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[1] In groundwater, hydraulic heads and solute arrival times depend primarily on the
hydraulic conductivity field and hydraulic boundary conditions. The spread of
breakthrough curves, in contrast, depends also on longitudinal and transverse dispersion
coefficients. The shape of point-like measured breakthrough curves can be reproduced by
simulations only when appropriate dispersivities are applied. The values and spatial
distributions of dispersivities depend on the resolution of the underlying hydraulic
conductivity field. We present a geostatistical method for the joint estimation of log
conductivity and log dispersivities from measurements of hydraulic heads and temporal
moments of local breakthrough curves. The parameter fields are considered random space
variables, and they are conditioned on the measurements by Bayesian inference. The
estimated longitudinal and transverse dispersivities are to be applied in conjunction with
the estimated conductivity field. We apply our technique to data of a technical-scale tracer
experiment. In the particular application, the amount and quality of measured data are
sufficient to infer the conductivity distribution at a spatial resolution at which the spread of
locally obtained breakthrough curves is dominated by pore-scale transverse dispersion.
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1. Introduction

[2] In the past two decades, several basic approaches to
analyze groundwater flow and solute transport in heteroge-
neous formations have evolved. Many of them are based on
stochastic analysis [see Rubin, 2003]. Here, the hydraulic
conductivity is considered a random space variable. Since
the actual distribution at a site is typically unknown or at
least uncertain, exact predictions of flow and transport are
impossible. Given the statistics of the parameter field,
however, the statistics of hydraulic heads, velocities, and
concentrations can be derived. In the stochastic framework,
we distinguish between methods that explicitly account for
measurements and those that rely on statistical information
alone.
[3] In Monte Carlo simulations, typically, a set of random

log conductivity fields is generated. Then, flow and trans-
port is numerically simulated for each field, and the ensem-
ble of different outcomes is analyzed, e.g., by evaluating the
mean and variance [e.g., Bellin et al., 1992]. If actual
measurements are neglected, Monte Carlo simulations
may be seen as the conceptually simplest approach to obtain
ensemble averages. However, the computational effort is
rather high because second-order statistics of the dependent
quantities require thousands of realizations.
[4] In analytical upscaling approaches, heterogeneous

media are replaced by equivalent homogeneous media with

process-specific effective parameters obtained by ensemble
averaging. For solute transport in particular, dispersion
coefficients were defined to parameterize the spreading
and/or dilution of solutes in heterogeneous media. Gelhar
and Axness [1983], Neuman et al. [1987], and Dagan
[1988] developed expressions for macrodispersivity that
apply to large (ergodic) plumes. For small (nonergodic)
plumes, Dentz et al. [2000a, 2000b] derived effective
dispersion coefficients. Effective dispersion coefficients
for point-like injections characterize the dilution of solutes,
which is an important property when modeling reactive
transport [Cirpka, 2002]. The disadvantage of these
approaches is that no actual field data but only some of
their geostatistical parameters are included in the upscaling
procedure.
[5] In geostatistical inverse modeling, the distribution of

hydraulic parameters, such as hydraulic conductivity, is
conditioned on measurements of conductivity and depen-
dent quantities. One may distinguish between methods that
compute a best estimate and methods to generate condi-
tional realizations. The latter are discussed further below.
When computing the best estimate, the most likely value of
hydraulic conductivity is determined at each location,
together with the conditional covariance that parameterizes
the remaining, correlated uncertainty, following a Bayesian
framework. Among these techniques are kriging and cok-
riging [see Hoeksema and Kitanidis, 1984], the successive
linear estimator [Yeh et al., 1996], the quasi-linear geo-
statistical approach [Kitanidis, 1995] and the maximum a
posteriori method [McLaughlin and Townley, 1996]. For an
extensive review of geostatistical inverse methods, see
Zimmerman et al. [1998].
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[6] Most of these geostatistical inverse methods focus on
flow parameters such as hydraulic conductivity. While some
of them also consider transport parameters such as sorption
coefficients [e.g., Huang et al., 2004]), none of them
considers scale-dependent transport parameters, such as
dispersivities, to the best of our knowledge. The condi-
tioned conductivity fields cover the variability of aquifers
only to a certain extent that depends on the quality and
quantity of available data. Hence transport simulations
using these fields together with local-scale dispersivities
lead to an underestimation of dispersion. However, macro-
dispersivities also are not applicable because they assume
that no variability is resolved, leading to an overestimation
of dispersion.
[7] A rigorous discussion of the dispersion of solute

clouds in conditional fields leads to nonlocal, computation-
ally demanding formulations due to the inherent nonstatio-
narity of the velocity field [Neuman, 1993]. Neglecting
pore-scale dispersion, Rubin [1991] suggested to integrate
the conditional velocity covariance along the conditional
mean trajectory in order to quantify the dispersion of solutes
in conditioned conductivity fields, while Graham and
McLaughlin [1989] presented moment-generating equations
for concentration statistics in an Eulerian framework.
[8] Some approaches have been derived in which the

nonstationarity of partially resolved conductivity fields is
neglected in the derivation of dispersivities. Rubin et al.
[1999] derived block-effective dispersion coefficients using
high-pass filters on the overall velocity covariance, which
subsequently is substituted into Dagan’s [1988] expression
of macrodispersion. Later, Rubin et al. [2003] extended this
approach to smaller (nonergodic) plumes. This approach
requires that all heterogeneity on the scale of the blocks is
resolved and that the remaining uncertainty is much smaller
than the block scale. Cirpka and Nowak [2003] adopted the
concept of a high-pass filter with a filter function derived
from averaged conditional covariance functions for a regu-
lar grid of measurement points. Unfortunately, the underly-
ing assumptions of both methods are rather restrictive, so
that these approaches are difficult to apply in practice.
[9] Rather than parameterizing the effects of unresolved

heterogeneity, one might simulate it by generating condi-
tional realizations using, e.g., the pilot point method by
RamaRao et al. [1995], the method of sequential self-
calibration by Gómez-Hernández et al. [1997], or the
spectral method by Dietrich and Newsam [1996]. Like for
Monte Carlo simulations using unconditional fields, the
disadvantage of conditional realizations is that only large
ensembles of realizations can adequately represent the
unresolved variability. Many realizations are required, and
all of them must be conditioned individually, thus resulting
in high computational costs.
[10] In the present study, we consider the case that both

hydraulic head measurements and breakthrough curves of
concentration are available in the conditioning procedure.
Then, the information on solute dispersion is included in the
concentration data and can be obtained by inverse modeling
rather than upscaling. In the next section, we explain our
approach and the methods used to implement it. Technical
details on a similar method are also given by Nowak [2005].
Finally, we apply our approach to tracer data obtained in a
technical-scale sandbox experiment with heterogeneous

filling and compare our results to the outcome of other
methods of tracer test analysis.

2. Approach

[11] We consider the hydraulic conductivity K and the
longitudinal and transverse dispersivities a‘ and at as
unknown random space functions, which we identify using
an extension of the quasi-linear geostatistical approach of
Kitanidis [1995]. We assume porosity to be uniform. In our
application, the measurements include values of hydraulic
head and temporal moments of breakthrough curves. In
general, other types of data such as direct measurements of
conductivity or velocities from borehole dilution tests may
also be used.
[12] In order to sufficiently resolve the point-like obser-

vation scale for breakthrough curves and the spatial struc-
ture of the random space variables, we have to choose a
rather fine computational resolution of the domain, yielding
a large number of discrete values of the unknowns. Addi-
tionally, the amount of measurement data is quite high in
spite of reducing breakthrough curves to temporal moments.
This requires computationally efficient inverse methods.
[13] Local breakthrough curves record how solute clouds

pass by an observation point, hence mainly providing
information on longitudinal dispersion. The observed degree
of longitudinal dispersion consists of two pore-scale contri-
butions: (1) the direct effect of longitudinal pore-scale dis-
persion and (2) the indirect effect of transverse pore-scale
dispersion that transforms longitudinal spreading to longitu-
dinal dilution, a phenomenon which we refer to as aliasing
[Cirpka and Kitanidis, 2000b]. Depending on the degree of
longitudinal spreading, the first or the second contribution
dominates.
[14] Because of this aliasing, single breakthrough curves

contain no separable information on transverse and longi-
tudinal local dispersivities. Direct information on transverse
dispersion of the solute cloud can only be obtained from
very dense transverse curtains of observations, which is
impractical and too expensive in practice. Hence we chose
to define the dispersivities as a‘ = a and at = la and use
the magnitude a and the anisotropy ratio l as unknown
parameters rather than using a‘ and at. Although this choice
may seem to be insignificant at first sight, it installs a
defined correlation between a‘ and at through the anisot-
ropy ratio l, alleviating the ill posedness caused by the
aliasing effect, regardless of the transverse data spacing.
Later on, we will assume that a is an autocorrelated random
space function, whereas l will be defined by a linear trend
function along the principal flow direction with uncertain
drift coefficients.

2.1. Properties of the Identified Dispersivities

[15] In the following, a‘ = a and at = al denote the
dispersivities to be identified. They have the following
properties.
[16] 1. They are effective dispersivities for a point-like

observation scale in the sense of Dentz et al. [2000a]
because we use local, i.e., nearly point-like, measurements
of breakthrough curves. Larger support volumes would
change the character of a‘ and at toward larger scales.
[17] 2. They depend on the resolution of the jointly inferred

conductivity distribution because they parameterize the
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effect of unresolved heterogeneity. When ln K fluctuations
are neglected entirely, they approach the values of effective
dispersivities [Dentz et al., 2000a], whereas they become
pore-scale dispersivities, when the lnK field is fully resolved.
[18] 3. They are specific for the particular boundary

conditions chosen for flow and transport in the experiment,
e.g., because dispersivities are traveltime dependent.
[19] 4. In accordance with the previous three points, they

are not purely a property of the porous medium.
[20] 5. They are spatially fluctuating variables, not only

due to the traveltime dependence of dispersivities in general,
but also because the degree of resolved heterogeneity varies
inside the domain, depending on the sampling strategy, i.e.,
the distance, quantity, quality and type of adjacent measure-
ments [cf. Rubin, 1991].
[21] 6. We define lognormal prior distributions using the

substitutes Xa = ln a‘ and Xl = ln l in the inverse
procedure. This assumption is a legitimate and convenient
way of ensuring nonnegativity and it is in accordance
with the commonly used lognormal distribution of con-
ductivity K with Y = ln K.
[22] 7. For spatial inference, we define ln a to be multi-

Gaussian, which constitutes a maximum entropy assump-
tion on the type of joint distribution.
[23] 8. The structure, variance and integral scale of the

corresponding geostatistical model cannot be determined
from experimental variogram analysis of direct measure-
ments but must be inferred from measurements of dependent
quantities.
[24] 9. Like in most other geostatistical and interpolation

methods, simulated values of measured quantities using the
estimated parameters are fitted at the locations of observa-
tion and are best estimates in between.
[25] The multivariate log Gaussian distribution and the

dependence on model scale and boundary conditions are
in accordance with wide-spread assumptions and well-
understood properties of hydraulic conductivity. The esti-
mated values of dispersivities, however, depend significantly
stronger on the resolution of the measurements and on
hydraulic boundary conditions than estimates of hydraulic
conductivity. This is so, because dispersivities quantify the
unresolved velocity fluctuations sampled by a plume along
the trajectory from the injection to the observation point.
Numerical values about dispersivities always require state-
ments about the associated resolution of velocity. Coarsen-
ing the measurement grid would lead to a smoother estimate
of the velocity field and consequently to larger estimates of
dispersivities. For a more detailed discussion, we refer to
Nowak [2005], who identified a scalar log dispersion coef-
ficient that has the same fundamental properties.

2.2. Identifying Structural Parameters of the
Geostatistical Model

[26] Fortunately, under certain circumstances, the struc-
ture of estimated parameter fields is insensitive to the
structure and integral scale of the geostatistical model.
The prerequisites are, that (1) the data spacing is equal to
or smaller than the integral scale and/or (2) the scale of
sensitivity patterns is larger than the integral scale [e.g.,
Kitanidis, 1997]. Both is the case in the application we
feature in this study. In the absence of variogram informa-
tion and direct observations, we optimize the structural

parameters based on indirect measurements following the
quasi-linear geostatistical approach [Kitanidis, 1995], with
an extension to uncertain prior knowledge.

2.3. Use of Temporal Moments

[27] We use temporal moments mk instead of entire
breakthrough curves c(t) for two reasons. First, the gener-
ating equations for temporal moments, equations (9)–(11)
are formally identical to steady state equations, avoiding
time-consuming computation of the solute concentration
history c(t). Second, unlike the concentrations c(t) them-
selves, the temporal moments mk depend almost monoton-
ically on the parameters of interest. Thus conditioning log
conductivity and log dispersivities on temporal moments is
a better posed problem than conditioning the same param-
eters on concentrations [e.g., Ezzedine and Rubin, 1996].
[28] In previous studies [e.g., Harvey and Gorelick,

1995a; Cirpka and Kitanidis, 2000a; James et al., 2000],
only the first temporal moments of breakthrough curves, or
mean arrival times, were considered for inverse modeling.
These are sensitive to the conductivity distribution, but quite
insensitive to dispersivities. In the present study, we addi-
tionally use second central temporal moments, or spread of
breakthrough curves, in order to identify the dispersivities.
Hydraulic heads and the first temporal moment of break-
through curves are the most significant information for
identifying hydraulic conductivity as the second central
moment is for dispersivities. Still, we condition conductiv-
ity also on the second central moment and dispersivities also
on the first in order to use as much information from the
moments as possible.
[29] For technical reasons that involve the condition of

several matrices in our inverse procedure, we scale the
second central temporal moment by the first.

3. Governing Equations

[30] According to Darcy’s law, the specific discharge
q [LT�1] in a porous medium is:

q ¼ �Krf; ð1Þ

in which K [LT�1] is the hydraulic conductivity, here
assumed isotropic on the local scale, and f [L] is the
hydraulic head. The seepage velocity v [LT�1] is related to
the specific discharge q by the flow-effective porosity q[–],
which here is assumed uniform:

v ¼ q

q
: ð2Þ

Under steady state conditions without internal sources and
sinks, mass conservation yields the steady state groundwa-
ter flow equation:

r � Krfð Þ ¼ 0 in W; ð3Þ

with W denoting the domain. We consider the following set
of boundary conditions:

Krfð Þ � n ¼ q̂ onG1

f ¼ f̂ onG2; ð4Þ
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where f̂ and q̂ are prescribed heads and normal flux
components defined on the boundary G = G1 [ G2, and n is
the normal unit vector pointing outward.
[31] Transport of a conservative, nonsorbing solute in

porous media is described by the advection-dispersion
equation:

@c

@t
þr � vc� Drcð Þ ¼ 0 inW; ð5Þ

with c [ML�3] denoting concentration, t [T] being time and
D [L2T�1] the dispersion tensor. Equation (5) is subject to a
general set of boundary conditions:

vc� Drcð Þ � n ¼ ĉv � n onGin1

c ¼ ĉ onGin2 ð6Þ
Drcð Þ � n ¼ 0 onGnGin:

Here, ĉ is a specified concentration, and Gin1
and Gin2

are
the inflow sections of the boundary. We restrict the choice
of boundary conditions such that G2 and Gin1

do not
intersect. According to Scheidegger [1961], the dispersion
tensor D is:

Dij ¼
vivj

vk k 1� lð Það Þ þ dij la vk k þ Dmð Þ; ð7Þ

where vi is the ith component of the velocity vector, a‘ =
a and at = la [L] are the longitudinal and transverse
dispersivities and Dm [L2T�1] is the pore diffusion
coefficient. The Kronecker symbol dij is unity for i = j
and zero otherwise.

3.1. Temporal Moments of Breakthrough Curves

[32] The kth raw temporal moment mk [MTkL�3] of a
local breakthrough curve c(x, t) is defined by

mk xð Þ ¼
Z1
0

tkc x; tð Þ dt: ð8Þ

According to Steiner’s theorem, the second central tem-
poral moment is m2c = m2 � m1

2/m0 [MT 2L�3]. We define
a normalized second central moment m2cn [T] as m2cn =
m2c/m1.
[33] For an extensive overview on the physical meaning

of temporal moments for solute transport in heterogeneous
formations, we refer to Cirpka and Kitanidis [2000a].
Harvey and Gorelick [1995b] derived moment-generating
equations for raw temporal moments of solute concentration.
These are partial differential equations that are formally
identical to steady state transport equations:

r � vmk � Drmkð Þ ¼ kmk�1 in W: ð9Þ

with the boundary conditions:

vmk � Drmkð Þ � n ¼ v � nm̂k onGin1

mk ¼ m̂k onGin2 ð10Þ
Drmkð Þ � n ¼ 0 onGnGin;

in which m̂k is the kth raw temporal moment of ĉ. For the
case of a uniform solute injection, a moment-generating
equation of the second central moment m2c can be defined.
It merely has a different source term than that of the
corresponding raw moment m2 [Cirpka and Kitanidis,
2000b]:

r � vm2cð Þ � r � Drm2cð Þ

¼ 2 rm1ð ÞT D

m0

rm1ð Þ: ð11Þ

In the advection-dominated case, when the diffusive flux
across Gin1

and Gin2
can be neglected, the boundary

conditions for equation (11) are identical to those for
equation (10).

4. Geostatistical Inversion

[34] Under realistic conditions, the parameters K, a‘ and
at in the above equations are not known. We identify the
unknown distributions of log conductivity Y = ln K, longi-
tudinal log dispersivity Xa = ln a and log anisotropy ratio
Xl = ln l following the quasi-linear geostatistical approach
of Kitanidis [1995]. The version we use includes the
generalized concept of uncertain mean [Nowak and Cirpka,
2004]. In this study, we extend the approach to include the
generalized cases of uncertain prior knowledge about struc-
tural parameters. In the following, we give a brief outline of
the extended method.
[35] Consider a random n � 1 multi-Gaussian vector of

unknowns s (e.g., discrete values of ln K, ln a and ln l)
with expected value E[s] = XB. X is a n � p matrix of
known deterministic base functions, and B is a p � 1 vector
of uncertain drift coefficients (e.g., representing a constant
mean plus a spatial trend). In the generalized case of
uncertain prior knowledge, the drift coefficients are distrib-
uted B  N(B*, QBB), where B* is the uncertain prior value,
and QBB quantifies the prior uncertainty of B (e.g., the
variance of the mean and other trend coefficients). Then, s is
distributed s  N(XB*, Gss), where Gss = Qss + XQBBX

T is
the n � n generalized autocovariance matrix of s [cf.
Kitanidis, 1993], and Qss is the covariance matrix of s
given B.
[36] Now, consider the m � 1 vector of error-prone

observations y (here, hydraulic heads and moments of
breakthrough curves) related to s via a nonlinear transfer
function f (here, the flow and transport equations) and an
error vector r: y = f(s) + r, with r  N(0, R). R is a m � m
matrix, typically assumed diagonal. In the quasi-linear
geostatistical approach, the transfer function is successively
linearized about the current estimate sk, and a modified
vector of observations is used:

y0k ¼ y� f skð Þ þ ~Hksk ; ð12Þ

in which ~Hk is the m � n sensitivity matrix linearized
about sk with ~Hi,j = @fi/@sj. Linearized uncertainty propa-

gation yields that y0k  N(~HkXB*,~Gyy,k), in which ~Gyy,k =
~HkGss

~Hk
T + R is the m � m generalized autocovariance

matrix of y0k.
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[37] The best estimate ŝ is defined by the minimum of the
objective function:

L sð Þ ¼ s� XB*ð ÞTG�1
ss s� XB*ð Þ

þ y� f sð Þð ÞTR�1 y� f sð Þð Þ: ð13Þ

The best estimate ŝ and the conditional covariance Qssjy are
obtained from:

ŝkþ1 ¼ XbBkþ1 þQss
~HT
k Xkþ1 ð14Þ

~Qssjy � Gss �Gss
~HT
k
~G�1
yy;k

~HkGss: ð15Þ

in which the p � 1 vector bB of conditional drift coefficients
and the m � 1 vector X of weights are obtained by solving:

~Gyy:k
~HkX

XT ~HT
k �Q�1

BB

24 35 X kþ1bBkþ1

� �
¼

y0k

�Q�1
BB B*� bBk

	 

24 35: ð16Þ

[38] The orthonormal residuals are important quantities
for model criticism [Kitanidis, 1991]. The most efficient
way to compute them is [Nowak, 2005]:

r̂n ¼ SR�1 y� f ŝð Þð Þ; ð17Þ

where S: STS = ~Gyy = ~HkGss
~Hk
T + R is obtained by

Cholesky decomposition.
[39] The best estimate ŝ is based on a parameterization of

the solution space using the cross covariance Qss
~Hk
T. All but

the last iteration steps merely optimize this subspace, and the
last iteration step actually represents the act of conditioning.
Kitanidis [1995] refers to this procedure as ‘‘finding the peak
of the integrand’’. The process of optimizing the subspace is
discussed by Nowak and Cirpka [2004].
[40] In practice, we stabilize the iteration procedure in

equations (12)–(16) by a modified Levenberg-Marquardt
algorithm [Nowak and Cirpka, 2004] and evaluate
~HkQss

~Hk
T, ~Hk Gss

~Hk
T, Qss

~Hk
T and Gss

~Hk
T using FFT-based

methods [Nowak et al., 2003]. For the latter purpose, the
unknown parameters must be second-order stationary or at
least intrinsic and discretized on a regular grid. The largest
matrix to be stored explicitly is sized m � n, and thanks to
the function estimate form of the estimator [Kitanidis,
1997], no matrix sized n � n needs to be inverted. This
and further aspects of computational efficiency are dis-
cussed by Nowak [2005].
[41] The covariance matrix Qss is usually defined by a

geostatistical model, such as the linear, the exponential or
the Gaussian ones, with structural parameters Q (i.e., the
integral scales and the variances) that are typically not
known a priori. While Kitanidis [1995] identified these
parameters from the observations alone, we generalize the
approach to the case of uncertain prior knowledge about the
structural parameters. As uncertain prior knowledge, we
assume the structural parameters Q to follow a Gaussian

distribution with prior mean Q* and covariance QQQ. The
structural parameters Q are found by

Q‘þ1 ¼ Q‘ � F�1g

gi ¼ � 1

2
y0 � ~HXB*
� �T ~G�1

yy

@ ~Qyy

@Qi
~G�1
yy y0 � ~HXB*
� �

þ 1

2
Tr

@ ~Qyy

@Qi
~G�1
yy

" #
þ eTi Q

�1
QQ Q� Q*ð Þ ð18Þ

Fij ¼ þ 1

2
Tr

@ ~Qyy

@Qi
~G�1
yy

@ ~Qyy

@Qj
~G�1
yy

" #
þ eTi Q

�1
QQ ej;

where Tr[A] is the trace of matrix A and ei is a unit vector in
direction i. The original algorithm is obtained for Gyy = Qyy

and Qqq
�1 = 0. For the ease of notation, we omitted the

subscript k for the linearized quantities.

5. Evaluation of Sensitivities

[42] In the quasi-liner geostatistical approach, we succes-
sively linearize the dependence of the observed state vari-
ables on the unknown parameters about the current estimate
ŝk, applying equation (12). We evaluate the sensitivities
using the continuous adjoint state method [Sun and Yeh,
1990].
[43] Consider the current estimates ~Yk = ln ~K(x), ~Xa =

ln ~a(x) and ~Xl = ln ~l(x), with the dispersion tensor ~D
obtained from substituting ~a and ~l into equation (7). First,
we solve the governing equations (3), (9) and (11) for the
hydraulic head ~f(x), first moment ~m1(x), and second
central moment ~m2c(x) and compute ~m2cn(x) = ~m2c/~m1.
Subsequently, we solve a set of adjoint state equations
for each measurement. The equation for the adjoint state
y2c of m2c is:

~v � ry2c þr � ~Dry2c

� �
¼ di2cd xð Þ inW; ð19Þ

subject to the boundary conditions:

~Dry2c

� �
� n ¼ 0 onGin1

y2c ¼ 0 onGin2 ð20Þ
~vy2c þ ~Dry2c

� �
� n ¼ 0 onGnGin:

For the adjoint state y1 of m1:

~v � ry1 þr � ~Dry1

� �
¼ 4r � y2c

~D

m0

r~m1

� �
þ di1d xð Þ inW; ð21Þ

subject to the boundary conditions:

~Dry1

� �
� n ¼ 0 onGin1

y1 ¼ 0 onGin2 ð22Þ
~vy1 þ ~Dry1

� �
� n ¼ 0 onGnGin:
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For the adjoint state yf of f:

�r � ~Kryf
� �

¼ r � y2c

~K

q
r~m2c

� �
þr � y1

~K

q
r~m1

� �
þ difd xð Þ inW; ð23Þ

subject to the boundary conditions:

yf ¼ 0 onG2

y2c

~K

q
r~m2c þ y1

~K

q
r~m1 þ ~Kryf

� �
� n ¼ 0 onG1: ð24Þ

[44] The flag variables di2c, di1 and dif are unity when
measurement i is a measurement of the m2c, m1 or f,
respectively, and d(x) is the Dirac delta function. Because
of their source terms, these equations have to be solved in
the order of y2c, y1 and yf, starting at the adjoint state of
the measurement in question.
[45] Once all relevant adjoint states have been obtained,

the sensitivities of the observation Z (either m2c, m1 or f)
with respect to piecewise constant values of Xa, Xl and Yk
within the subvolumes Wk are given by

dZ

dYk
¼

Z
Wk

�~Kr~f � ryf � y1

~K

q
r~f � r~m1

�

�y2c

~K

q
r~f � r~m2c

�
dW ð25Þ

dZ

dXk;p
¼

Z
Wk

ry2c � ~Dpr~m2c � 2
y2c

m0

r~m1 � ~Dpr~m1

�

þry1 � ~Dpr~m1

�
dW; p ¼ a;l ð26Þ

with

~Da : ~Dij;a ¼ vivj

vk k 1� �l
� �

�aþ dij vk k�a�l ð27Þ

~Dl : ~Dij;l ¼ vivj

vk k 1� �l
� �

�aþ dij vk k�a�l ð28Þ

[46] We discretize all partial differential equations by the
Finite Element Method using bilinear elements. For equa-
tions (3) and (23), we choose the standard Galerkin method,
while we use the streamline upwind Petrov-Galerkin method
[Brooks and Hughes, 1982] for equations (9), (11), (19),
and (21). As solver, we employ the UMFPACK v4.4
package [Davis, 2004]. The code has been implemented
in MATLAB and runs on a dual-processor 2 � 2.8GHz
desktop computer with 4GB RAM, operating under Linux.

6. Application to Experimental Data

[47] We apply our method to evaluate log conductivity
and log dispersivity distributions to data obtained from a
large-scale sandbox experiment on longitudinal effective
dispersion in heterogeneous porous media conducted by
Jose et al. [2004]. Since the experiment is described in

detail in the original publication, we summarize it here only
briefly.
[48] The sandbox has dimensions of 14 m � 0.13 m �

0.5 m (length � width � height). The front face is equipped
with glass panels for visual observation of tracer migration.
The left and right faces are connected to an inlet and an
outlet chamber. The box is filled heterogeneously with four
sand mixtures in lenses with average length of 3m and
height of 0.08m. The filling procedure resembled a sedi-
mentation process, leading to microstructures within the
lenses shown in Figure 1. Table 1 contains hydraulic
conductivity values of the sand mixtures which were
obtained by permeameter tests. Figure 2a shows the distri-
bution of hydraulic conductivity using the mapped distri-
bution of sand types and the conductivity values listed in
Table 1. This information was not included in the inversion,
but is used here as a reference.
[49] As shown in Figures 2e–2g, a dense grid of

100 piezometers (measuring steady state hydraulic heads)
and 126 fiber-optic probes (obtaining point-like break-
through curves of a fluorescent dye tracer) was installed.
The boundary conditions for flow are a constant flux of
3‘/h under confined conditions resulting in a head differ-
ence of approximately 3.5 cm across the box. Initially, the
box contained tracer-free water. From time zero on, a
fluorescent tracer solution was continuously injected over
the entire inflow section until complete breakthrough was
observed in the outflow of the domain.

6.1. Data Processing

[50] The breakthrough curves of Jose et al. [2004]
correspond to continuous injection. In order to compute
temporal moments for a pulse-like injection, we ana-
lyzed the temporal derivative of the curves after
normalization, noise filtered the curves, truncated them
as shown in Figure 3 and then computed the moments
using equation (8). Mathematical details are provided by
Jose et al. [2004]. In addition to the latter study, we
removed drift effects and other systematic fluctuations that
were common to all probes prior to data processing and
applied curve-specific values of the filter strength, resulting
in a better quality of the data set.
[51] The uncertainty of the moments was assumed to

scale with the signal-to-noise ratio of the individual curves.
The average ratio was about 20, and average values of the
relative error are listed in Table 2. Our improved data
processing lead to a reliable high-quality data set. The
quantity of data is relatively good when considering that
there is roughly one measurement of each f, m1 and m2cn

per correlation length of the conductivity field in x direction
and y direction. Only the quality of the pressure data is
moderate at best, since they suffer from a poor signal-to-
noise ratio. At a measurement error of sf = 0.5 mm
evaluated from duplicate statistics and a total pressure
difference of 3 cm, the measurement error is merely a factor
of 5 smaller than the observed deviations of pressure from
its macroscopically expected value.

6.2. Geostatistical Setup

[52] For the unknown parameter fields Y = ln K and Xa =
ln a, we assume the exponential geostatistical model with
uncertain integral scales and variances. In contrast to other
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geostatistical models, this choice allows for both finite
variance and variability at small scales. The identification
of these structural parameters is discussed further below.
The structural parameters shown in Table 2 are final values
conditioned on the measurements at the end of the inverse
procedure. The prior mean values of the fields are uncertain
constants b*Y and b*Xa with variances Qbb,Y and Qbb,Xa.
Additionally, the prior mean of lna has an uncertain linear
trend along the flow direction since effective longitudinal
dispersion coefficients have been shown to increase with
travel distance [e.g., Dentz et al., 2000a].
[53] The logarithmic anisotropy ratio Xl = ln l is not

treated as an autocorrelated random space variable, i.e., it is
fully described by a deterministic trend model with uncertain
coefficients. Because transverse dispersivities at scale dif-
ferently with traveltime than longitudinal coefficients a‘

[e.g., Dentz et al., 2000a], we allow for an uncertain constant
value plus an uncertain linear trend for Xl. Table 2 displays
all parameter values and prior information used for condi-
tioning. The prior mean value of ln K was estimated from
permeameter tests performed with the materials used in the
experiment, and the prior mean of ln a was chosen to range
between a characteristic grain size of the materials and the
effective dispersivity according to Dentz et al. [2000a]. We
assume porosity to be uniform.
[54] We assessed the prior value of the correlation lengths

of ln K from the filling pattern of the sandbox. The prior
variance of ln K and lna as well as the correlation lengths of
ln a are estimated from the measured data following
equation (18). Prior estimates were sY

2 = 2, sa
2 = 2, lax =

2 m and lay = 0.025 m with a relative uncertainty of 50%.
The latter three values merely represent an uncertain edu-
cated guess: Dilution is mainly driven by zones of intensive
shear flow which tend to be longer and thinner than the
transverse and longitudinal correlation length scales of ln K,
respectively. We assume the structure of ln a to be in
accordance with the geometry of such zones. Indeed, the
identified posterior longitudinal correlation length for ln a
will turn out to be larger than that for ln K while the
transverse one is smaller. Identified values that did not differ
significantly from the prior estimates were set back to the
prior values.

[55] As listed in Table 2, the domain is discretized by
2800 � 200 = 560,000 finite elements with dimensions
5 mm � 2.5 mm (length � height).

7. Results

[56] The estimation of the unknown parameters con-
verged after approximately twenty iteration steps. Thanks
to the modified Levenberg-Marquardt algorithm, no oscil-
lations or instabilities occurred. The estimation of structural
parameters took three iteration steps and converged to
values not far from the prior estimates. Overall, the inverse
model ran for about one week. Given the fine resolution of
the domain, the computations had been strictly impossible
without the acceleration by FFT-based methods [Nowak et
al., 2003].
[57] Figures 2b–2d and 2e–2g show the estimated pa-

rameter fields and simulated state variables, respectively.
Table 3 includes some average values of physical parameters
computed from the results of the inversion. Although the
unknowns used in the inverse procedure were Xa = ln a and
Xl = ln l, we show a‘ = exp(Xa) and at = exp (Xa)exp (Xl)
instead, because they are physically more meaningful.

7.1. Uncertainty of Estimation

[58] The uncertainty of estimation is quantified by Qssjy,
see equation (15). The standard deviations of estimation
sest = sqrt (diag(Qssjy)), which include the conditional uncer-
tainty of the drift coefficients, are shown in Figures 2h–2j.
Together with other relevant posterior quantities, Table 3 lists
the mean estimation variances normalized by the prior
generalized variances, which include the uncertainty of the
drift coefficients, �sest

2 = mean (diag(Qssjy)/diag(Gss)).
[59] Apparently, the overall uncertainty of estimation is

much smaller for ln K than for ln a and ln l. We attribute
this to the high number of measurements for f and m1 that
are highly sensitive to ln K. Especially Q̂bbY is almost zero
due to the high amount of information on m1, whereas
information on the magnitude of dispersivity is mainly
restricted to measurements of m2cn, resulting in a higher
value of Q̂bbX. The anisotropy ratio is quite uncertain
because no type of measurement contains direct information
on the ratio.
[60] Measurements of m1 and m2cn are most informative

at the measurement locations and in a thin up-gradient
section along the respective streamline. Measurements of
f, by contrast, have a dipole-shaped sensitivity pattern,
being most informative in two distinct zones at a certain

Figure 1. Photograph of microstructures within the sand
lenses, exemplary 1 m long section of the sandbox.

Table 1. Sand Types and Comparison to Estimated ln K Field:

Grain Size and Hydraulic Conductivity Values Determined by

Permeameter Tests Compared to Zonal Averages and Standard

Deviations Computed From the Estimated Field for Each Material

Sand Type Grain Size, mm

Permeameter
Test

Estimated
ln K

K, m/s ln K Mean SD

Coarse 1.0–2.5 1.67 � 10�2 �4.09 �4.39 0.84
Mixed 0.3–1.2 4.32 � 10�3 �5.44 �5.43 0.80
Medium 0.0–3.0 9.09 � 10�4 �7.00 �5.39 0.98
Fine 0.1–0.8 5.61 � 10�4 �7.49 �5.99 0.82
Sandbox average 1.75 � 10�3 �6.34 �5.42 1.03
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distance up and down gradient of the measurement location.
Additionally, the quality of f measurements was only
moderate, so that the remaining uncertainty in ln K is very
low where breakthrough curves were available, whereas
measurements of f, in our case, hardly have any impact (see
Figure 2h). The sensitivity pattern of m1 and m2cn with
respect to ln a is much more complex, so that a direct
impact of the sampling network on the respective estimation
variance is not apparent in Figures 2i and 2j.
[61] The different types of parameters were defined to be

uncorrelated prior to conditioning. After conditioning, the
mean value of ln K and the drift coefficients for ln a and
ln l remained uncorrelated, which we attribute to the fact
that their main sources of information (m1 and m2cn

respectively) are independent from each other. By contrast,

the conditional mean values and trend coefficients of lna
and lnl were anticorrelated with correlation coefficients
of cal,mean = �0.87 and t cal,trend = �0.37, respectively.
This was to be expected because measurements of m2cn

are positively sensitive to both of them.

7.2. Statistical Tests

[62] Both the value of the objective function L = 279.10
according to equation (13) and the sum of squares of
the orthonormal residuals kr̂nk2 = 346.65 according to
equation (17) should follow the c2 distribution with m =
346 degrees of freedom. Both quantities pass a one-sided
statistical test based on a 95% confidence interval. The fact
that kr̂nk2 is almost exactly identical to their expected value
of m = 346 shows that the identified structural parameters fit

Figure 2. (a) Log conductivity according to filling pattern of the sandbox. (b-d) Estimated Parameter
fields ln K, a‘ = exp(Xa), and at = exp(Xl) exp (Xa); white lines, flow net; black and white dots,
locations of piezometric probes in f and fiber-optic probes in m1 and m2cn. (e-g) Simulated f, m1, and
m2cn. (h-j) Standard deviation of estimation for ln K, ln a‘, and ln at.
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well. The orthonormal residuals shown in Figure 4a should
behave like white noise, and the plot exhibits only slight
evidence of correlation. Comparing their histogram to a
normalized Gaussian distribution (see Figure 4b) shows a
good visible fit. A corresponding c2 test for comparison to
a Gaussian distribution fails on a 95% because the tails are
not correct, but the inner 90% of the data pass the test.
These results let us have a high trust in the validity of the
parameter estimates.

7.3. Comparison to the Filling Pattern

[63] Figures 2a and 2b allow a direct comparison between
ln K values obtained by mapping the pattern of the sandbox
filling, assigning the values listed Table 1, and those
estimated by our inverse method. The white contour lines
superimposed in Figure 2b represent the different zones
shown in Figure 2a. Most areas of high and low estimated
conductivity are in accordance with the conductivity field
suggested by the filling pattern. For each material type in
the filling pattern, we computed the mean and standard
deviation of the estimated field in the respective zones and
compare them to the permeameter values listed in Table 1.
While the zonal averages and the permeameter values
correlate with r2 = 0.90, the total sandbox filling as shown
in Figure 2a and the estimated field correlate only with
r2 = 0.51. Also, the intrazone standard deviations listed in
Table 1 are conspicuously high, almost approaching the
standard deviation of the entire estimated field. There are
several reasons why the filling pattern is not reproduced
more accurately: (1) The conductivity values listed in Table
1 were obtained by permeameter tests which may not be
representative for the filling procedure used in the sandbox.
Instead, the microstructures and especially the thin layers of
ultrafines might be the hydraulically dominating structures

overriding the impact of the sand lenses. Additionally, the
experimentalists observed clogging within the first meter
of the box; (2) the information conveyed by the measure-
ments of head and tracer moments is sparse, imperfect
and only indirect, rendering the problem setup ill-posed
prior to geostatistical regularization; (3) the filling pattern
is a deterministic zonation pattern that does not necessar-
ily succumb to the multi-Gaussian structure assumption
and a best estimate, if not including zonation information
in the geostatistical setup, can per definition not repro-
duce sharp outlines. Considering these restrictions, we
take the high correlation of zonal values as a strong
affirmation of our estimated conductivity field.

7.4. Measured and Simulated Breakthrough Curves

[64] Using a transient transport model, we simulated the
measured breakthrough curves applying the estimated
parameter fields. While the temporal moments used for
conditioning, m1 and m2cn, agree within a tolerance
specified by the geostatistical setup, other features of
the breakthrough curves like the skewness and kurtosis
cannot be expected to do so. Matching m2cn is a result of
jointly inferring conductivity and dispersivities, where the
dispersivities make up for the specific lack of variability
in the conductivity field.

Figure 3. (a) Experimental (gray) and filtered (black)
breakthrough curve. (b) Temporal derivative corresponding
to instantaneous injection (solid) and equivalent Gaussian
curve (dotted) visualizing the first and second central
temporal moments. Crosses are truncation points.

Table 2. Parameters and Prior Knowledge Used for the Experi-

mental Data Set

Parameter Units Value

Definition of Domain
Domain length Lx m 14
Domain length Ly m 0.5
Grid spacing dx m 5 � 10�3

Grid spacing dy m 2.5 � 10�3

Transport parameters
Diffusion coefficient Dm m2/s 10�10

Porosity ne 0.4

Log Conductivity (Y)
Variance sY

2 2
Correlation length lY,x m 1
Correlation length lY,y m 0.05
Prior mean b*Y �6
Uncertainty QbbY 1

Log Dispersivity (a)
Variance sXa

2 2
Correlation length lX,x m 2
Correlation length lX,y m 0.025
Prior mean b*Xa �5
Uncertainty Qbb,Xa 1
Trend over 14 m 2/14
Uncertainty of trend 1/142

Log Dispersivity (l)
Prior mean b*Xl �2
Uncertainty Qbb,Xl 1
Trend over 14 m �2/14
Uncertainty of trend 1/142

Measurements
Number for f 100
Average error sf m 5 � 10�4

Number for m1 123
Average error sm1 % 5
Number for m2cn 123
Average error sm2cn % 7.5
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[65] In a series of hypothetical test cases (not shown
here), we demonstrated that, with a sufficient number of
measurement locations and accuracy of the first and second
central moments, it is possible to determine the entire
system so well that even higher-order moments of the
breakthrough curves are matched, although they have not

been used for conditioning [Nowak, 2005]. Figure 5 com-
pares the measurement and simulation for some exemplary
breakthrough curves. Figure 5a shows the breakthrough
curve at (x, y) = (4.2 m, 0.275 m) where m1 and m2cn is
matched well and higher-order features are irrelevant.
Figures 5b and 5c show curves at (x, y) = (4.2 m,
0.075 m) and (x, y) = (7.0 m, 0.175 m) where heavy
tailing and multistep breakthrough were observed. Both
are reproduced by the simulated curves although tailing
and multistep behavior represent skewness (third moment)
and kurtosis (fourth moment). Figures 5d and 5e show the
curves at (x, y) = (2.8 m, 0.375 m) and (x, y) = (2.8 m, 0.4 m)
where arrival time and spreading are off by 50% and 10%,
respectively. As the majority of breakthrough curves were
simulated well even in their higher-order moments, we
conclude that the data quality and quantity was sufficiently
high to obtain reliable parameter estimates and a good
physical characterization of the sandbox.

7.5. Comparison to Other Dispersion Coefficients
Obtained for the Sandbox

[66] Jose et al. [2004] computed the apparent effective
dispersion coefficient D‘

a according to Cirpka and Kitanidis

Table 3. Posterior Parameter Values and Corresponding Mean

Propertiesa

Parameter Value

Log Conductivity (Y = ln K)
Relative average estimated variation �sest,Y

2 0.27
Posterior mean b̂Y �5.67
Posterior uncertainty Q̂bbY 0.065

Log Dispersivity (Xa = ln a)
Relative average estimated variation �sest,Xa

2 0.65
Posterior mean b̂Xa �5.84
Posterior uncertainty Q̂bb,Xa 0.45
Trend over 14 m 2.03
Uncertainty of trend 0.69

Log Dispersivity (Xl = ln l)
Relative average estimated variation �sest,Xl

2 0.50
Posterior mean b̂Xl �2.66
Posterior uncertainty Q̂bb,Xl 0.48
Trend over 14 m �1.75
Uncertainty of trend 0.73

Derived Mean Physical Parameters
Kg = exp(b̂Y) 3.5 � 10�3 m/s
vg = Q/A/ne 3.3 � 10�5 m/s
a‘,g = exp (b̂Xa) 2.9 � 10�3 m
D‘,g = a‘,gvg 9.7 � 10�8 m2/s
at,g = a‘exp(b̂Xl) 2.0 � 10�4 m
Dt,g = at,gvg 6.8 � 10�9 m2/s

aSubscript g indicates geometric means.

Figure 4. Orthonormal residuals for experimental data set.
Pluses, f; circles, m1; crosses, m2cn.

Figure 5. Comparison of normalized measured (gray) and
estimated (black) breakthrough curves. Solid lines show the
results of our new method that includes measurements of
m2cn and jointly infers spatially variable dispersivities.
Dotted lines show the results when not including measure-
ments of m2cn and using averaged spatially uniform
dispersivities.
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[2000b] for each measurement location. D‘
a is based on the

interpretation of a breakthrough curve by one-dimensional
advective-dispersive transport with uniform coefficients. In
the sandbox experiment, the cross-sectional average of D‘

a

increases from D‘
a = 0.75 � 10�5m2/s at the inlet to D‘

a =
2.75 � 10�5m2/s at the outlet of the sandbox. The same
authors also fitted the model of effective dispersion by
Dentz et al. [2000a] to the measured data and obtained
a local scalar dispersion coefficient of Dloc = 8.24 �
10�9 m2/s with a factor of variation FV = 2.72. Theoreti-
cally, while D‘

a is a quantity related to a uniform macro-
scopic flow field with the largest value, our D‘ should be
smaller since it applies to the specific degree of resolved
variability in the jointly estimated ln K field, whereas Dloc

should be smallest since it represents only pore-scale
dispersion, and Dt should be in the same order as Dloc. In
practice, our mean value of Dt = 6.8 � 10�9 m2/s is in
reasonable agreement with Dloc = 8.24 � 10�9 m2/s. The
difference is insignificant when considering the relative
uncertainties of both quantities. Also, our mean value of
D‘ = 9.7� 10�8 m2/s is three orders smaller thanD‘

a and only
one order larger than Dloc, which substantiates our conclu-
sion that the greatest part of variability has been resolved.
[67] Rahman et al. [2005] conducted an experiment on

transverse dispersion in the same setup by injecting a tracer
solution only into the lower half of the inflow boundary.
These authors computed an apparent transverse dispersivity
at
a by fitting an analytical solution of the advection-disper-

sion equation to highly resolved vertical concentration
profiles obtained by digital image processing. They dis-
cussed that the distorted streamline pattern displayed in
Figure 2 makes it impossible to infer transverse-dispersion
coefficients from concentration profiles alone. After correct-
ing for the meandering of streamlines, they obtained effec-
tive transverse dispersivities with a mean value of at

a =
0.06 mm and a coefficient of variation of 69%. This is
roughly a third of our mean at = 0.20 mm. From the length
of a reactive plume, Rahman et al. [2005] estimated an
effective transverse dispersivity of 0.05 mm. Our estimate is
larger. However, in our estimation the factor of uncertainty
for at, defined as exp(sest,lnat

), is 4.5. Thus the various
values are within the range of estimation uncertainty.

7.6. Quality of System Characterization

[68] For the given quality and quantity of the measured
data, higher-order features of breakthrough curves are
reproduced, although they have not been used as measured
data. Also, the system is sufficiently characterized to
explain mechanisms behind the hot spots of dilution in
the work of Jose et al. [2004], identified by extreme
probewise values of D‘

a. These are at (x, y) = (4.2 m,
0.075 m), (x, y) = (7 m, 0.25 m), (x, y) = (9.75 m, 0.25 m)
and (x, y) = (12.6 m, 0.4 m). The hot spot at (x, y) = (4.2 m,
0.075 m), for example, is attributed to a highly diluted part of
the plume that is detected at the second probe from the bottom
because it moved upward following the bend of the stream-
lines just before the probe (see Figure 2 at (x, y) = (4.2 m,
0.075m)). The dilution itself stems from transverse exchange
of fast and slow moving water along the relevant streamline
starting at the inlet. The result of transverse exchange is the
long tailing of the corresponding breakthrough curve in
Figure 5b.

[69] The hot spot at (x, y) = (7 m, 0.25 m) can be
explained by an early and a late arriving part of the plume
that is mixed in an area of shear flow just before the probe
(see Figure 2 at (x, y) = (7 m, 0.25 m)). The mixing of early
and late arrival can be seen in the corresponding break-
through curve in Figure 5c.
[70] For a lower quality and quantity of measurements,

this quality of system characterization cannot be expected.
With decreasing quality and quantity of data, the underlying
flow field will be estimated only poorly which makes it
difficult to estimate transport parameters. With a lower
spatial resolution of observation points, one could still try
to include higher-order moments in the conditioning proce-
dure in order to increase the quantity of information. How-
ever, measuring higher-order moments may be highly prone
to error. Also, with insufficient information about the under-
lying flow process, the risk of misinterpretation is high.

7.7. Advantage of Jointly Estimating Spatially
Variable Dispersivities

[71] Figure 6 shows scatterplots of simulated versus
measured first and normalized second central moments.
Trends resulting from uniform values of K, a‘ and at have
been removed from the data. In Figure 6, we compare our
results to those of the method by Cirpka and Kitanidis
[2000a], where the first moments are the only information
of the breakthrough curves used in the inversion procedure
and only the log conductivity is estimated. In our method,
we additionally consider the spread of the breakthrough
curves which allows to jointly estimate dispersivities as
random spatial variables. For comparison, we applied their
method in conjunction with spatially uniform dispersivities
computed from our estimate.
[72] The correlation coefficient r2 for m0

1 is not affected,
since conductivity is the most significant parameter for
the arrival time of a solute. The scatterplots of m0

2cn show
two effects. First, the correlation coefficient for m0

2cn

improves from r2 = 0.27 for the old method to r2 =
0.90 when using our new method with the jointly
estimated spatially variable dispersivities, because disper-
sivities are the most significant parameters for simulating
the spread of point-like measured breakthrough curves. r2

does not rise higher due to the error assigned to the
measurements. Second, the overall magnitude of simulat-
ed dilution is too low for the old method by a factor of
roughly two. Because the additional information conveyed
by the measurements of m2cn has not been used, less
variability is resolved in the conductivity field. This
illustrates how the required values of the dispersivities
depend on the quantity of measurement data. While the
latter effect could be alleviated by fitting values for the
uniform dispersivities, the former would not improve. A
series of test cases (not discussed here) shows that, with
decreasing quality and quantity of measurement data, the
significance of conductivity in the simulation of dilution
decreases while that of the jointly identified dispersivities
increases [Nowak, 2005].
[73] Also, the overall quality of system characterization

increases when including measurements of m2cn and jointly
estimating spatially variable dispersivities. In Figure 5, the
dotted lines corresponding to the old method fit less
accurately. Aside from a poorer overall fit of spread and
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sometimes even arrival time, the curves show inappropriate
fronting, tailing and bimodal breakthrough.

8. Discussion and Conclusions

[74] In this study, we successfully developed a method for
geostatistical inference of hydraulic conductivity and dis-
persivities from hydraulic heads and tracer data and applied
it to the data set of a tracer experiment performed in a
intermediate-scale sandbox [Jose et al., 2004]. The basis
of our inverse method is the quasi-linear geostatistical
approach [Kitanidis, 1995], accelerated by FFT methods
[Nowak et al., 2003], generalized to uncertain prior
knowledge about the unknown parameters and stabilized
by a modified Levenberg-Marquardt algorithm [Nowak
and Cirpka, 2004]. Here, we added a generalization to
uncertain prior knowledge about the structural parameters
of the geostatistical model. Our method is an extension of
the geostatistical inverse method of Cirpka and Kitanidis
[2000a], who inferred the log hydraulic conductivity field
from measurements of heads and first temporal moments of
concentration. In contrast to their method, we also consider
measurements of second central temporal moments and
jointly estimate log dispersivities.

[75] The identified spatially variable dispersivity fields
make up for the specific lack of variability in the
corresponding identified conductivity field so that the
spread of measured breakthrough curves is reproduced by
simulations. In the presented application to experimental
data, the estimate withstands statistical tests, the identified
conductivity field compares reasonably well to the filling
pattern of different sand types used in the experiment, and
the estimated transverse dispersivities are in the range of
values determined by other methods for the sandbox [Jose
et al., 2004; Rahman et al., 2005]. A comparison of
measured and simulated breakthrough curves revealed that
the system is sufficiently described by the parameter esti-
mate to even reproduce tailing and multistep behavior of
single breakthrough curves.
[76] The estimated dispersivities are foremost an inter-

pretation of the data obtained under specific boundary
conditions. Like most dispersivities, they are not purely a
material property of the formation. They depend on
the resolution scales of both the estimated hydraulic con-
ductivity field and the concentration measurements.
Conceptionally, they express the unresolved particle veloc-
ity fluctuations sampled by the solute plume along its
trajectory. Thus reverting the direction of flow would

Figure 6. Scatterplots of measured versus simulated values for (left) m0
1 and (right) m

0
2cn. Primes indicate

the difference to simulated values using uniform best fit values for K, a‘, and at. (top) ‘‘Uniform a,’’
illustrating the performance of the predecessor method by Cirpka and Kitanidis [2000a] that does not
use measurements of m2cn and does not estimate spatially variable dispersivities. (bottom) ‘‘Spatially
variable a,’’ illustrating the performance of our new method that additionally uses measurements of
m2cn and jointly infers spatially variable dispersivities.
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require also to revert the trend of the longitudinal disper-
sivity field. The limited transferability to different hydraulic
boundary conditions lies in the nature of solute dispersion.
Dispersivities obtained by calibrating deterministic flow-
and-transport models suffer from the same shortcoming, but
are more restricted because they require hard prior knowl-
edge about the structure of the medium.
[77] We see two alternatives to estimating dispersivities

together with the best estimate of the conductivity field.
The first one would be to restrict the estimation procedure
to the conductivities and interpret the spread of break-
through curves by stochastic theory as is the case, e.g., in
the studies of Rubin [1991], Rubin et al. [1999, 2003],
and Cirpka and Nowak [2003]. This approach cannot
reproduce the observed spread of single breakthrough
curves, as it deals only with expected values; it requires
crucial assumptions about pore-scale dispersion, e.g., that
the pore-scale coefficients are uniform; and it is compu-
tationally demanding because of the inherent nonstationar-
ity of conditional log conductivity fields, unless drastic
simplifications are made. Thus we doubt that such an
approach is manageable and leads to results that can be
used in practice.
[78] The second alternative would be to generate condi-

tional realizations of both hydraulic conductivity and pore-
scale dispersivity fields. While one may claim that such an
approach leads to parameter fields representing possible
physical realities, which depend less on the specific
hydraulic boundary conditions than our estimated disper-
sivity fields, the computational effort is huge: The com-
putational costs for conditioning a single realization are
comparable to those of directly finding the best estimate.
In the presented two-dimensional application, already
560,000 finite elements were needed to simulate transport
accurately enough to estimate dispersivities. In three-
dimensional applications, millions of elements would be
required. Under these conditions, it appears unrealistic to
generate thousands of conditional realizations which are
needed to obtain reliable second-order conditional statistics.
[79] The data set used in the present study allows for a

high spatial resolution of the hydraulic conductivity field.
For example, the mechanisms leading to single hot spots of
apparent dilution observed by Jose et al. [2004] could be
revealed. For the given resolution, pore-scale transverse
dispersion was identified as the major process responsible
for dilution. If we had used fewer breakthrough curves to
infer the conductivity distribution, we had missed important
features, the simulated traveltimes had become more
uniform perpendicular to the direction of flow, and the
observed spread of the remaining breakthrough curves had
to be explained by enhanced longitudinal dispersion. This
stresses once more the necessity for putting effort into
good and large data sets when characterizing flow and
transport in heterogeneous systems.
[80] For potential field application, the point-like obser-

vation scale seems to be impedimentary since the numerical
resolution should be sufficiently fine to resolve the obser-
vation scale. The method can be extended to deal with
larger support volumes of the breakthrough curves. In this
case, however, the identified dispersivities do not represent
local-scale dilution but dispersion at the scale of observa-
tion. Another approach would be to stochastically describe

the subgrid variability in order to decouple the numerical
resolution from the observation scale.
[81] The new approach proved to have the ability of

handling large data sets and fine spatial resolutions due to
a combination of computationally efficient methods.
Among these are the reduction of breakthrough curves
to temporal moments for efficient handling of time-
dependent measurements and FFT-based methods for
error propagation.
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