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Efficient Computation of Linearized
Cross-Covariance and Auto-Covariance
Matrices of Interdependent Quantities1

Wolfgang Nowak,2 Sascha Tenkleve,2 and Olaf A. Cirpka 2

In many geostatistical applications, spatially discretized unknowns are conditioned on observations
that depend on the unknowns in a form that can be linearized. Conditioning takes several matrix–matrix
multiplications to compute the cross-covariance matrix of the unknowns and the observations and the
auto-covariance matrix of the observations. For large numbers n of discrete values of the unknown,
the storage and computational costs for evaluating these matrices, proportional to n2, become strictly
inhibiting. In this paper, we summarize and extend a collection of highly efficient spectral methods to
compute these matrices, based on circulant embedding and the fast Fourier transform (FFT). These
methods are applicable whenever the unknowns are a stationary random variable discretized on a
regular equispaced grid, imposing an exploitable structure onto the auto-covariance matrix of the
unknowns. Computational costs are reduced fromO(n2) toO(n log2 n) and storage requirements are
reduced fromO(n2) toO(n) .
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INTRODUCTION

In geostatistics, spatially distributed unknowns, such as soil and aquifer proper-
ties, the hydraulic head or solute concentrations, are commonly interpreted as
realizations of random processes, characterized by their mean values and co-
variance functions. The same holds for time series analysis, e.g., in stochas-
tic hydrology. Given observations of related quantities, information is inferred
upon the unknowns by the process of conditioning, e.g., using iterative cokriging
(e.g., Kitanidis, 1995) or through the generation of conditional realizations
(e.g., Dietrich and Newsam, 1996). To infer information from the observations
onto the unknowns, this class of methods utilizes the cross-covariance bet-
ween the unknowns and the observations, and the auto-covariance among the
observations.
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This kind of conditioning requires several computationally expensive matrix–
matrix multiplications. Considern discrete values of the unknown arranged in the
n× 1 vectors, andm observations of a related quantity in them× 1 vectort.
Vector s is characterized by itsn× n covariance matrixQss. Given the relation
t = f(s) between the observations and the unknowns, a linearized sensitivity matrix
H = ∂t/∂s is computed, e.g., using the highly efficient adjoint-state method (Sun,
1994). According to linear error propagation and its quasi-linear extensions, the
n×m cross-covariance matrixQst of the unknownssand the observationst, and
the auto-covariance matrixQtt of the observationst are given by (e.g., Schweppe,
1973, p. 368)

Qst = QssHT (1)

Qtt = HQssHT + R (2)

= HQst+ R,

with R denoting the auto-covariance matrix of the measurement errors, typically
a diagonal matrix. There is a long list of other geostatistical methods that require
similar products ofQss with matrices or vectors.

If a fine discretization of the unknown is required, the computational costs and
storage requirements for these operations become restricting or even strictly in-
hibiting (Zimmerman and others, 1998). Typically, the resolution of the unknowns
is dictated not by the geostatistical method, but rather by the applications that will
process the values of the unknowns in further steps. Depending on the numerics
involved in these applications, the resolution of the unknowns may easily rise up
to the order of 10.000 to 1.000.000 discrete values.

The construction ofQss is a computationO(n2), the matrix multiplication
Qst = QssHT is O(mn2), and the computation ofQtt via Qtt = QtsHT or Qtt =
HQtsHT isO(nm2) orO(nm2+mn2), respectively. Storage ofQss isO(n2). To
prevent memory overflow, single columns ofQss can be constructed, multiplied
by H and deleted, a procedure that lets CPU time explode drastically.

These circumstances have heavily limited methods like cokriging that require
explicit formulation ofQsy and Qyy. In most cases, however, the unknown is
a stationary random variable discretized on a regular and equispaced grid. This
imposes symmetric Toeplitz (ST) or symmetric block Toeplitz with Toeplitz block
(STT) structure ontoQss and reduces the storage requirements forQss to O(n)
(Zimmerman, 1989).

Toeplitz matrices can be embedded in larger circulant matrices (e.g., Dietrich
and Newsam, 1993; Kozintsev, 1999; Nott and Wilson, 1997). Highly efficient
algorithms for circulant matrices have been discovered as early as the middle
of the twentieth century (Davis, 1979; Good, 1950) and applied and extended
successfully ever since. The vast majority of these methods is based on the fast
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Fourier transform (FFT) (Cooley and Tukey, 1965), computing the eigenval-
ues of circulant matrices inO(n log2 n) operations while only storingO(n) el-
ements of the matrix. By now, a respectable toolbox of these so-called spec-
tral methods is available for geostatistics, e.g., the generation of unconditional
(Dietrich and Newsam, 1993) and conditional realizations (Dietrich and Newsam,
1996).

In this paper, we want to bring spectral methods for the efficient computation
of cross-covariance and auto-covariance matrices and comparable matrix–matrix
products to the attention of the geostatistical community. We summarize a method
known in the field of signal processing as spectral convolution for the multiplication
of circulant matrices with a vector (van Loan, 1992), and present an extension of
this method for the evaluation of vector–matrix–vector products, and show how to
use these methods for the matrix products discussed above.

Spectral convolution reduces the computational costs for computingQst from
O(mn2) to O(mnlog2 n). The extension of this method to vector–matrix–vector
products allows the computation ofQtt in O(nm2+mnlog2 n). Although the
operationQtt = HQst isO(nm2) onceQst has been computed, the direct evaluation
of Qtt without prior computation and storage ofQst is useful in some cases, e.g.,
for the identification of structural parameters in Kitanidis (1995).

We have chosen to demonstrate the application to two-dimensional (2D)
domains. The modifications for one and three dimensions are straightforward. One-
dimensional (1D) problems lead to symmetric circulant (SC) matrices, while 2D
problems lead to symmetric block circulant matrices with circulant blocks (SCC),
and level 3 blocking structures will occur in three-dimensional (3D) applications.

This paper is organized as follows: In the next section, we provide some basic
definitions of structured matrices. Then, we will explain when STT covariance
matrices occur, and how to embed STT in SCC matrices. Finally, in the last section,
we discuss the spectral methods for elementary vector–matrix and vector–matrix–
vector products and how to divide the matrix–matrix products into these elementary
operations.

TOEPLITZ AND CIRCULANT MATRICES

In the following, all quantities related to Toeplitz matrices are primed. An
n′x × n′x ST matrix has the structure (Golub and van Loan, 1996, p. 193)

T =


t0 t1 . . . tn′x−1

t1 t0 tn′x−2

...
...

...

tn′x−1 tn′x−2 . . . t0

 . (3)
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The first row is given by the seriest0. . tn′x−1. To construct the (k+ 1)th row, shift the
kth row to the right by one, and fill the leading empty position with thekth element
of the seriest1. . tn′x−1. STT matrices have the same structure with theti replaced
by T i , denoting ST blocks sizedn′y × n′y, so that the total size isn′yn′x × n′yn′x. ST
(STT) matrices are uniquely defined by their first (block)row.

In the following, unprimed quantities correspond to circulant matrices. SC
matrices sized 2nx × 2nx are defined as (Golub and van Loan, 1996, pp. 201–202)

C =



c0 c1 . . . cnx . . . c1

c1 c0 cnx−1 c2

...
...

...

cnx cnx−1 c0 cnx−1

...
...

...

c1 c2 . . . cnx−1 . . . c0


. (4)

The first row is given by the seriesc0 . . cnx . . c1 (the index runs from zero tonx and
down to one again). To construct the (k+ 1)th row, shift thekth row to the right
by one, and fill the leading empty position with the last element of thekth row.
In SCC matrices, theci are replaced byCi , which themselves are SC submatrices
sized 2ny × 2ny, so the total size is 4nynx × 4nynx. SC matrices are completely
defined by the firstnx entries of their first row, and SCC matrices are defined by
the firstny entries of the firstnx blocks each.

GENERAL PROCEDURE

The overall approach is as follows: (1) Define the unknown as a discretized
random space variable such that its auto-covariance matrixQss has STT struc-
ture; (2) embed the STT matrixQss in a larger SCC matrix; then (3) compute all
matrix–matrix products using spectral methods, and (4) extract the results from
the embedded matrices. In the following, we discuss steps (1), (2), and (4) to
give an overview over the entire procedure. Step (3) is discussed in a separate
section.

Structure of Covariance Matrices

Consider a finite regularn′y × n′x grid with constant grid spacingdx anddy,
sizedL ′x × L ′y, andx′ andy′ then′yn′x × 1 vectors with thex andy coordinates of
its nodes.s′ denotes a stationary Gaussian random space variable on the regular



P1: FLT

Mathematical Geology [mg] pp741-matg-460237 January 31, 2003 15:59 Style file version June 25th, 2002

Efficient Computation of Linearized Covariance Matrices 57

grid with zero mean and covariance functionR(h), in which h is the effective
anisotropic separation distance.

The covariance matrixQ′ss is given byQ′kl = Q′lk = R (hkl), with hkl being
the corresponding separation between the points(xk, yk) and(xl , yl ). If the global
point numbering is ordered byyk first and then byxk, Q′ss has STT structure with
n′x × n′x blocks sizedn′y × n′y (Zimmerman, 1989).

If the grid is theny × nx unit cell of a periodic medium, both the unknown and
the covariance function are periodic as well, and the resulting covariance matrix
has SCC structure withnx × nx blocks sizedny × ny.

Circulant Embedding

Before we deal with the mathematics of circulant embedding to convert STT
to SCC matrices, we graphically describe the corresponding embedding of the
random space variable. Consider that a finite domainÄ′ may be interpreted as a
subdomain of a larger virtual domainÄ. This process is referred to as embedding,
Ä′ is the embedded andÄ is the embedding domain. In order to maintain the
statistical properties ofÄ′ in the embedding process, the mean value and the
covariance function for all separation distances that are observable inÄ′ must be
identical forÄ.

For circulant embedding, the embedding has to be periodic, with periodic
statistical properties, andÄ is the unit cell of the periodic embedding domain. For
simplicity, we chooseÄ twice the length and width ofÄ′ (Fig. 1). Since covariance
functions are even functions by definition, we mirror the covariance function of
Ä′ to render it periodic (Fig. 2).

For our purposes, there is no need to actually generate the random space
variable in the embedding domain, but only its SCC covariance matrix. For better
understanding, it should be mentioned that even if the random variable was gen-
erated in the embedding domain, it would not be obtained by mirroring the finite
domain, but by mirroring its covariance function. This automatically yields the
variable periodic through perfect correlation each period length. A very detailed
and graphic description of circulant embedding is given by Kozintsev, (1999).

The condensed mathematical description of this embedding on the matrix
level is as follows: to embed ST in SC matrices, extend the seriest0 . . tn′x−1 by
appending the elementst1 . . tn′x−2 in reverse order to obtain a seriesc0 . . cnx . . c1,
nx = n′x − 1, corresponding to mirroring the covariance function to render it pe-
riodic. To embed STT in SCC matrices, embed the ST blocksT i in SC blocksCi ,
and then extend the series of the blocks to obtain a periodic series of blocks.

Embeddings of other size are allowed under certain circumstances that are
beyond the scope of this paper. Larger embeddings extend the series with new
elements from the covariance function before appending the reversed section.
Smaller embeddings can be chosen if, e.g., the last 2k elements of the series are
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Figure 1. Finite domainÄ′ embedded in the double-sized unit cellÄ of a periodic domain.
Ä is not obtained by mirroringÄ′, and thus is not symmetric.

constant, so that the lastk elements serve as the mirrored image of the previous
k elements.

As for the size of the embedding, two aspects are of special interest. First,
for some other spectral methods, the resulting SCC matrix has to be nonnegative
definite (Dietrich and Newsam, 1997; Nott and Wilson, 1997) or positive definite
(Kozintsev, 1999). Second, choosing powers of two forny andnx is especially
suited for standard FFT algorithms, whereas newer FFT algorithms like the FFTW
perform almost as well forny andnx differing from powers of two (Frigo and
Johnson, 1998).

To maintain the compatibility of matrix dimensions for multiplication, the
JacobianH has to undergo the same embedding by zero-padding all entries cor-
responding to the new entries in the SCC covariance matrixQss. Reshape them
rows sized 1× n′yn′x in ton′y × n′x matrices, pad them with zeros to obtainny × nx

matrices, and reshape them back to 1× nynx rows to obtain the embedded version
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Figure 2. Covariance functionR(h) for finite domain (solid) and for periodic domain (dotted),
example for 1D.

of H sizedm× nynx. The zero padding is to suppress the influence of the new
elements ofQss during matrix multiplication.

Extraction

The spectral result ofQst = QssHT (sizedm× nynx) corresponds to the em-
bedded version ofH. To extract the original-sizeQst, reverse the process.Qtt

requires no extraction as it is sizedm×m.

MATRIX–MATRIX MULTIPLICATION

As a prerequisite of all spectral methods for circulant matrices, we recapitulate
the diagonalization of SCC matrices first. Then, as matrix–matrix multiplications
are a series of vector–matrix multiplications, we will discuss vector–matrix mul-
tiplication first and then return to matrix–matrix multiplications.
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Eigenvalues

The diagonalization theorem (Dietrich and Newsam, 1993; Nott and Wilson,
1997) gives the eigenvalues of thenynx × nynx SCC matrixQss:

Qss= FHΛF, (5)

with Λ denoting the diagonal matrix of eigenvalues.F is the 2D Fourier-matrix
andFH = F−1 its Hermitian transpose (see Appendix). After multiplication byF

FQss= ΛF. (6)

One column ofQss contains all information, thus consider the first column only:

FQss,1 = ΛF1. (7)

All entries ofF1 equal (nxny)−
1
2 :

λ = √nxny FQss,1, (8)

whereλ is annynx × 1 vector of the eigenvalues, andF contains the eigenvectors
(Barnett, 1990, pp. 350–354 for the 1D case).FQss,1 is computed using 2D FFT
(see Appendix). This renders the eigenvalue decompositionO(n log2 n) compared
to the conventionalO(n3), with n = nynx. The eigenvalues are computed once
and then stored for all subsequent steps.

Matrix–Vector Multiplication

The product ofQss and annynx × 1 vectoru can be simplified using Eq. (5):

Qssu = (FHΛF)u = FHΛ(Fu), (9)

in whichFu = v is executed via 2 D FFT. AsΛ is diagonal, we can write

Qssu = FH (Λv) = FH [λ1v1, λ2v2, . . . , λnxnyvnxny ]
T , (10)

using the inverse 2D FFT to computeFH [·]. This procedure is known as spec-
tral convolution (van Loan, 1992, pp. 205–209). ForuTQss, compute (Qssu)T as
Qss= QT

ss.
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Vector–Matrix–Vector Multiplication

For evaluatinguT
1 Qssu2 with u1 and u2 sizednynx × 1, the procedure is

similar:

uT
1 Qssu2 = uT

1 (FHΛF)u2 = vH
1 Λv2

=
nxny∑
k=1

(v∗1)kλk(v2)k (11)

v1 = Fu1 andv2 = Fu2 are computed by 2D FFT andv∗1 is the complex conjugate
of v1. Foru1 = u2, this simplifies to the quadratic form (compare Nott and Wilson,
1997)

uTQssu =
nxny∑
k=1

λk |vk|2 . (12)

Matrix–Matrix Multiplications

ConsiderH an m× nynx matrix. The computation ofQst = QssHT can be
split up into single vector–matrix multiplications:

Qst,k = Qssuk, k = 1. . m, (13)

whereuk is the transpose of thekth row of H. Likewise,Qtt = HQssHT can be
split up intom2 subproblems:

Qtt ,kl = uT
k Qssul . (14)

As HQssHT is symmetric, only the upper triangle and the diagonal has to be
computed.

DISCUSSION

To demonstrate the power of spectral methods for computingQssHT com-
pared to standard methods, both methods were implemented and timed in
MATLAB. As the standard method runs out of memory quite easily, an addi-
tional method was coded that exploits the STT structure ofQ′ss to reduce storage.
It subsequently generates the columns ofQss by permutation, storing only one
column at a time. The MATLAB codes were executed on a personal computer
(1.5 GB RAM, 900 MHz AMD Athlon CPU) for problems with different numbers
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Figure 3. Log–Log plot for the comparison of memory consumption in MByte for the storage ofQss

as a function of the numbern of unknowns,n = nynx , using the different methods.

of pointsn = n′yn′x. As exemplary problem, we chose a Gaussian covariance func-
tion with 20 times the correlation per domain length both inx and iny direction,
so thatnx = 1.3n′x andny = 1.3n′y could be chosen as adequate embedding. The
m× nxny matrixH was generated randomly.

Figure 3 compares the storage requirements of the standard and the spectral
method. On our reference computer, the standard method ran out of memory at
n = 212 = 4.096 and the columnwise standard method atn = 216 = 65.536, while
the FFT-based method could be applied to grids of up ton = 221 = 2.097.152
without memory problems.

Figure 4 shows the comparison of CPU time for the matrix–matrix multipli-
cation, including the generation ofQss. Although the columnwise standard method
has significant overhead for the permutation of the columns inQss, it is faster than
the standard method by one order of magnitude as it only computesn entries of
Qss. Because of its embedding overhead, the FFT-based method is slower than
both standard methods for smalln, but outruns them forn > 28 = 256 as it is of
lower order inn. At the upper limits, the columnwise standard method takes ap-
proximately 30 min for its maximum allowable problem size (n = 216 grid points)
compared to 7 s for the FFT-based method, which only takes 8 min for its maximum
resolution ofn = 221.
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Figure 4. Log–Log plot for the comparison of CPU time in seconds required for the computation
of QssHT as a function of the numbern of unknowns,n = nynx , using the different methods on a
reference computer (900 MHz AMD Athlon CPU).

Comparison to Related Spectral Methods

The spectral matrix multiplication of STT matrices is exact, and the embed-
ding matrix does not have to be definite. Both properties are in contrast to many
other spectral applications. Inverting SC and SCC matrices through spectral com-
putation of its eigenvalues requires the embedding matrix to be positive definite
(Nott and Wilson, 1997), and the decompositionQss= STSvia the square root of
eigenvalues requires nonnegative definiteness (Dietrich and Newsam 1993, 1996).
Further, the eigenvalues of ST(T) and SC(C) matrices only asymptotically ap-
proach each other (Gray, 1972), so that inversion and determinant from spectral
methods are only asymptotically exact, affecting the method by Nott and Wilson,
(1997).

CONCLUSIONS

We have presented an existing spectral method and an extension thereof to
multiply symmetric Toeplitz matrices or symmetric block-Toeplitz matrices with
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Toeplitz blocks with arbitrary matrices from the left-hand side, the right-hand
side or both sides simultaneously, motivated by the high computational effort of
standard methods for cross-covariance matricesQst and auto-covariance matrices
Qtt of observationst and unknownss.

The spectral methods perform significantly better than standard methods:
Storage requirements are reduced fromO(n2) to O(n), and computational costs
are reduced fromO(n2) to O(n log2 n). On the reference computer used in this
work, the maximum allowable matrix size wasn = 221 for the spectral method
instead ofn = 216 for an enhanced standard method, and the spectral method was
faster by orders of magnitude for largen.

Up to now, computational costs and storage requirements have severely re-
stricted geostatistical methods that require explicit computation ofQst andQtt ,
such as linear and iterative cokriging and the generation of conditional realiza-
tions. The spectral methods discussed in this work overcome these restrictions.
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APPENDIX

Definition 1(2D DFT). The discrete 2D Fourier transform (DFT) of a rectangular
ny × nx matrixU is theny × nx matrixV with the entries:

Vkl = 1√
nxny

ny−1∑
p=0

nx−1∑
q=0

Upq · exp

(
−2π i pk

ny
− 2π iql

nx

)
k = 0. .ny − 1,

l = 0. .nx − 1. (A1)

The inverse Fourier transformation is given by the same expression with opposite
signs inside the exponential function.
Definition 2(2D Fourier matrix). The 2D Fourier transformation can be formulated
in matrix notation. ConsiderF annynx × nynx matrix with the entries:

Fkl = 1√
nxny

exp

(
−2π i

ny

[
l − (l modnx)

nx

]
×
[

k− (k modnx)

nx

])
· exp

(
−2π i

nx
(l modnx) (k modnx)

)
(A2)

l ,m= 0, 1, . . . , nxny − 1,

then the 2D Fourier transformV of anny × nx matrixU is:

v = Fu, (A3)



P1: FLT

Mathematical Geology [mg] pp741-matg-460237 January 31, 2003 15:59 Style file version June 25th, 2002

66 Nowak, Tenkleve, and Cirpka

in which u andv arenyny × 1 vectors obtained from rearranging the matricesU
andV column-wise. The inverse Fourier transformation corresponds to the inverse
of the Fourier matrix. AsF is unitary,

F−1 = FH (A4)

FH F = I , (A5)

where the superscriptH denotes the Hermitian transpose, i.e., the transpose of the
complex conjugate.

The Fourier matrix and its inverse are for the derivations only. In the practical
application, the 2D FFT algorithm is applied.Fu is evaluated by reshapingu into
anny × nx matrixU, computing the 2D FFTV = F(U), and reshapingV back to
annynx × 1 vectorv = Fu, which isO(n log2 n) instead ofO(n2), n = nynx.


