauss–Newton version of the Quasi-Linear

Geostatistical Approach encounters problems in

strongly non-linear optimization tasks. Overshooting

and oscillations may occur, causing the algorithm to

diverge. In case the inverse problem is strongly non-lin-

ear and the objective function has multiple local minima,

excessively large steps lead to solutions that fail to obey

the smoothness condition implied by the geostatistical
approach. Additionally, the projection onto the current

subspace introduces new instability problems.

To increase the stability of the iteration procedure,

we introduced a modified Levenberg–Marquardt ver-

sion of the Quasi-Linear Geostatistical Approach. This

new algorithm splits each iteration step into two parts:

projecting the previous trial solution onto the current

subspace and reducing the residuals. Each part is pro-
vided with its own stabilization mechanism. The first

stabilization is to reduce the deterioration of the trial

solution during the projection onto the current sub-

space, while the second restricts the improvement of the

residuals to prevent overshooting.

The resulting algorithm screens the solution space

starting at the prior mean in a geostatistically controlled

manner. Exerting control over the step size, it reduces
the risk of oscillation or overshooting of the solution. In

case of strong non-linearity, the objective functions may

have multiple minima and the identity of the solution to

the global minimum cannot be proved. Instead, decision

criteria based on geostatistical considerations are used

to reject or accept the solution. According to our

experience, local minima do in most cases not fulfill

these decision criteria since they fail to obey the
smoothness condition implied by the geostatistical ap-

proach. By putting the step size control into the geo-

statistical framework, the new algorithm improves the

chance to obtain solutions that comply with this

smoothness condition. We demonstrated in test cases,

that the new algorithm has an increased convergence
radius and can cope with stronger non-linearity while

requiring less iteration steps than its Gauss–Newton

relative. This allows to apply the Quasi-Linear Geosta-

tistical Approach to cases of higher variability and in-

creased non-linearity.
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